1
|
Adamiszak A, Czyrski A, Sznek B, Grześkowiak E, Bienert A. The Application of the Design of Experiments and Artificial Neural Networks in the Development of a Fast and Straightforward HPLC-UV Method for Fluconazole Determination in Hemato-Oncologic Pediatric Patients and Its Adaptation to Therapeutic Drug Monitoring. Pharmaceuticals (Basel) 2024; 17:1679. [PMID: 39770521 PMCID: PMC11679493 DOI: 10.3390/ph17121679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 12/05/2024] [Accepted: 12/10/2024] [Indexed: 01/11/2025] Open
Abstract
Objectives: This study aimed to develop an optimized and wide concentration range HPLC-UV method for fluconazole (FLU) determination and its adaptation for pharmacokinetics (PK) studies in the pediatric population. Methods: The following parameters of chromatographic separation were optimized: retention time, tailing factor, peak height, and the sample preconditioning parameter, such as recovery. The optimization process involved the use of a central composite design (CCD) and Box-Behnken design (BBD) in the design of experiments (DoE) approach and a multilayer perceptron (MLP) for artificial neural network (ANN) application. Statistical and PK analyses were performed using Statistica and PKanalix. Results: The acetonitrile (ACN) concentration revealed the most significant factor influencing the retention time, tailing factor, and peak height of FLU and the internal standard. For recovery, the extracting agent's volume was the most significant factor. In most cases, the analysis conducted with the DoE and ANN indicated the same factors in a similar order regarding their impact on the analyzed variables. The optimization process allowed for achieving a wide range of determined concentrations (0.5-100 mg/L) and ~100% recovery. The developed method enabled PK analysis of 12 samples from three pediatric patients, proving its clinical usability. The estimated median clearance (CL) and volume of distribution (Vd) were 1.01 L/h and 18.64 L, respectively. Conclusions: DoE and ANNs are promising and useful tools in the optimization of sample preconditioning as well as the HPLC separation procedure. The investigated fluconazole determination method meets the European Medicines Agency (EMA) validation objectives and might be used in pediatric and adult PK studies.
Collapse
Affiliation(s)
- Arkadiusz Adamiszak
- Department of Clinical Pharmacy and Biopharmacy, Poznan University of Medical Sciences, 60-806 Poznan, Poland; (A.A.); (E.G.)
- Doctoral School, Poznan University of Medical Sciences, 60-812 Poznan, Poland
| | - Andrzej Czyrski
- Department of Physical Pharmacy and Pharmacokinetics, Poznan University of Medical Sciences, 60-806 Poznan, Poland; (A.C.); (B.S.)
| | - Bartosz Sznek
- Department of Physical Pharmacy and Pharmacokinetics, Poznan University of Medical Sciences, 60-806 Poznan, Poland; (A.C.); (B.S.)
| | - Edmund Grześkowiak
- Department of Clinical Pharmacy and Biopharmacy, Poznan University of Medical Sciences, 60-806 Poznan, Poland; (A.A.); (E.G.)
| | - Agnieszka Bienert
- Department of Clinical Pharmacy and Biopharmacy, Poznan University of Medical Sciences, 60-806 Poznan, Poland; (A.A.); (E.G.)
| |
Collapse
|
2
|
Wang H, Li D, Jiang Y, Liang J, Yu Q, Kuang L, Huang Y, Qin D, Li P, He J, Xu F, Li X, Wang F, Wei Y, Li X. Population pharmacokinetics of fluconazole for prevention or treatment of invasive candidiasis in Chinese young infants. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:8853-8862. [PMID: 38850301 DOI: 10.1007/s00210-024-03184-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Accepted: 05/24/2024] [Indexed: 06/10/2024]
Abstract
The dosing of fluconazole for young infants remains empirical because of the limited pharmacokinetic (PK) data. We aimed to establish a population PK model and assess the systematic exposure-response of commonly used regimens of fluconazole in Chinese infants. We included infants with a postnatal age of less than 120 days and received intravenous fluconazole. Both scheduled and scavenged plasma samples were collected, and fluconzaole concentration was determined by a validated ultra-performance liquid chromatography-tandem mass spectrometry assay. Population PK analysis was conducted using Phoenix NLME, and then Monte Carlo simulation was conducted to predict the probability of target attainment (PTA) of empirically used regimens of both prophylactic and therapeutic purposes. Based on 304 plasma samples from 183 young infants, fluconazole concentration data was best described by a one-compartment model with first-order elimination. Gestational Age (GA), postnatal age (PNA), and body weight (BW) were included in the final model as CL = 0.02*(GA/214)2.77*(PNA/13)0.24*exp(nCL); V = 1.56*(BW/1435)0.90*exp(nV). Model validation revealed the final model had qualified stability and acceptable predictive properties. Monte Carlo simulation indicated that under the same minimum inhibitory concentration (MIC) value and administration regimen, PTA decreased with GA and PNA. The commonly used prophylactic regimens can meet the clinical need, while higher doses might be needed for treatment of invasive candidiasis. This population PK model of fluconazole discriminated the impact of GA and PNA on CL and BW on V. Dosing adjustment was needed according to the GA and PNA of infants to achieve targeted exposures.
Collapse
Affiliation(s)
- Honghong Wang
- Department of Pharmacy, Liuzhou Maternity and Child Healthcare Hospital, Affiliated Maternity Hospital and Affiliated Children's Hospital of Guangxi University of Science and Technology, Liuzhou, Guangxi, China
| | - Dandan Li
- Department of Pharmacy, Beijing Friendship Hospital, Capital Medical University,, Beijing, China
| | - Yongjiang Jiang
- Department of Neonatology, Liuzhou Hospital of Guangzhou Women and Children's Medical Center, Liuzhou, Guangxi, China
| | - Jing Liang
- Department of Neonatology, Liuzhou Hospital of Guangzhou Women and Children's Medical Center, Liuzhou, Guangxi, China
| | - Qiaoai Yu
- Department of Laboratory, Liuzhou Maternity and Child Healthcare Hospital, Affiliated Maternity Hospital and Affiliated Children's Hospital of Guangxi University of Science and Technology, Liuzhou, Guangxi, China
| | - Linghong Kuang
- School of Computer Science and Mathematics, Fujian University of Technology, Fuzhou, Fujian, China
| | - Yuling Huang
- Department of Pharmacy, Liuzhou Maternity and Child Healthcare Hospital, Affiliated Maternity Hospital and Affiliated Children's Hospital of Guangxi University of Science and Technology, Liuzhou, Guangxi, China
| | - Dongjie Qin
- Pharmaceutical Division, Liuzhou Quality Inspection and Testing Research Center, Liuzhou, Guangxi, China
| | - Ping Li
- Department of Pharmacy, Liuzhou Maternity and Child Healthcare Hospital, Affiliated Maternity Hospital and Affiliated Children's Hospital of Guangxi University of Science and Technology, Liuzhou, Guangxi, China
| | - Jing He
- Department of Pharmacy, Liuzhou Maternity and Child Healthcare Hospital, Affiliated Maternity Hospital and Affiliated Children's Hospital of Guangxi University of Science and Technology, Liuzhou, Guangxi, China
| | - Feng Xu
- Department of Pharmacy, Liuzhou Hospital of Guangzhou Women and Children's Medical Center, Liuzhou, Guangxi, China
| | - Xueli Li
- Department of Laboratory, Liuzhou Hospital of Guangzhou Women and Children's Medical Center, Liuzhou, Guangxi, China
| | - Fei Wang
- Department of Pharmacy, Fujian Provincial Geriatric Hospital, Teaching Hospital of Fujian Medical University, Fuzhou, Fujian, China
| | - Yanfei Wei
- Department of Neonatology, Liuzhou Maternity and Child Healthcare Hospital, Affiliated Maternity Hospital and Affiliated Children's Hospital of Guangxi University of Science and Technology, Liuzhou, Guangxi, China.
| | - Xingang Li
- Department of Pharmacy, Beijing Friendship Hospital, Capital Medical University,, Beijing, China.
| |
Collapse
|
3
|
Valero Rivera KP, Aquino MM, Azúa JS, del Carmen Romero Méndez M, Medellín Garibay SE, del Carmen Milán Segovia R, Gutiérrez FM, Moreno SR. UPLC-MS/MS method for fluconazole determination in plasma and its application in Mexican patients with candidaemia. Bioanalysis 2024; 16:1045-1053. [PMID: 39234918 PMCID: PMC11581149 DOI: 10.1080/17576180.2024.2387452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 07/30/2024] [Indexed: 09/06/2024] Open
Abstract
Aim: An accurate and fast ultra-high performance liquid chromatography coupled with tandem mass spectrometry analytical method was developed and validated for quantifying fluconazole levels in human plasma according to the US FDA guidelines.Materials & methods: A simple protein precipitation by acetonitrile was employed for the sample preparation. The chromatographic separation was carried out using isocratic elution of water (0.1% formic acid) and acetonitrile on an Acquity ultra-high performance liquid chromatography HSS T3 column. Samples from ten adult patients diagnosed with candidemia who received fluconazole treatment were analyzed.Results & conclusion: The method demonstrated excellent linearity and stability within the 1-50 μg/ml range (r2 >0.999). The intraday and interday precision were determined with coefficient of variation values ranging from 1.4 to 4.38% and 2.8 to 6.6%, respectively. This rapid and selective method has successfully analyzed 27 plasma samples. The straightforward sample preparation in a single step and the reduced analysis time make this method suitable for adult patients with candidemia, leading to improved clinical outcomes.
Collapse
Affiliation(s)
- Karla Paulina Valero Rivera
- Departamento de Farmacia, Facultad de Ciencias Químicas, Universidad Autónoma de San Luis Potosí, #6 Ave. Manuel Nava, San Luis Potosí, C.P.78210, México
| | - Martin Magaña Aquino
- Hospital Central “Dr. Ignacio Morones Prieto”, #2395 Ave. Venustiano Carranza, San Luis Potosí, C.P.78290, México
| | - Julia Sagahón Azúa
- Departamento de Farmacia, Facultad de Ciencias Químicas, Universidad Autónoma de San Luis Potosí, #6 Ave. Manuel Nava, San Luis Potosí, C.P.78210, México
| | - María del Carmen Romero Méndez
- Departamento de Farmacia, Facultad de Ciencias Químicas, Universidad Autónoma de San Luis Potosí, #6 Ave. Manuel Nava, San Luis Potosí, C.P.78210, México
| | - Susanna Edith Medellín Garibay
- Departamento de Farmacia, Facultad de Ciencias Químicas, Universidad Autónoma de San Luis Potosí, #6 Ave. Manuel Nava, San Luis Potosí, C.P.78210, México
| | - Rosa del Carmen Milán Segovia
- Departamento de Farmacia, Facultad de Ciencias Químicas, Universidad Autónoma de San Luis Potosí, #6 Ave. Manuel Nava, San Luis Potosí, C.P.78210, México
| | - Fidel Martínez Gutiérrez
- Departamento de Farmacia, Facultad de Ciencias Químicas, Universidad Autónoma de San Luis Potosí, #6 Ave. Manuel Nava, San Luis Potosí, C.P.78210, México
| | - Silvia Romano Moreno
- Departamento de Farmacia, Facultad de Ciencias Químicas, Universidad Autónoma de San Luis Potosí, #6 Ave. Manuel Nava, San Luis Potosí, C.P.78210, México
| |
Collapse
|
4
|
Liu S, Yao X, Tao J, Zhao S, Sun S, Wang S, Tian X. Impact of CYP2C19, CYP2C9, CYP3A4, and FMO3 Genetic Polymorphisms and Sex on the Pharmacokinetics of Voriconazole after Single and Multiple Doses in Healthy Chinese Subjects. J Clin Pharmacol 2024; 64:1030-1043. [PMID: 38654529 DOI: 10.1002/jcph.2440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 03/20/2024] [Indexed: 04/26/2024]
Abstract
Voriconazole is the first-line treatment for invasive aspergillosis. Its pharmacokinetics exhibit considerable inter- and intra-individual variability. The purpose of this study was to investigate the effects of CYP2C19, CYP2C9, CYP3A4, and FMO3 genetic polymorphisms and sex on the pharmacokinetics of voriconazole in healthy Chinese adults receiving single-dose and multiple-dose voriconazole, to provide a reference for its clinical individualized treatment. A total of 123 healthy adults were enrolled in the study, with 108 individuals and 15 individuals in the single-dose and multiple-dose doses, respectively. Plasma voriconazole concentrations were measured using a validated LC-MS/MS method, and pharmacokinetics parameters were calculated using the non-compartmental method with WinNonlin 8.2. CYP2C19, CYP2C9, CYP3A4, and FMO3 single-nucleotide polymorphisms were sequenced using the Illumina Hiseq X-Ten platform. The results suggested that CYP2C19 genetic polymorphisms significantly affected the pharmacokinetics of voriconazole at single doses of 4, 6, and 8 mg/kg and multiple doses of voriconazole. CYP3A4 rs2242480 had a significant effect on AUC0-∞ (area under the plasma concentration-time curve from time 0 to infinity) and MRT (mean residence time) of voriconazole at a single dose of 4 mg/kg in CYP2C19 extensive metabolizer. Regardless of the CYP2C19 genotype, CYP2C9 rs1057910 and FMO3 rs2266780 were not associated with the pharmacokinetics of voriconazole at three single-dose levels or multiple doses. No significant differences in most voriconazole pharmacokinetics parameters were noted between male and female participants after single and multiple dosing. For patients receiving voriconazole treatment, CYP2C19 genetic polymorphisms should be genotyped for its precision administration. In contrast, based on our study of healthy Chinese adults, it seems unnecessary to consider the effects of CYP2C9, CYP3A4, and FMO3 genetic polymorphisms on voriconazole pharmacokinetics.
Collapse
Affiliation(s)
- Shuaibing Liu
- Department of Pharmacy, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
- Henan Key Laboratory of Precision Clinical Pharmacy, Zhengzhou University, Zhengzhou, Henan Province, China
| | - Xia Yao
- Department of Pharmacy, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
- Henan Key Laboratory of Precision Clinical Pharmacy, Zhengzhou University, Zhengzhou, Henan Province, China
| | - Jun Tao
- Department of Pharmacy, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
- Henan Key Laboratory of Precision Clinical Pharmacy, Zhengzhou University, Zhengzhou, Henan Province, China
| | - Shiyu Zhao
- Department of Pharmacy, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
- Henan Key Laboratory of Precision Clinical Pharmacy, Zhengzhou University, Zhengzhou, Henan Province, China
| | - Suke Sun
- Department of Pharmacy, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
- Henan Key Laboratory of Precision Clinical Pharmacy, Zhengzhou University, Zhengzhou, Henan Province, China
| | - Suyun Wang
- Department of Pharmacy, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
- Henan Key Laboratory of Precision Clinical Pharmacy, Zhengzhou University, Zhengzhou, Henan Province, China
| | - Xin Tian
- Department of Pharmacy, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
- Henan Key Laboratory of Precision Clinical Pharmacy, Zhengzhou University, Zhengzhou, Henan Province, China
| |
Collapse
|
5
|
Rama A, Govindan I, Hebbar S, Chaturvedi A, Rani U, Naha A. Advancing posaconazole quantification analysis with a new reverse-phase HPLC method in its bulk and marketed dosage form. F1000Res 2023; 12:468. [PMID: 37396051 PMCID: PMC10314186 DOI: 10.12688/f1000research.132841.2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/23/2023] [Indexed: 07/04/2023] Open
Abstract
Introduction: Posaconazole is a widely used antifungal drug, and its accurate quantification is essential for quality control and assessment of its pharmaceutical products. This study aimed to develop and validate a reverse-phase high-performance liquid chromatography (HPLC) analytical method for quantifying Posaconazole in bulk and dosage form. Methods: The HPLC method was developed and validated based on International Conference on Harmonisation (ICH) guidelines. The developed method was then applied to quantify Posaconazole in a marketed tablet formulation. The method's specificity, linearity, precision, accuracy, robustness, and stability were evaluated. Results: The developed HPLC method showed good linearity over a 2-20 μg/mL concentration range. The percentage recovery of Posaconazole from the bulk and marketed formulations was found to be 99.01% and 99.05%, respectively. The intra-day and inter-day precisions were less than 1%, and the method was stable under different conditions. The HPLC method was successfully applied to quantify Posaconazole in the marketed formulation. Conclusion: The developed and validated HPLC method is reliable and efficient for analyzing Posaconazole in bulk and dosage forms. The method's accuracy, precision, specificity, linearity, robustness, and stability demonstrate its effectiveness. The method can be used for the quality control and assessment of Posaconazole-containing pharmaceutical products.
Collapse
Affiliation(s)
- Annamalai Rama
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Induja Govindan
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Srinivas Hebbar
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Abhishek Chaturvedi
- Division of Biochemistry, Department of Basic Medical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Usha Rani
- Department of Social Health and Innovation, Prasanna School of Public Health, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Anup Naha
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| |
Collapse
|
6
|
Liu J, Fan W, Lv X, Wang C. Rapid Quantitative Detection of Voriconazole in Human Plasma Using Surface-Enhanced Raman Scattering. ACS OMEGA 2022; 7:47634-47641. [PMID: 36591153 PMCID: PMC9798397 DOI: 10.1021/acsomega.2c04521] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 12/06/2022] [Indexed: 06/17/2023]
Abstract
There is an increasing demand for rapid detection techniques for monitoring the therapeutic concentration of voriconazole (VRC) in human biological fluids. Herein, a rapid and selective surface-enhanced Raman scatting method for point-of-care determination of VRC in human plasma was developed via a portable Raman spectrometer. This approach has enabled the quantification of the VRC spiked into human plasma at clinical relevant concentrations. A gold nanoparticle solution (Au sol) was used as the SERS substrate, and the agglomerating conditions on its sensitivity were optimized. The method involves the formation of hot spots, and the signal of VRC molecules adsorbed on the surface of the SERS hot spot was amplified by 105. The calibration curve was linear in the range of 0.02-10 ppm, with satisfactory repeatability. The limit of detection was as low as 12.3 ppb. The variation in VRC spectra over time on different substrates demonstrated good reproducibility. Notably, the salting-out extraction method developed in this study was rapid and suitable for the quantitation of drugs in biological samples. Compared with traditional methods, this approach allows for the point-of-care quantification of VRC directly in a complex matrix, which may open up new exciting opportunities for future use of the SERS technique in clinical applications.
Collapse
Affiliation(s)
- Jing Liu
- Department
of Clinical Laboratory, The Second Affiliated Hospital of Shandong
First Medical University, Shandong First
Medical University and Shandong Academy of Medical Sciences, Taian, Shandong 271000, P. R. China
| | - Wufeng Fan
- Outpatient
Department, Affiliated Hospital of Shandong
University of Traditional Chinese Medicine, Jinan, Shandong 250014, P. R. China
| | - Xiaoxia Lv
- Central
Sterile Supply Department, Affiliated Hospital
of Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250014, P. R. China
| | - Cuijuan Wang
- Physical
and Chemical Laboratory, Shandong Academy of Occupational Health and
Occupational Medicine, Shandong First Medical
University & Shandong Academy of Medical Sciences, Jinan 250000, P. R. China
| |
Collapse
|
7
|
Zarad W, El-Gendy H, Bazan L, Ali A, Aboulella Y, Kamal M, Emara S, Shawky A. Bio-analytical liquid chromatographic-based method with a mixed mode online solid phase extraction for drug monitoring of fluconazole in human serum. J Chromatogr B Analyt Technol Biomed Life Sci 2021; 1187:123045. [PMID: 34808576 DOI: 10.1016/j.jchromb.2021.123045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 11/10/2021] [Accepted: 11/12/2021] [Indexed: 11/25/2022]
Abstract
A simple, cost-effective and sensitive liquid chromatography-based bio-analytical method has been developed and validated for therapeutic drug monitoring of fluconazole (FLUC) in human serum. Integration of online mixed-mode solid-phase extraction (SPE) into the analytical system was the key for direct injection of untreated serum samples. A short protein-coated (PC) µBondapak CN silica column (PC-µB-CN-column) as a SPE tool and phosphate buffer saline (PBS) (pH 7.4) as an eluent were applied in the extraction step. PC-µB-CN-column operates in two different chromatographic modes. Using PBS, proteins were extracted from serum samples by size-exclusion liquid chromatography, while FLUC trapping was reversed-phase liquid chromatography dependent. FLUC was then eluted from the PC-µB-CN-column onto the quantification position using a mixture of acetonitrile-distilled deionized water (20:80, v/v) as an eluent and ODS analytical column. FLUC was separated at ambient temperature (22 ± 1 °C) and detected at 260 nm. The method was linear over the range of 200-10000 ng/mL. FLUC recovery in untreated serum samples ranged from 97.8 to 98.8% and showed good accuracy and precision. The reliability of the developed method was evaluated by studying the pharmacokinetic profile of FLUC in humans after an oral administration of a single 150 mg tablet.
Collapse
Affiliation(s)
- Walaa Zarad
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Misr International University, Km 28 Ismailia Road, Cairo 44971, Egypt
| | - Heba El-Gendy
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Misr International University, Km 28 Ismailia Road, Cairo 44971, Egypt
| | - Lamyaa Bazan
- Pharmaceutics Department, Faculty of Pharmacy, Misr International University, Km 28 Ismailia Road, Cairo 44971, Egypt
| | - Ahmed Ali
- Leiden Academic Centre for Drug Research (LACDR), Leiden University, Einsteinweg 55, 2333 CC, Netherlands; Research Center, Misr International University, Km 28 Ismailia Road, Cairo 44971, Egypt
| | - Yasmine Aboulella
- Leiden Academic Centre for Drug Research (LACDR), Leiden University, Einsteinweg 55, 2333 CC, Netherlands; Research Center, Misr International University, Km 28 Ismailia Road, Cairo 44971, Egypt
| | - Maha Kamal
- Pharmaceutical Analytical Chemistry Department, Faculty of Pharmacy, Ahram Canadian University, 4th Industrial Zone, Banks Complex, 6th of October, Cairo 12256, Egypt
| | - Samy Emara
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Misr International University, Km 28 Ismailia Road, Cairo 44971, Egypt.
| | - Ahmed Shawky
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Misr International University, Km 28 Ismailia Road, Cairo 44971, Egypt
| |
Collapse
|
8
|
Tanaka R, Shiraiwa K, Takano K, Ogata M, Honda S, Yoshida N, Okuhiro K, Yoshida M, Narahara K, Kai M, Tatsuta R, Itoh H. High-throughput simultaneousquantification offive azole anti-fungal agents and one active metabolite in human plasma using ultra-high-performance liquid chromatography coupled to tandem mass spectrometry. Clin Biochem 2021; 99:87-96. [PMID: 34715112 DOI: 10.1016/j.clinbiochem.2021.10.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 08/23/2021] [Accepted: 10/24/2021] [Indexed: 11/29/2022]
Abstract
OBJECTIVES For patients with hematological malignancy, triazole antifungal agents such as fluconazole (FLCZ), itraconazole (ITCZ), voriconazole (VRCZ), posaconazole (PSCZ) and isavuconazole (ISCZ) are often used for prophylaxis of deep mycosis. Since these azoles exhibit large pharmacokinetic variability, dose adjustment by therapeutic drug monitoring is recommended for some azoles. This study aimed to develop and validate a novel method for simultaneous determination of plasma concentrations of FLCZ, ITCZ, VRCZ, PSCZ, ISCZ and ITCZ-OH, an active metabolite of ITCZ, using ultra-high-performance liquid chromatography coupled with tandem mass spectrometry (UHPLC-MS/MS). DESIGN & METHODS A high-throughput solid-phase extraction method using 96-well MCX µElution Plate was selected as the pretreatment procedure. RESULTS The calibration curves for FLCZ, ITCZ, ITCZ-OH, VRCZ, PSCZ and ISCZ showed good linearity (back-calculation of calibrators: relative error ≤ 15% [LLOQ: ≤ 20%]) over wide ranges of 100-100000, 20-20000, 40-40000, 20-20000, 5-5000 and 50-50000 ng/mL, respectively. The validation results of all six drugs fulfilled the criteria of the guidance for bioanalytical method validation of the US Food and Drug Administration for within-batch and batch-to-batch precision and accuracy. The extraction recovery rates were good at ≥ 74.9%, and almost no matrix effects were found for all the drugs. The trough (10 h post-dose in 1 patient on PSCZ) drug concentrations in patients with hematologic malignancy who received oral FLCZ, ITCZ, VRCZ or PSCZ were quantified using the method developed. The measurements for all samples were within the ranges of the calibration curves, demonstrating the feasibility of clinical application of the novel method. CONCLUSIONS We have succeeded in developing a novel high-throughput method using UHPLC-MS/MS for simultaneous quantification of plasma concentrations of FLCZ, ITCZ, ITCZ-OH, VRCZ, PSCZ and ISCZ.
Collapse
Affiliation(s)
- Ryota Tanaka
- Department of Clinical Pharmacy, Oita University Hospital, Yufu-shi, Oita, Japan.
| | - Ken Shiraiwa
- Department of Clinical Pharmacy, Oita University Hospital, Yufu-shi, Oita, Japan
| | - Kuniko Takano
- Department of Hematology, Oita University Hospital, Yufu-shi, Oita, Japan
| | - Masao Ogata
- Department of Hematology, Oita University Hospital, Yufu-shi, Oita, Japan
| | - Shuhei Honda
- Department of Hematology, Oita University Hospital, Yufu-shi, Oita, Japan
| | - Natsumi Yoshida
- Department of Hematology, Oita University Hospital, Yufu-shi, Oita, Japan
| | - Kazuki Okuhiro
- Department of Hematology, Oita University Hospital, Yufu-shi, Oita, Japan
| | - Masaki Yoshida
- Department of Hematology, Oita University Hospital, Yufu-shi, Oita, Japan
| | - Kumiko Narahara
- Department of Hematology, Oita University Hospital, Yufu-shi, Oita, Japan
| | - Makoto Kai
- Department of Clinical Pharmacy, Oita University Hospital, Yufu-shi, Oita, Japan
| | - Ryosuke Tatsuta
- Department of Clinical Pharmacy, Oita University Hospital, Yufu-shi, Oita, Japan
| | - Hiroki Itoh
- Department of Clinical Pharmacy, Oita University Hospital, Yufu-shi, Oita, Japan
| |
Collapse
|
9
|
Yang S, Zhang X, Wang Y, Wen C, Wang C, Zhou Z, Lin G. Development of UPLC-MS/MS Method for Studying the Pharmacokinetic Interaction Between Dasatinib and Posaconazole in Rats. DRUG DESIGN DEVELOPMENT AND THERAPY 2021; 15:2171-2178. [PMID: 34079220 PMCID: PMC8163634 DOI: 10.2147/dddt.s301241] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Accepted: 04/21/2021] [Indexed: 11/23/2022]
Abstract
Background and Aim Dasatinib is approved for the treatment of leukaemia worldwide. Triazole agents such as posaconazole may be used for the control of secondary fungal infection with leukaemia. This work aimed to develop a bioanalytical method to study the potential interaction between dasatinib and posaconazole. Methods An ultrahigh-performance liquid chromatography-tandem mass spectrometry method was established to measure the plasma concentrations of dasatinib and posaconazole in rats simultaneously. Simple protein precipitation with acetonitrile was applied to extract dasatinib and posaconazole in samples. The chromatographic separation of analytes was conducted on an UPLC BEH C18 column using a mobile phase consisting of 0.1% aqueous formic acid and acetonitrile. Dasatinib and posaconazole were monitored in positive ion mode with the following mass transition pairs: m/z 488.2→401.1 for dasatinib and m/z 701.3→683.4 for posaconazole. The method was successfully applied for pharmacokinetic interaction between dasatinib and posaconazole. Results The established method expressed good linearity in 1–1000 ng/mL of dasatinib and 5–5000 ng/mL of posaconazole, with limit of detection was 1 ng/mL and 5 ng/mL, respectively. Methodology validations, including accuracy, precision, matrix effect, recovery, and stability, met the US Food and Drug Administration (FDA) acceptance criteria for bioanalytical method validation. Dasatinib strongly inhibited the clearance of posaconazole in vivo, while posaconazole expressed no significant effect on the pharmacokinetics of dasatinib. Conclusion Dasatinib alters the pharmacokinetics of posaconazole. Attention should be paid to the unexpected risk of adverse clinical outcomes when posaconazole is co-administered with dasatinib.
Collapse
Affiliation(s)
- Suili Yang
- Department of Neurology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, People's Republic of China
| | - Xiaoshan Zhang
- College of Pharmacy, Wenzhou Medical University, Wenzhou, Zhejiang, People's Republic of China.,Department of Pharmacy, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, People's Republic of China
| | - Yuzhen Wang
- College of Pharmacy, Wenzhou Medical University, Wenzhou, Zhejiang, People's Republic of China.,Department of Pharmacy, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, People's Republic of China
| | - Congcong Wen
- Laboratory Animal Center, Wenzhou Medical University, Wenzhou, Zhejiang, People's Republic of China
| | - Chenxiang Wang
- Department of Pharmacy, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, People's Republic of China
| | - Ziye Zhou
- Clinical Research Center, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, People's Republic of China
| | - Guanyang Lin
- Department of Pharmacy, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, People's Republic of China
| |
Collapse
|
10
|
Determination of Voriconazole Plasma Concentration by HPLC Technique and Evaluating Its Association with Clinical Outcome and Adverse Effects in Patients with Invasive Aspergillosis. ACTA ACUST UNITED AC 2021; 2021:5497427. [PMID: 33953804 PMCID: PMC8057903 DOI: 10.1155/2021/5497427] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Revised: 02/22/2021] [Accepted: 04/01/2021] [Indexed: 11/17/2022]
Abstract
Purpose Invasive aspergillosis is a prevalent fungal disease, especially in Asian countries with a high mortality rate. Voriconazole (VRZ) is the first choice for invasive aspergillosis treatment. Plasma concentration of this drug is unpredictable and varies among individuals. This variability is influenced by many factors leading to clinical implication. Therapeutic drug monitoring (TDM) may have a crucial role in the patients' treatment process. The HPLC method provides sufficient specificity and sensitivity for plasma VRZ concentration determination for TDM purposes of this drug. Methods Patients who initiated oral or intravenous VRZ for invasive aspergillosis were enrolled in this study. Demographic characteristics and clinical data, outcome, and adverse effects were documented. For each patient, the plasma sample was collected under steady-state condition and analyzed using a validated HPLC method. Results A total of 22 measurements were performed. Fifty percent of patients were out of the therapeutic range. From them, 27.27% and 22.73% were in subtherapeutic and supratherapeutic ranges (<1 μg/mL and >5.5 μg/mL), respectively. There was a significant correlation between VRZ plasma concentration and treatment outcomes (P=0.022). Treatment failure was five times higher than treatment success in those in the subtherapeutic range. Adverse effects were observed more frequently in patients with supratherapeutic concentrations compared to those with non-supratherapeutic levels. Furthermore, the mortality rate in patients experiencing treatment failure was 2.17 times higher than those with treatment success. Conclusions TDM of VRZ plays an important role in better evaluation of efficacy and toxicity during treatment. Therefore, determination of the drug level may be of clinical significance.
Collapse
|
11
|
Dahlin JL, Palte MJ, LaMacchia J, Petrides AK. A Rapid Dilute-and-Shoot UPLC-MS/MS Assay to Simultaneously Measure 37 Drugs and Related Metabolites in Human Urine for Use in Clinical Pain Management. J Appl Lab Med 2019; 3:974-992. [DOI: 10.1373/jalm.2018.027342] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Accepted: 10/01/2018] [Indexed: 11/06/2022]
Abstract
Abstract
Background
Monitoring of medication compliance and drug abuse is used by clinicians to increase patient prescription drug compliance and reduce illicit drug abuse and diversion. Despite available immunoassays, chromatography-mass spectrometry–based methods are considered the gold standard for urine drug monitoring owing to higher sensitivities and specificities. Herein, we report a fast, convenient ultraperformance liquid chromatography–tandem mass spectrometry (UPLC-MS/MS) assay to detect or quantify 37 clinically relevant prescription drugs, drugs of abuse, and related glucuronides and other metabolites in human urine by single diluted sample injection.
Methods
Analytes consisted of prescription and illicit opioids, benzodiazepines, and drugs of abuse, including parent compounds and glucuronidated and nonglucuronidated metabolites. Urine samples were diluted with water and supplemented with deuterated internal standards without enzymatic hydrolysis, analyte extraction, or sample purification. Analytes were separated by reversed-phase UPLC and quantified by positive-mode electrospray ionization and collision-induced dissociation MS. Assay validation followed Food and Drug Administration bioanalytical guidelines.
Results
Total analytical run time was 5.5 min. All analytes demonstrated acceptable inter- and intraassay accuracy, imprecision, and linearity throughout clinically relevant analytical ranges (1–2000 ng/mL, depending on analyte). All analytes demonstrated acceptable selectivity, stability, matrix effects, carryover, and performance compared to national reference laboratory or previously validated in-house methods. A total of 23 and 14 analytes were validated for quantitative and qualitative testing, respectively.
Conclusions
A convenient UPLC-MS/MS assay for simultaneously monitoring 37 analytes in human urine was validated for use in pain management testing. Advantages of this multiplex assay include facile sample preparation and higher-throughput definitive detection including glucuronide metabolite quantification.
Collapse
Affiliation(s)
- Jayme L Dahlin
- Department of Pathology, Brigham and Women's Hospital, Boston, MA
- Harvard Medical School, Boston, MA
| | - Michael J Palte
- Department of Pathology, Brigham and Women's Hospital, Boston, MA
- Harvard Medical School, Boston, MA
| | - John LaMacchia
- Department of Pathology, Brigham and Women's Hospital, Boston, MA
- Harvard Medical School, Boston, MA
| | - Athena K Petrides
- Department of Pathology, Brigham and Women's Hospital, Boston, MA
- Harvard Medical School, Boston, MA
| |
Collapse
|
12
|
Yoon SJ, Lee K, Oh J, Woo HI, Lee SY. Experience with therapeutic drug monitoring of three antifungal agents using an LC-MS/MS method in routine clinical practice. Clin Biochem 2019; 70:14-17. [DOI: 10.1016/j.clinbiochem.2019.06.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Revised: 05/28/2019] [Accepted: 06/03/2019] [Indexed: 10/26/2022]
|
13
|
Development and Validation of an Ultra-Performance Liquid Chromatography-Tandem Mass Spectrometry Method for the Concurrent Measurement of Gabapentin, Lamotrigine, Levetiracetam, Monohydroxy Derivative of Oxcarbazepine, and Zonisamide Concentrations in Serum in a Clinical Setting. Ther Drug Monit 2018; 40:469-476. [PMID: 29994986 DOI: 10.1097/ftd.0000000000000516] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND Therapeutic drug monitoring of antiepileptic drugs (AEDs) is often necessary to prevent associated destructive toxicities. Tandem mass spectrometry (MS/MS) with stable-isotope-labeled internal standards is considered the gold standard for the measurement of AEDs. This study presents the development and validation of a clinical ultra-performance liquid chromatography-MS/MS method for the concurrent measurement of gabapentin, lamotrigine, levetiracetam, monohydroxy derivative of oxcarbazepine, and zonisamide in human serum. METHODS To determine the optimal assay analyte range, one year of AED therapeutic drug monitoring results (n = 1825) were evaluated. Simple protein precipitation with acetonitrile containing isotopically labeled internal standards was used. Reverse-phase ultra-performance liquid chromatography chromatographic separation was used, having a total run time of 3 minutes. Quantification of analytes was accomplished using electrospray ionization in positive ion mode and collision-induced dissociation MS. Assay parameters were evaluated per Food and Drug Administration bioanalytical guidelines. RESULTS After evaluating internal patient data, the analytical measuring range (AMR) of the assay was established as 0.1-100 mcg/mL. All AEDs were linear across the AMR, with R values ranging from 0.9988 to 0.9999. Imprecision (% coefficient of variation) and inaccuracy (% difference) were calculated to be <20% for the lower limit of quantitation and <15% for the low, mid, and high levels of quality controls across the AMR. All AEDs demonstrated acceptable assay parameters for carryover, stability under relevant storage conditions, matrix effects, recovery, and extraction and processing efficiency. In addition, the assay displayed acceptable concordance to results obtained from a national reference laboratory, with Deming regression R of 0.99 and slope values ranging from 0.89 to 1.17. CONCLUSIONS A simple, cost-effective, and robust ultra-performance liquid chromatography-tandem mass spectrometry method for monitoring multiple AEDs was developed and validated to address the clinical needs of patients at our institution.
Collapse
|
14
|
Moorthy GS, Vedar C, Zane N, Prodell JL, Zuppa AF. Development and validation of a volumetric absorptive microsampling assay for analysis of voriconazole and voriconazole N-oxide in human whole blood. J Chromatogr B Analyt Technol Biomed Life Sci 2018; 1105:67-75. [PMID: 30572203 DOI: 10.1016/j.jchromb.2018.12.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 10/23/2018] [Accepted: 12/08/2018] [Indexed: 11/15/2022]
Abstract
Voriconazole is a broad-spectrum antifungal triazole drug for the treatment of invasive fungal infections. It is extensively metabolized by hepatic drug metabolizing enzymes cytochrome (CYP) 2C19 and CYP3A4. Selective inhibition of intestinal CYP3A4 by grapefruit juice may increase the oral bioavailability of voriconazole in children. To test this hypothesis it is necessary to develop a sensitive assay for measuring voriconazole and its major metabolites in a small volume of blood. Mitra® devices from Neoteryx were employed to develop and validate the assay for the quantitation of voriconazole and voriconazole N-oxide. Mitra® devices utilize volumetric absorptive microsampling (VAMS™) technology that enables accurate and precise collection of a fixed volume (10 μL of blood), reducing or eliminating the volumetric blood hematocrit assay-bias associated with the dried blood spotting technique. We developed an ultra-performance liquid chromatographic method with tandem mass spectrometry detection for quantification of voriconazole and voriconazole N-oxide. Sample extraction of Mitra® devices, followed by reversed-phase chromatographic separation and selective detection using tandem mass spectrometry with a 4.00 minute runtime per sample was employed. Standard curves were linear between 10.0 to 10,000 ng/mL for both voriconazole and voriconazole N-oxide. Intra- and inter-day accuracy were within 87-102% and precision (CV) was <12% based on a 3-day validation study. Recoveries were ≥94 % for voriconazole and ≥87 % for voriconazole N-oxide. Voriconazole and voriconazole N-oxide were stable in human whole blood under assay conditions (19 h at room temperature and 24 h in autosampler). Voriconazole was stable for 1-month in dried microsamples under different conditions (4, -20 and -78 °C). This assay provides an efficient quantitation of voriconazole and voriconazole N-oxide and is ready to be implemented for the analysis of whole blood microsamples in a pediatric clinical trial investigating the impact of intestinal inhibition of CYP3A4 on voriconazole pharmacokinetics.
Collapse
Affiliation(s)
- Ganesh S Moorthy
- Center for Clinical Pharmacology, Children's Hospital of Philadelphia, University of Pennsylvania, Philadelphia, PA 19104, United States of America; Department of Anesthesiology and Critical Care Medicine, Children's Hospital of Philadelphia, University of Pennsylvania, Philadelphia, PA 19104, United States of America.
| | - Christina Vedar
- Center for Clinical Pharmacology, Children's Hospital of Philadelphia, University of Pennsylvania, Philadelphia, PA 19104, United States of America
| | - Nicole Zane
- Center for Clinical Pharmacology, Children's Hospital of Philadelphia, University of Pennsylvania, Philadelphia, PA 19104, United States of America
| | - Janice L Prodell
- Center for Clinical Pharmacology, Children's Hospital of Philadelphia, University of Pennsylvania, Philadelphia, PA 19104, United States of America; Department of Anesthesiology and Critical Care Medicine, Children's Hospital of Philadelphia, University of Pennsylvania, Philadelphia, PA 19104, United States of America
| | - Athena F Zuppa
- Center for Clinical Pharmacology, Children's Hospital of Philadelphia, University of Pennsylvania, Philadelphia, PA 19104, United States of America; Department of Anesthesiology and Critical Care Medicine, Children's Hospital of Philadelphia, University of Pennsylvania, Philadelphia, PA 19104, United States of America
| |
Collapse
|
15
|
Validation of a Reversed-Phase Ultra-High-Performance Liquid Chromatographic Method With Photodiode Array Detection for the Determination of Voriconazole in Human Serum and Its Application to Therapeutic Drug Monitoring. Ther Drug Monit 2018; 40:276-283. [PMID: 29432386 DOI: 10.1097/ftd.0000000000000491] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND Voriconazole is a broad-spectrum triazole antifungal agent. It is widely used in the treatment of invasive fungal infections in immunocompromised patients. Because the pharmacokinetics of voriconazole demonstrates considerable variability, monitoring its serum levels plays an important role in optimizing therapies against many clinically relevant fungal pathogens. The aim of this study was to validate a simple and rapid U-HPLC-PDA method with minimal sample preparation for routine therapeutic drug monitoring (TDM) of voriconazole. METHODS After protein precipitation with the internal standard solution (posaconazole 5.0 mg/L in acetonitrile), chromatographic separation was performed in 4 minutes using water and acetonitrile as mobile phases and an Acquity UPLC BEH HSS C18 column (2.1 × 100 mm, 1.7 µm). The temperature was set at 45°C and the flow rate was 0.4 mL/min. Photodiode array detection at 256 nm was used as detection system. The method was validated according international guidelines for linearity, accuracy, precision, selectivity, lower limit of quantitation, carry over, and stability under different conditions. RESULTS All performance parameters were within acceptance criteria, demonstrating that the validated method is fit for purpose. After assay validation, 115 serum samples collected from 41 patients were analyzed to report the experience of the laboratory in TDM of voriconazole. Results showed a large variability in voriconazole trough levels, suggesting that this drug should be frequently measured in patients under treatment to enhance therapies efficacy and improve safety. CONCLUSIONS In this study, a reproducible U-HPLC-PDA assay with a short analysis time, requiring only a small amount of serum, good accuracy and reproducibility was validated, which is suitable for routine TDM of voriconazole in serum.
Collapse
|
16
|
Development and validation of a liquid chromatography-tandem mass spectrometry assay for the simultaneous quantitation of 5 azole antifungals and 1 active metabolite. Clin Chim Acta 2017; 474:8-13. [DOI: 10.1016/j.cca.2017.08.032] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Revised: 08/25/2017] [Accepted: 08/28/2017] [Indexed: 12/11/2022]
|