1
|
Wojdas M, Dąbkowska K, Kuźnik-Trocha K, Wisowski G, Lachór-Motyka I, Komosińska-Vassev K, Olczyk K, Winsz-Szczotka K. Plasma Glycosaminoglycans in Children with Juvenile Idiopathic Arthritis Being Treated with Etanercept as Potential Biomarkers of Joint Dysfunction. Biomedicines 2022; 10:biomedicines10081845. [PMID: 36009392 PMCID: PMC9405228 DOI: 10.3390/biomedicines10081845] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Revised: 07/28/2022] [Accepted: 07/28/2022] [Indexed: 12/12/2022] Open
Abstract
We assessed the effect of two-year etanercept (ETA) therapy on the metabolism of the cartilage extracellular matrix (ECM) in patients with juvenile idiopathic arthritis (JIA). Methods: We performed a quantitative evaluation of glycosaminoglycans (GAGs) (performed by the multistage extraction and purification method) in blood obtained from patients before and during 24 months of ETA treatment, as potential biomarker of joint dysfunction and indicators of biological effectiveness of therapy. Since the metabolism of GAGs is related to the activity of proteolytic enzymes and prooxidant–antioxidant factors, we decided to evaluate the relationship between GAGs and the levels of metalloproteinases (MMP), i.e., MMP-1 and MMP-3 (using immunoenzymatic methods), as well as the total antioxidative status (TAS) (using the colorimetric method) in blood of the JIA patients. Results: When compared to the controls, GAGs and TAS concentrations were significantly lower in patients with an aggressive course of JIA qualified for ETA treatment. MMP-1 and MMP-3 levels were significantly higher versus control values. An anti-cytokine therapy leading to clinical improvement does not lead to the normalization of any of the assessed parameters. GAGs concentration is significantly related to MMP-1, MMP-3, TAS, TOS, and CRP levels. Conclusion: The results of the present study indicate the necessity of constant monitoring of the dynamics of destructive processes of articular cartilage in children with JIA. We suggest that GAGs may be a useful biomarker to assess the clinical status of the extracellular matrix of joints.
Collapse
Affiliation(s)
- Magdalena Wojdas
- Department of Clinical Chemistry and Laboratory Diagnostics, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, ul. Jedności 8, 41-200 Sosnowiec, Poland; (K.D.); (K.K.-T.); (G.W.); (K.K.-V.); (K.O.); (K.W.-S.)
- Correspondence:
| | - Klaudia Dąbkowska
- Department of Clinical Chemistry and Laboratory Diagnostics, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, ul. Jedności 8, 41-200 Sosnowiec, Poland; (K.D.); (K.K.-T.); (G.W.); (K.K.-V.); (K.O.); (K.W.-S.)
| | - Kornelia Kuźnik-Trocha
- Department of Clinical Chemistry and Laboratory Diagnostics, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, ul. Jedności 8, 41-200 Sosnowiec, Poland; (K.D.); (K.K.-T.); (G.W.); (K.K.-V.); (K.O.); (K.W.-S.)
| | - Grzegorz Wisowski
- Department of Clinical Chemistry and Laboratory Diagnostics, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, ul. Jedności 8, 41-200 Sosnowiec, Poland; (K.D.); (K.K.-T.); (G.W.); (K.K.-V.); (K.O.); (K.W.-S.)
| | - Iwona Lachór-Motyka
- Department of Rheumatology, The John Paul II Pediatric Center in Sosnowiec, ul. G. Zapolskiej 3, 41-218 Sosnowiec, Poland;
| | - Katarzyna Komosińska-Vassev
- Department of Clinical Chemistry and Laboratory Diagnostics, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, ul. Jedności 8, 41-200 Sosnowiec, Poland; (K.D.); (K.K.-T.); (G.W.); (K.K.-V.); (K.O.); (K.W.-S.)
| | - Krystyna Olczyk
- Department of Clinical Chemistry and Laboratory Diagnostics, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, ul. Jedności 8, 41-200 Sosnowiec, Poland; (K.D.); (K.K.-T.); (G.W.); (K.K.-V.); (K.O.); (K.W.-S.)
| | - Katarzyna Winsz-Szczotka
- Department of Clinical Chemistry and Laboratory Diagnostics, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, ul. Jedności 8, 41-200 Sosnowiec, Poland; (K.D.); (K.K.-T.); (G.W.); (K.K.-V.); (K.O.); (K.W.-S.)
| |
Collapse
|
2
|
Kuźnik-Trocha K, Winsz-Szczotka K, Lachór-Motyka I, Dąbkowska K, Wojdas M, Olczyk K, Komosińska-Vassev K. The Effects of TNF-α Inhibition on the Metabolism of Cartilage: Relationship between KS, HA, HAPLN1 and ADAMTS4, ADAMTS5, TOS and TGF-β1 Plasma Concentrations in Patients with Juvenile Idiopathic Arthritis. J Clin Med 2022; 11:jcm11072013. [PMID: 35407621 PMCID: PMC8999578 DOI: 10.3390/jcm11072013] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 03/17/2022] [Accepted: 04/01/2022] [Indexed: 02/05/2023] Open
Abstract
We assessed the effect of 24-month anti-tumor necrosis factor alpha (TNF-α) treatment on the remodeling of the cartilage extracellular matrix (ECM) in patients with juvenile idiopathic arthritis (JIA). Methods: Quantitative evaluation of keratan sulfate (KS), hyaluronic acid (HA), hyaluronan and proteoglycan link protein 1 (HAPLN1), as potential biomarkers of joint dysfunction, and the levels of a disintegrin and metalloproteinase with thrombospondin motifs (ADAMTS) 4 and 5, total oxidative status (TOS) and transforming growth factor (TGF-β1) was performed (using immunoenzymatic methods) in blood obtained from patients before and after 24 months of etanercept (ETA) treatment. Results: When compared to the controls, KS, HA and HAPLN1 levels were significantly higher in patients with an aggressive course of JIA qualified for ETA treatment. An anti-cytokine therapy leading to clinical improvement promotes the normalization only of the HA level. Proteolytic and pro-oxidative factors, present in high concentrations in patients before the treatment, correlated with HAPLN1, but not with KS and HA levels. In these patients, negative correlations were found between the levels of TGF-β1 and KS, HA and HAPLN1. Conclusion: The anti-TNF-α therapy used in patients with JIA has a beneficial effect on ECM cartilage metabolism, but it does not completely regenerate it. The changes in the plasma HA level during the anti-cytokine therapy suggest its potential diagnostic utility in monitoring of disease activity and may be used to assess the efficacy of ETA treatment.
Collapse
Affiliation(s)
- Kornelia Kuźnik-Trocha
- Department of Clinical Chemistry and Laboratory Diagnostics, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, ul. Jedności 8, 41-200 Sosnowiec, Poland; (K.K.-T.); (K.D.); (M.W.); (K.O.); (K.K.-V.)
| | - Katarzyna Winsz-Szczotka
- Department of Clinical Chemistry and Laboratory Diagnostics, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, ul. Jedności 8, 41-200 Sosnowiec, Poland; (K.K.-T.); (K.D.); (M.W.); (K.O.); (K.K.-V.)
- Correspondence: ; Tel.: +48-323641152
| | - Iwona Lachór-Motyka
- Department of Rheumatology, The John Paul II Pediatric Center in Sosnowiec, ul. G. Zapolskiej 3, 41-218 Sosnowiec, Poland;
| | - Klaudia Dąbkowska
- Department of Clinical Chemistry and Laboratory Diagnostics, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, ul. Jedności 8, 41-200 Sosnowiec, Poland; (K.K.-T.); (K.D.); (M.W.); (K.O.); (K.K.-V.)
| | - Magdalena Wojdas
- Department of Clinical Chemistry and Laboratory Diagnostics, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, ul. Jedności 8, 41-200 Sosnowiec, Poland; (K.K.-T.); (K.D.); (M.W.); (K.O.); (K.K.-V.)
| | - Krystyna Olczyk
- Department of Clinical Chemistry and Laboratory Diagnostics, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, ul. Jedności 8, 41-200 Sosnowiec, Poland; (K.K.-T.); (K.D.); (M.W.); (K.O.); (K.K.-V.)
| | - Katarzyna Komosińska-Vassev
- Department of Clinical Chemistry and Laboratory Diagnostics, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, ul. Jedności 8, 41-200 Sosnowiec, Poland; (K.K.-T.); (K.D.); (M.W.); (K.O.); (K.K.-V.)
| |
Collapse
|
3
|
Winsz-Szczotka K, Kuźnik-Trocha K, Lachór-Motyka I, Lemski W, Olczyk K. Concerted Actions by PIICP, CTXII, and TNF-α in Patients with Juvenile Idiopathic Arthritis. Biomolecules 2021; 11:biom11050648. [PMID: 33924892 PMCID: PMC8146247 DOI: 10.3390/biom11050648] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 04/22/2021] [Accepted: 04/27/2021] [Indexed: 12/13/2022] Open
Abstract
Joint destruction in juvenile idiopathic arthritis (JIA), initiated in the early, preclinical stage of the disease, is diagnosed on the basis of clinical evaluation and radiographic imaging. The determination of circulating cartilage-matrix turnover markers can facilitate the diagnosis and application of better and earlier treatment strategies for JIA. We have shown that 96 JIA patients have elevated levels of procollagen II C-terminal propeptide (PIICP), reflecting the extent of joint cartilage biosynthesis, and C-telopeptide of type II collagen (CTXII), a biomarker of the resorption of this tissue. Patients who did not respond to treatment had particularly high levels of these markers. JIA treatment resulted in the normalization of these markers in remissive patients, but not in those with active JIA. We showed correlations between examined variables and inflammatory process indicators, i.e., C-reactive protein (CRP), erythrocyte sedimentation rate (ESR), and tumor necrosis factor-α (TNF-α). The TNF-α of patients responding to treatment correlated with PIICP, especially in the patients before treatment (r = 0.898, p < 0.001). Significant changes in serum PIICP during JIA therapy suggest its potential diagnostic utility in the monitoring of disease activity and the possibility of its use in assessing treatment towards remission. Understanding changes in type II collagen metabolism over the course of the discussed arthritis may allow the implementation of both new diagnostic tools and new therapeutic strategies in children with JIA.
Collapse
Affiliation(s)
- Katarzyna Winsz-Szczotka
- Department of Clinical Chemistry and Laboratory Diagnostics, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, ul. Jedności 8, 41-200 Sosnowiec, Poland; (K.K.-T.); (W.L.); (K.O.)
- Correspondence: ; Tel.: +48-323-64-1152
| | - Kornelia Kuźnik-Trocha
- Department of Clinical Chemistry and Laboratory Diagnostics, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, ul. Jedności 8, 41-200 Sosnowiec, Poland; (K.K.-T.); (W.L.); (K.O.)
| | - Iwona Lachór-Motyka
- Department of Rheumatology, The John Paul II Pediatric Center in Sosnowiec, ul. Gabrieli Zapolskiej 3, 41-218 Sosnowiec, Poland;
| | - Wojciech Lemski
- Department of Clinical Chemistry and Laboratory Diagnostics, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, ul. Jedności 8, 41-200 Sosnowiec, Poland; (K.K.-T.); (W.L.); (K.O.)
| | - Krystyna Olczyk
- Department of Clinical Chemistry and Laboratory Diagnostics, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, ul. Jedności 8, 41-200 Sosnowiec, Poland; (K.K.-T.); (W.L.); (K.O.)
| |
Collapse
|
4
|
Shi L, Yuan Z, Liu J, Cai R, Hasnat M, Yu H, Feng J, Wang Z, Zhao Q, Wu M, Huang X, Shen F, Yin L, Yu Y, Liang T. Modified Simiaowan prevents articular cartilage injury in experimental gouty arthritis by negative regulation of STAT3 pathway. JOURNAL OF ETHNOPHARMACOLOGY 2021; 270:113825. [PMID: 33460754 DOI: 10.1016/j.jep.2021.113825] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Revised: 01/08/2021] [Accepted: 01/11/2021] [Indexed: 06/12/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Modified Simiaowan (MSW) is a traditional Chinese medicine formula that is composed of six herbs. It has been widely used in the treatment of gouty arthritis. AIM OF THE STUDY This study was designed to investigate the effect of MSW on gouty arthritis and explore the possible mechanisms. MATERIAL AND METHODS The rat gouty arthritis model was established by intra-articular injection of Monosodium Urate (MSU) crystal, and then treated with MSW for 5 days. The perimeter of the knee joints was measured in a time-dependent manner and serum samples were collected for the detection of TNF-α, IL-1β, and IL-6 protein levels by ELISA. The protein expressions of MMP-3, TIMP-3, STAT3, and p-STAT3 in cartilage tissues and C28/I2 cells were detected by Western blot, and the levels of proteoglycan in primary chondrocytes and cartilage tissues were determined by toluidine blue staining. In addition, AG490 and IL-6 were used in vitro to explore the function of IL-6/STAT3 pathway in the protective effect of MSU. RESULTS MSW reduced the joint swelling rate in gouty arthritis model and inhibited MSU induced up-regulation of IL-1β, TNF-α, and IL-6 protein levels in serum and synovial fluid. IL-1β induced an increase in p-STAT3 and MMP-3 protein expression in C28/I2 cells, as well as a decrease in TIMP-3. MSW serum inhibited the protein expression changes induced by IL-1β in vitro. Furthermore, inhibition of STAT3 signaling negated the effect of MSW serum on p-STAT3, MMP-3, and TIMP-3 protein levels in C28/I2 cells. MSW also increased the content of proteoglycan significantly both in vivo and in vitro. CONCLUSION Our data indicated that MSW protected rats from MSU-induced experimental gouty arthritis and IL-1β/IL-6/STAT3 pathway played an essential role in the protective effect of MSU against GA.
Collapse
Affiliation(s)
- Le Shi
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| | - Ziqiao Yuan
- China Pharmaceutical University, Nanjing, 210009, China.
| | - Jing Liu
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| | - Rui Cai
- Jiangsu Provincial Hospital of Traditional Chinese Medicine, Nanjing, 210029, China.
| | - Muhammad Hasnat
- Institute of Pharmaceutical Sciences, University of Veterinary and Animal Sciences, Outfall Road, Lahore, 54600, Pakistan
| | - Hui Yu
- Nanjing Xinbai Pharmaceutical Co., Ltd, Nanjing, 210023, China.
| | - Jing Feng
- Nanjing Xinbai Pharmaceutical Co., Ltd, Nanjing, 210023, China.
| | - Zhanglian Wang
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| | - Qianqian Zhao
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| | - Min Wu
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| | - Xinxin Huang
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| | - Fei Shen
- Nanjing Xinbai Pharmaceutical Co., Ltd, Nanjing, 210023, China.
| | - Lian Yin
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| | - Yun Yu
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| | - Tao Liang
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| |
Collapse
|
5
|
Wojdas M, Dąbkowska K, Winsz-Szczotka K. Alterations of Extracellular Matrix Components in the Course of Juvenile Idiopathic Arthritis. Metabolites 2021; 11:132. [PMID: 33668781 PMCID: PMC7996267 DOI: 10.3390/metabo11030132] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 02/19/2021] [Accepted: 02/22/2021] [Indexed: 12/12/2022] Open
Abstract
Juvenile idiopathic arthritis (JIA) is the most common group of chronic connective tissue diseases in children that is accompanied by joint structure and function disorders. Inflammation underlying the pathogenic changes in JIA, caused by hypersecretion of proinflammatory cytokines, leads to the destruction of articular cartilage. The degradation which progresses with the duration of JIA is not compensated by the extent of repair processes. These disorders are attributed in particular to changes in homeostasis of extracellular matrix (ECM) components, including proteoglycans, that forms articular cartilage. Changes in metabolism of matrix components, associated with the disturbance of their degradation and biosynthesis processes, are the basis of the progressive wear of joint structures observed in the course of JIA. Clinical evaluation and radiographic imaging are current methods to identify the destruction. The aim of this paper is to review enzymatic and non-enzymatic factors involved in catabolism of matrix components and molecules stimulating their biosynthesis. Therefore, we discuss the changes in these factors in body fluids of children with JIA and their potential diagnostic use in the assessment of disease activity. Understanding the changes in ECM components in the course of the child-hood arthritis may provide the introduction of both new diagnostic tools and new therapeutic strategies in children with JIA.
Collapse
Affiliation(s)
- Magdalena Wojdas
- Department of Clinical Chemistry and Laboratory Diagnostics, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, ul. Jedności 8, 41-200 Sosnowiec, Poland; (K.D.); (K.W.-S.)
| | | | | |
Collapse
|
6
|
Association of Circulating COMP and YKL-40 as Markers of Metabolic Changes of Cartilage with Adipocytokines in Juvenile Idiopathic Arthritis. Metabolites 2020; 10:metabo10020061. [PMID: 32050571 PMCID: PMC7073573 DOI: 10.3390/metabo10020061] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 02/01/2020] [Accepted: 02/06/2020] [Indexed: 12/14/2022] Open
Abstract
The aim of this study was to evaluate the association of circulating cartilage oligomeric matrix protein (COMP) and human cartilage glycoprotein-39 (YKL-40) as markers of metabolic changes of cartilage, with leptin, adiponectin, and resistin in juvenile idiopathic arthritis (JIA) patients before and after treatment. A significant decrease of COMP and an increase of YKL-4 were found in blood of untreated patients. JIA treatment leading to clinical improvement resulted in normalization of COMP levels only. Concentrations of both markers in treated patients, while showing no clinical improvement, differed from those in controls and patients with remission. The leptin level decreased (p < 0.05) in untreated patients; however, concentrations of adiponectin and resistin increased (p < 0.05) as compared to controls. JIA treatment resulted in normalization of adipocytokine levels in remissive patients but not those with active JIA. Untreated patients showed a correlation between COMP and leptin, adiponectin, and body mass index (BMI) and between YKL-40 and leptin, adiponectin, BMI, C-reactive protein (CRP), and erythrocyte sedimentation rate (ESR). In inactive JIA, a correlation between YKL-40 and leptin was shown. Treated patients with an active JIA demonstrated a correlation between COMP and adiponectin and between YKL-40 and leptin, adiponectin, BMI, CRP, and ESR. The results of this work indicate that leptin and adiponectin but not resistin may be involved in the development and progression of joint dysfunction in JIA. Additionally, we suggest that YKL-40 may be a useful biomarker of disease activity and may be used to assess treatment towards remission, as compared to COMP.
Collapse
|
7
|
Margheri F, Laurenzana A, Giani T, Maggi L, Cosmi L, Annunziato F, Cimaz R, Del Rosso M. The protease systems and their pathogenic role in juvenile idiopathic arthritis. Autoimmun Rev 2019; 18:761-766. [PMID: 31181328 DOI: 10.1016/j.autrev.2019.06.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Accepted: 02/11/2019] [Indexed: 12/20/2022]
Abstract
Numerous proteases produced by synovial cells of arthritic joints, chondrocytes, macrophages and polymorphonuclear cells have been identified as responsible for the joint damage in rheumatoid arthritis. There are few scientific contributions aimed to identify similar mechanisms in the joints of patients with juvenile idiopathic arthritis. Recently, some mechanisms emerged, triggered by the TH17 and TH1/TH17 lymphocytes, which could shed new light on unexpected pathogenic pathways of joint damage in the JIA, mainly regarding the RANK-RANKL pathway. Other novelties are linked to the mechanisms of acidification of the synovial fluid, which create a microenvironment suitable for the extracellular activity of lysosomal enzymes. Some biological drugs currently used in the therapy of JIA can interfere with these mechanisms.
Collapse
Affiliation(s)
- Francesca Margheri
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Italy
| | - Anna Laurenzana
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Italy
| | - Teresa Giani
- Department of Pediatrics, Rheumatology Unit, Anna Meyer Children's Hospital, Italy
| | - Laura Maggi
- Department of Experimental and Clinical Medicine, University of Florence, Italy
| | - Lorenzo Cosmi
- Department of Experimental and Clinical Medicine, University of Florence, Italy
| | | | - Rolando Cimaz
- Department of Clinical Sciences and Community Health, University of Milano, Italy.
| | - Mario Del Rosso
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Italy
| |
Collapse
|
8
|
Morla S. Glycosaminoglycans and Glycosaminoglycan Mimetics in Cancer and Inflammation. Int J Mol Sci 2019; 20:ijms20081963. [PMID: 31013618 PMCID: PMC6514582 DOI: 10.3390/ijms20081963] [Citation(s) in RCA: 142] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Revised: 03/22/2019] [Accepted: 04/17/2019] [Indexed: 02/06/2023] Open
Abstract
Glycosaminoglycans (GAGs) are a class of biomolecules expressed virtually on all mammalian cells and usually covalently attached to proteins, forming proteoglycans. They are present not only on the cell surface, but also in the intracellular milieu and extracellular matrix. GAGs interact with multiple ligands, both soluble and insoluble, and modulate an important role in various physiological and pathological processes including cancer, bacterial and viral infections, inflammation, Alzheimer’s disease, and many more. Considering their involvement in multiple diseases, their use in the development of drugs has been of significant interest in both academia and industry. Many GAG-based drugs are being developed with encouraging results in animal models and clinical trials, showcasing their potential for development as therapeutics. In this review, the role GAGs play in both the development and inhibition of cancer and inflammation is presented. Further, advancements in the development of GAGs and their mimetics as anti-cancer and anti-inflammatory agents are discussed.
Collapse
Affiliation(s)
- Shravan Morla
- Department of Medicinal Chemistry, Drug Discovery and Development, Virginia Commonwealth University, Richmond, VA 23219, USA.
- Institute for Structural Biology, Drug Discovery and Development, Virginia Commonwealth University, Richmond, VA 23219, USA.
| |
Collapse
|
9
|
Abstract
Glycosaminoglycans (GAGs) are a class of biomolecules expressed virtually on all mammalian cells and usually covalently attached to proteins, forming proteoglycans. They are present not only on the cell surface, but also in the intracellular milieu and extracellular matrix. GAGs interact with multiple ligands, both soluble and insoluble, and modulate an important role in various physiological and pathological processes including cancer, bacterial and viral infections, inflammation, Alzheimer's disease, and many more. Considering their involvement in multiple diseases, their use in the development of drugs has been of significant interest in both academia and industry. Many GAG-based drugs are being developed with encouraging results in animal models and clinical trials, showcasing their potential for development as therapeutics. In this review, the role GAGs play in both the development and inhibition of cancer and inflammation is presented. Further, advancements in the development of GAGs and their mimetics as anti-cancer and anti-inflammatory agents are discussed.
Collapse
|
10
|
Shores DR, Everett AD. Children as Biomarker Orphans: Progress in the Field of Pediatric Biomarkers. J Pediatr 2018; 193:14-20.e31. [PMID: 29031860 PMCID: PMC5794519 DOI: 10.1016/j.jpeds.2017.08.077] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Revised: 08/04/2017] [Accepted: 08/30/2017] [Indexed: 12/20/2022]
Affiliation(s)
- Darla R Shores
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, Johns Hopkins School of Medicine, Baltimore, MD.
| | - Allen D Everett
- Division of Cardiology, Department of Pediatrics, Johns Hopkins School of Medicine, Baltimore, MD
| |
Collapse
|
11
|
Wei ST, Sun YH, Zong SH. A novel method to identify hub pathways of rheumatoid arthritis based on differential pathway networks. Mol Med Rep 2017; 16:3187-3193. [PMID: 28713940 PMCID: PMC5547957 DOI: 10.3892/mmr.2017.6985] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2015] [Accepted: 11/08/2016] [Indexed: 12/29/2022] Open
Abstract
The aim of the current study was to identify hub pathways of rheumatoid arthritis (RA) using a novel method based on differential pathway network (DPN) analysis. The present study proposed a DPN where protein-protein interaction (PPI) network was integrated with pathway-pathway interactions. Pathway data was obtained from background PPI network and the Reactome pathway database. Subsequently, pathway interactions were extracted from the pathway data by building randomized gene-gene interactions and a weight value was assigned to each pathway interaction using Spearman correlation coefficient (SCC) to identify differential pathway interactions. Differential pathway interactions were visualized using Cytoscape to construct a DPN. Topological analysis was conducted to identify hub pathways that possessed the top 5% degree distribution of DPN. Modules of DPN were mined according to ClusterONE. A total of 855 pathways were selected to build pathway interactions. By filtrating pathway interactions of weight values >0.7, a DPN with 312 nodes and 791 edges was obtained. Topological degree analysis revealed 15 hub pathways, such as heparan sulfate/heparin-glycosaminoglycan (HS-GAG) degradation, HS-GAG metabolism and keratan sulfate degradation for RA based on DPN. Furthermore, hub pathways were also important in modules, which validated the significance of hub pathways. In conclusion, the proposed method is a computationally efficient way to identify hub pathways of RA, which identified 15 hub pathways that may be potential biomarkers and provide insight to future investigation and treatment of RA.
Collapse
Affiliation(s)
- Shi-Tong Wei
- Department of Rheumatology, Yantai Yantaishan Hospital, Yantai, Shandong 264000, P.R. China
| | - Yong-Hua Sun
- Department of Rheumatology, Yantai Yantaishan Hospital, Yantai, Shandong 264000, P.R. China
| | - Shi-Hua Zong
- Department of Rheumatology, Yantai Yantaishan Hospital, Yantai, Shandong 264000, P.R. China
| |
Collapse
|
12
|
Laboratory Indicators of Aggrecan Turnover in Juvenile Idiopathic Arthritis. DISEASE MARKERS 2016; 2016:7157169. [PMID: 26924871 PMCID: PMC4748107 DOI: 10.1155/2016/7157169] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Revised: 12/29/2015] [Accepted: 01/10/2016] [Indexed: 01/14/2023]
Abstract
Objectives. Evaluation of chondroitin sulfate (CS), as an early marker of aggrecan degradation, and chondroitin sulfate 846 epitope (CS846), as a biomarker of CS synthesis, is an attempt at answering the question whether the therapy used in juvenile idiopathic arthritis (JIA) patients contributes to the normalization of biochemical changes in aggrecan. Methods and Results. Serum levels of CS and CS846 as well as catalase (CT), superoxide dismutase (SOD), and glutathione peroxidase (GPx) activities in erythrocyte were assessed in patients before and after treatment. In the course of JIA, aggrecan metabolism is disturbed, which is reflected by a decrease (p < 0.001) in CS serum level and an increase (p < 0.05) in CS846 concentration. Furthermore, increased (p < 0.001) activities of CT, SOD, and GPx in untreated JIA patients were recorded. The anti-inflammatory treatment resulted in the normalization of CS846 level and SOD and GPx activities. In untreated patients, we have revealed a significant correlation between serum CS and CS846, CT, CRP, ESR, MMP-3, and ADAMTS-4, respectively, as well as between CS846 and CT, GPx, CRP, ESR, and TGF-β1, respectively. Conclusion. The observed changes of CS and CS846 in JIA patients indicate a further need of the therapy continuation aimed at protecting a patient from a possible disability.
Collapse
|