1
|
Nascimento JO, Costa ER, Estrela R, Moreira FL. A Narrative Review of Chromatographic Bioanalytical Methods for Quantifying Everolimus in Therapeutic Drug Monitoring Applications. Ther Drug Monit 2025; 47:49-63. [PMID: 39446919 DOI: 10.1097/ftd.0000000000001273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Accepted: 09/05/2024] [Indexed: 10/26/2024]
Abstract
BACKGROUND Methods for measuring drug levels in the body are crucial for improving therapeutic drug monitoring (TDM) and personalized medicine. In solid-organ transplants, TDM is essential for the management of immunosuppressive drugs to avoid toxicity and organ rejection. Everolimus is a commonly used immunosuppressant with a small range of safe doses; therefore, it is important to adjust the dose according to each patient's needs. Therefore, reliable methods are required to accurately measure everolimus levels. This study aims to conduct a comprehensive and updated narrative review of chromatographic bioanalytical methods for everolimus quantification. METHODS The authors searched for original research articles published between 2013 and 2023 in Scopus and PubMed and found 295 articles after removing duplicates. Based on their titles and summaries, 30 articles were selected for a detailed review and 25 articles were included in the final analysis. RESULTS Among the 25 studies, 16 used protein precipitation, mainly with methanol, to prepare the samples, 12 used high-performance liquid chromatography, 11 used ultra-performance liquid chromatography, and 2 used both. Almost all the studies (24 of 25) used tandem mass spectrometry for detection, whereas only 1 used ultraviolet. CONCLUSIONS This comprehensive review of bioanalytical methods for measuring everolimus using chromatography is a useful resource for researchers developing bioanalytical methods for TDM applications. Future trends in everolimus measurement include achieving lower detection limits, owing to the trend of reducing drug doses in therapy by improving sample extraction techniques and using more sensitive methods.
Collapse
Affiliation(s)
- Julia O Nascimento
- Laboratory of Pharmacometrics (LabFarma), School of Pharmacy, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil ; and
| | - Edlaine R Costa
- Laboratory of Pharmacometrics (LabFarma), School of Pharmacy, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil ; and
| | - Rita Estrela
- Laboratory of Pharmacometrics (LabFarma), School of Pharmacy, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil ; and
- STD/AIDS Clinical Research Laboratory, Evandro Chagas National Institute of Infectious Diseases, Oswaldo Cruz Foundation, Fiocruz, RJ, Brazil
| | - Fernanda L Moreira
- Laboratory of Pharmacometrics (LabFarma), School of Pharmacy, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil ; and
| |
Collapse
|
2
|
Masuda S, Lemaitre F, Barten MJ, Bergan S, Shipkova M, van Gelder T, Vinks S, Wieland E, Bornemann-Kolatzki K, Brunet M, de Winter B, Dieterlen MT, Elens L, Ito T, Johnson-Davis K, Kunicki PK, Lawson R, Lloberas N, Marquet P, Millan O, Mizuno T, Moes DJAR, Noceti O, Oellerich M, Pattanaik S, Pawinski T, Seger C, van Schaik R, Venkataramanan R, Walson P, Woillard JB, Langman LJ. Everolimus Personalized Therapy: Second Consensus Report by the International Association of Therapeutic Drug Monitoring and Clinical Toxicology. Ther Drug Monit 2025; 47:4-31. [PMID: 39331837 DOI: 10.1097/ftd.0000000000001250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 06/09/2024] [Indexed: 09/29/2024]
Abstract
ABSTRACT The Immunosuppressive Drugs Scientific Committee of the International Association of Therapeutic Drug Monitoring and Clinical Toxicology established the second consensus report to guide therapeutic drug monitoring (TDM) of everolimus (EVR) and its optimal use in clinical practice 7 years after the first version was published in 2016. This version provides information focused on new developments that have arisen in the last 7 years. For the general aspects of the pharmacology and TDM of EVR that have retained their relevance, readers can refer to the 2016 document. This edition includes new evidence from the literature, focusing on the topics updated during the last 7 years, including indirect pharmacological effects of EVR on the mammalian target of rapamycin complex 2 with the major mechanism of direct inhibition of the mammalian target of rapamycin complex 1. In addition, various concepts and technical options to monitor EVR concentrations, improve analytical performance, and increase the number of options available for immunochemical analytical methods have been included. Only limited new pharmacogenetic information regarding EVR has emerged; however, pharmacometrics and model-informed precision dosing have been constructed using physiological parameters as covariates, including pharmacogenetic information. In clinical settings, EVR is combined with a decreased dose of calcineurin inhibitors, such as tacrolimus and cyclosporine, instead of mycophenolic acid. The literature and recommendations for specific organ transplantations, such as that of the kidneys, liver, heart, and lungs, as well as for oncology and pediatrics have been updated. EVR TDM for pancreatic and islet transplantation has been added to this edition. The pharmacodynamic monitoring of EVR in organ transplantation has also been updated. These updates and additions, along with the previous version of this consensus document, will be helpful to clinicians and researchers treating patients receiving EVR.
Collapse
Affiliation(s)
- Satohiro Masuda
- Department of Clinical Pharmacy, Faculty of Pharmaceutical Sciences, Himeji Dokkyo University, Himeji, Japan
| | - Florian Lemaitre
- Université de Rennes, CHU Rennes, Inserm, EHESP, IRSET-UMR S 1085, Rennes, France
- INSERM, Centre d'Investigation Clinique 1414, Rennes, France
- FHU SUPPORT, Rennes, France
| | - Markus J Barten
- Department of Cardiac and Vascular Surgery, University Heart and Vascular Center Hamburg, Hamburg, Germany
| | - Stein Bergan
- Department of Pharmacology, Oslo University Hospital and Department of Pharmacy, University of Oslo, Norway
| | | | - Teun van Gelder
- Department of Clinical Pharmacy & Toxicology, Leiden University Medical Center, Leiden, the Netherlands
| | - Sander Vinks
- Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
- NDA Partners, A Propharma Group Company, Washington District of Columbia
| | | | | | - Mercè Brunet
- Pharmacology and Toxicology Laboratory, Biochemistry and Molecular Genetics Department, Biomedical Diagnostic Center, Hospital Clinic of Barcelona, University of Barcelona, IDIBAPS, CIBERehd, Spain
| | - Brenda de Winter
- Department of Hospital Pharmacy, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Maja-Theresa Dieterlen
- Laboratory Management Research Laboratory, Cardiac Surgery Clinic, Heart Center Leipzig GmbH, University Hospital, Leipzig, Germany
| | - Laure Elens
- Integrated Pharmacometrics, Pharmacogenetic and Pharmacokinetics Research Group (PMGK) Louvain Drug for Research Institute (LDRI), Catholic University of Louvain, (UCLouvain), Brussels, Belgium
| | - Taihei Ito
- Department of Organ Transplant Surgery; Fujita Health University School of Medicine, Toyoake Aichi, Japan
| | - Kamisha Johnson-Davis
- University of Utah Health Sciences Center and ARUP Laboratories, Salt Lake City, Utah
| | - Pawel K Kunicki
- Department of Drug Chemistry, Pharmaceutical and Biomedical Analysis, Faculty of Pharmacy, Medical University of Warsaw, Warsaw, Poland
| | - Roland Lawson
- University of Limoges, Inserm U1248, Pharmacology & Transplantation, Limoges, France
| | - Nuria Lloberas
- Nephrology Department, Hospital Universitari de Bellvitge-Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), Barcelona, Spain
| | - Pierre Marquet
- University of Limoges, Inserm U1248, Pharmacology & Transplantation, Limoges, France
- Department of Pharmacology, Toxicology and Pharmacovigilance, CHU de Limoges, France
| | - Olga Millan
- Pharmacology and Toxicology Laboratory, Biochemistry and Molecular Genetics Department, Biomedical Diagnostic Center, Hospital Clinic of Barcelona, University of Barcelona, IDIBAPS, CIBERehd, Spain
| | - Tomoyuki Mizuno
- Division of Clinical Pharmacology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Dirk Jan A R Moes
- Department of Clinical Pharmacy & Toxicology, Leiden University Medical Center, Leiden, the Netherlands
| | - Ofelia Noceti
- National Center for Liver Transplantation and Liver Diseases, Army Forces Hospital, Montevideo, Uruguay
| | - Michael Oellerich
- Department of Clinical Pharmacology, University Medical Center Göttingen, Georg-August-University Göttingen, Göttingen, Germany
| | - Smita Pattanaik
- Department of Pharmacology, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Tomasz Pawinski
- Department of Drug Chemistry, Pharmaceutical and Biomedical Analysis, Faculty of Pharmacy, Medical University of Warsaw, Warsaw, Poland
| | | | - Ron van Schaik
- Department of Clinical Chemistry, Erasmus MC University Medical Center, Rotterdam, the Netherlands
| | - Raman Venkataramanan
- Department of Pharmaceutical Sciences, School of Pharmacy and Department of Pathology, Starzl Transplantation Institute, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Phil Walson
- University Medical School, Göttingen, Germany
| | - Jean-Baptiste Woillard
- Department of Pharmacology, Toxicology and Pharmacovigilance, CHU de Limoges, Limoges, France; and
| | - Loralie J Langman
- Department of Laboratory Medicine and Pathology, Mayo Clinic College of Medicine and Science, Rochester, Minnesota
| |
Collapse
|
3
|
Shipkova M, Wieland E, Schütz E. Toward Analytical Performance Specifications for Immunosuppressive Drug Quantification in Transplantation: An Opinion Article. Ther Drug Monit 2025; 47:32-40. [PMID: 39357035 DOI: 10.1097/ftd.0000000000001261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 08/14/2024] [Indexed: 10/04/2024]
Abstract
BACKGROUND Analytical methods require performance that meets the clinical needs. Different approaches for setting up permissible analytical imprecision goals (pCVA%) for drug analyses have been reported. The aim of this study was to calculate the pCV A % for cyclosporine, tacrolimus, everolimus, sirolimus, and mycophenolic acid using 4 alternative approaches, to compare the results and to critically discuss advantages and disadvantages of each model. METHODS The approaches to evaluate pCV A % were (A) based on biological variation observed in routine measurement results between 2022 and 2023 in the authors' laboratory, (B) derived from the terminal elimination half-life and dosing interval of the drugs, and (C and D) explored from the width of the therapeutic ranges (TR) by the 2 methods. For approach A, routine measurement data for cyclosporine and tacrolimus, obtained through liquid chromatography-tandem mass spectrometry and electrochemiluminescence immunoassays, were evaluated separately. RESULTS The 4 alternative approaches for deriving pCV A % yielded similar results, for cyclosporine and tacrolimus in an analytical method dependent manner. The average pCV A % was 5.2%, 5.6%, 5.1%, 4.8%, and 7.7% for cyclosporine, tacrolimus, everolimus, sirolimus, and mycophenolic acid, respectively. The most challenging goals were those using TR-related approaches, while those using the biological variation approach were most easily achievable. Approach B resulted in more stringent goals for drugs with longer elimination half-lives (eg, everolimus and sirolimus). CONCLUSIONS There is no single ideal approach for setting goals of drug analysis. However, the pCV A % values derived from the various approaches are similar and confirm that a <6% target proposed by the International Association of Therapeutic Drug Monitoring and Clinical Toxicology is adequate and realistic in combination with state-of-the-art measurement technologies. In the authors' opinion, approaches based on the width of the TR are preferable, as they represent a common basis for clinical decisions and reflect elements of biological variation and analytics used to establish the TR.
Collapse
Affiliation(s)
- Maria Shipkova
- Bioscientia Institut für Medizinische Diagnostik, Ingelheim, Germany; and
| | - Eberhard Wieland
- Bioscientia Institut für Medizinische Diagnostik, Ingelheim, Germany; and
| | | |
Collapse
|
4
|
Yu S, Zou Y, Ma X, Wang D, Luo W, Tang Y, Mu D, Zhang R, Cheng X, Qiu L. Evolution of LC-MS/MS in clinical laboratories. Clin Chim Acta 2024; 555:117797. [PMID: 38280490 DOI: 10.1016/j.cca.2024.117797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 01/22/2024] [Accepted: 01/22/2024] [Indexed: 01/29/2024]
Abstract
Liquid chromatography-tandem mass spectrometry (LC-MS/MS) has attracted significant attention in clinical practice owing to its numerous advantages. However, the widespread adoption of this technique is hindered by certain limitations, such as inappropriate analyte selection, low levels of automation, and a lack of specific reference intervals and quality control programs. This review comprehensively summarizes the current challenges associated with LC-MS/MS and proposes potential resolutions. The principle of utility should guide the selection of biomarkers, prioritizing their practical value over sheer quantity. To achieve full-process automation, methodological innovation is crucial for developing high-throughput equipment. Establishing reference intervals for mass spectrometry-based assays across multiple centers and diverse populations is essential for accurate result interpretation. Additionally, the development of commercial quality control materials assumes pivotal importance in ensuring assay reliability and reproducibility. Harmonization and standardization efforts should focus on the development of reference methods and materials for the clinical use of LC-MS/MS. In the future, commercial assay kits and laboratory-developed tests (LDTs) are expected to coexist in clinical laboratories, each offering distinct advantages. The collaborative efforts of diverse professionals is vital for addressing the challenges associated with the clinical application of LC-MS/MS. The anticipated advancements include simplification, increased automation, intelligence, and the standardization of LC-MS/MS, ultimately facilitating its seamless integration into clinical routines for both technicians and clinicians.
Collapse
Affiliation(s)
- Songlin Yu
- Department of Laboratory Medicine, Peking Union Medical College Hospital, Peking Union Medical College & Chinese Academy of Medical Science, Beijing, China
| | - Yutong Zou
- Department of Laboratory Medicine, Peking Union Medical College Hospital, Peking Union Medical College & Chinese Academy of Medical Science, Beijing, China
| | - Xiaoli Ma
- Department of Laboratory Medicine, Peking Union Medical College Hospital, Peking Union Medical College & Chinese Academy of Medical Science, Beijing, China
| | - Danchen Wang
- Department of Laboratory Medicine, Peking Union Medical College Hospital, Peking Union Medical College & Chinese Academy of Medical Science, Beijing, China
| | - Wei Luo
- Department of Laboratory Medicine, Peking Union Medical College Hospital, Peking Union Medical College & Chinese Academy of Medical Science, Beijing, China
| | - Yueming Tang
- Department of Laboratory Medicine, Peking Union Medical College Hospital, Peking Union Medical College & Chinese Academy of Medical Science, Beijing, China
| | - Danni Mu
- Department of Laboratory Medicine, Peking Union Medical College Hospital, Peking Union Medical College & Chinese Academy of Medical Science, Beijing, China
| | - Ruiping Zhang
- Department of Laboratory Medicine, China-Japan Friendship Hospital, Beijing, China
| | - Xinqi Cheng
- Department of Laboratory Medicine, Peking Union Medical College Hospital, Peking Union Medical College & Chinese Academy of Medical Science, Beijing, China.
| | - Ling Qiu
- Department of Laboratory Medicine, Peking Union Medical College Hospital, Peking Union Medical College & Chinese Academy of Medical Science, Beijing, China.
| |
Collapse
|
5
|
Papp LA, Imre S, Bálint I, Lungu AI, Mărcutiu PE, Papp J, Ion V. Is it Time to Migrate to Liquid Chromatography Automated Platforms in the Clinical Laboratory? A Brief Point of View. J Chromatogr Sci 2024; 62:191-200. [PMID: 36715315 DOI: 10.1093/chromsci/bmad002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 11/28/2022] [Indexed: 01/31/2023]
Abstract
Liquid chromatography coupled to mass spectrometry already started to surpass the major drawbacks in terms of sensitivity, specificity and cross-reactivity that some analytical methods used in the clinical laboratory exhibit. This hyphenated technique is already preferred for specific applications while finding its own place in the clinical laboratory setting. However, large-scale usage, high-throughput analysis and lack of automation emerge as shortcomings that liquid chromatography coupled to mass spectrometry still has to overrun in order to be used on a larger scale in the clinical laboratory. The aim of this review article is to point out the present-day position of the liquid chromatography coupled to mass spectrometry technique while trying to understand how this analytical method relates to the basic working framework of the clinical laboratory. This paper offers insights about the main regulation and traceability criteria that this coupling method has to align and comply to, automation and standardization issues and finally the critical steps in sample preparation workflows all related to the high-throughput analysis framework. Further steps are to be made toward automation, speed and easy-to-use concept; however, the current technological and quality premises are favorable for chromatographic coupled to mass spectral methods.
Collapse
Affiliation(s)
- Lajos-Attila Papp
- Faculty of Pharmacy, George Emil Palade University of Medicine, Pharmacy, Science, and Technology from Targu Mures, Gheorghe Marinescu street 38, 540142 Targu Mures, Romania
- Public Health Department Mures, Gheorghe Marinescu street 40, 540136 Targu Mures, Romania
| | - Silvia Imre
- Faculty of Pharmacy, George Emil Palade University of Medicine, Pharmacy, Science, and Technology from Targu Mures, Gheorghe Marinescu street 38, 540142 Targu Mures, Romania
- Center for Advanced Medical and Pharmaceutical Research, George Emil Palade University of Medicine, Pharmacy, Science, and Technology from Targu Mures, Gheorghe Marinescu street 38, 540142 Targu Mures, Romania
| | - István Bálint
- Faculty of Pharmacy, George Emil Palade University of Medicine, Pharmacy, Science, and Technology from Targu Mures, Gheorghe Marinescu street 38, 540142 Targu Mures, Romania
- Public Health Department Mures, Gheorghe Marinescu street 40, 540136 Targu Mures, Romania
| | - Andreea-Ioana Lungu
- Faculty of Pharmacy, George Emil Palade University of Medicine, Pharmacy, Science, and Technology from Targu Mures, Gheorghe Marinescu street 38, 540142 Targu Mures, Romania
- Public Health Department Mures, Gheorghe Marinescu street 40, 540136 Targu Mures, Romania
| | - Petra-Edina Mărcutiu
- Faculty of Pharmacy, George Emil Palade University of Medicine, Pharmacy, Science, and Technology from Targu Mures, Gheorghe Marinescu street 38, 540142 Targu Mures, Romania
- Public Health Department Mures, Gheorghe Marinescu street 40, 540136 Targu Mures, Romania
| | - Júlia Papp
- Faculty of Pharmacy, George Emil Palade University of Medicine, Pharmacy, Science, and Technology from Targu Mures, Gheorghe Marinescu street 38, 540142 Targu Mures, Romania
- Public Health Department Mures, Gheorghe Marinescu street 40, 540136 Targu Mures, Romania
| | - Valentin Ion
- Faculty of Pharmacy, George Emil Palade University of Medicine, Pharmacy, Science, and Technology from Targu Mures, Gheorghe Marinescu street 38, 540142 Targu Mures, Romania
- Center for Advanced Medical and Pharmaceutical Research, George Emil Palade University of Medicine, Pharmacy, Science, and Technology from Targu Mures, Gheorghe Marinescu street 38, 540142 Targu Mures, Romania
| |
Collapse
|
6
|
G Jagadeeshaprasad M, Zeng J, Zheng N. LC-MS bioanalysis of protein biomarkers and protein therapeutics in formalin-fixed paraffin-embedded tissue specimens. Bioanalysis 2024; 16:245-258. [PMID: 38226835 DOI: 10.4155/bio-2023-0210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2024] Open
Abstract
Formalin-fixed paraffin-embedded (FFPE) is a form of preservation and preparation for biopsy specimens. FFPE tissue specimens are readily available as part of oncology studies because they are often collected for disease diagnosis or confirmation. FFPE tissue specimens could be extremely useful for retrospective studies on protein biomarkers because the samples preserved in FFPE blocks could be stable for decades. However, LC-MS bioanalysis of FFPE tissues poses significant challenges. In this Perspective, we review the benefits and recent developments in LC-MS approach for targeted protein biomarker and protein therapeutic analysis using FFPE tissues and their clinical and translational applications. We believe that LC-MS bioanalysis of protein biomarkers in FFPE tissue specimens represents a great potential for its clinical applications.
Collapse
Affiliation(s)
| | - Jianing Zeng
- Department of Protein Sciences & Mass Spectrometry, Translational Medicine, Bristol Myers Squibb, Princeton, NJ 08543, USA
| | - Naiyu Zheng
- Department of Protein Sciences & Mass Spectrometry, Translational Medicine, Bristol Myers Squibb, Princeton, NJ 08543, USA
| |
Collapse
|
7
|
Garg N, Mo J, Fitzmaurice MG, Warnke S, Jafri SM. Falsely Elevated Tacrolimus (FK506) Trough Levels in a Liver Transplant Recipient. Cureus 2024; 16:e54548. [PMID: 38516431 PMCID: PMC10956710 DOI: 10.7759/cureus.54548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/20/2024] [Indexed: 03/23/2024] Open
Abstract
Antibody-conjugated magnetic immunoassay (ACMIA) for tacrolimus (FK506) may detect falsely elevated tacrolimus trough levels, a commonly underreported event. We report a case of falsely elevated whole-blood tacrolimus levels in a patient post-orthotopic liver transplantation. A 71-year-old male patient underwent liver transplantation in 2012. Post-transplantation, the patient was immediately started on tacrolimus for maintenance immunosuppression. His most recent dose was 0.5 mg four times weekly. During monitoring, trough levels were at 25.9 ng/mL using ACMIA. After this result, a decision was made to hold tacrolimus. After holding tacrolimus for seven days, detected trough levels were still continually greater than 20 ng/mL. Upon suspicion of falsely elevated results, liquid chromatography with mass spectroscopy (LC-MS) was used to check tacrolimus trough levels. Results showed normal trough levels of 7.6 ng/mL. Because of its narrow therapeutic window, tacrolimus levels need to be carefully monitored throughout treatment. When high tacrolimus levels are detected using ACMIA without a correlating clinical scenario, trough levels should be re-confirmed using LC-MS to prevent clinical decisions from being made based on falsely elevated results.
Collapse
Affiliation(s)
- Noemi Garg
- Internal Medicine, Wayne State University School of Medicine, Detroit, USA
| | - James Mo
- Internal Medicine, Wayne State University School of Medicine, Detroit, USA
| | | | - Sarah Warnke
- Gastroenterology, Henry Ford Health System, Detroit, USA
| | | |
Collapse
|
8
|
Glahn-Martínez B, Jurado-Sánchez B, Benito-Peña E, Escarpa A, Moreno-Bondi MC. Magnetic Janus micromotors for fluorescence biosensing of tacrolimus in oral fluids. Biosens Bioelectron 2024; 244:115796. [PMID: 37922810 DOI: 10.1016/j.bios.2023.115796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 10/03/2023] [Accepted: 10/26/2023] [Indexed: 11/07/2023]
Abstract
Tacrolimus (FK506) is a macrolide lactone immunosuppressive drug that is commonly used in transplanted patients to avoid organ rejection. FK506 exhibits high inter- and intra-patient pharmacokinetic variability, making monitoring necessary for organ graft survival. This work describes the development of a novel bioassay for monitoring FK506. The bioassay is based on using polycaprolactone-based (PCL) magnetic Janus micromotors and a recombinant chimera receptor that incorporates the immunophilin tacrolimus binding protein 1A (FKBP1A) tagged with Emerald Green Fluorescent Protein (EmGFP). The approach relies on a fluorescence competitive bioassay between the drug and the micromotors decorated with a carboxylated FK506 toward the specific site of the fluorescent immunophilin. The proposed homogeneous assay could be performed in a single step without washing steps to separate the unbound receptor. The proposed approach fits the therapeutic requirements, showing a limit of detection of 0.8 ng/mL and a wide dynamic range of up to 90 ng/mL. Assay selectivity was evaluated by measuring the competitive inhibition curves with other immunosuppressive drugs usually co-administered with FK506. The magnetic propulsion mechanism allows for efficient operation in raw samples without damaging the biological binding receptor (FKBP1A-EmGFP). The enhanced target recognition and micromixing strategies hold considerable potential for FK506 monitoring in practical clinical use.
Collapse
Affiliation(s)
- Bettina Glahn-Martínez
- Department of Analytical Chemistry, Physical Chemistry and Chemical Engineering, University of Alcala, Alcala de Henares, 28805, Madrid, Spain; Department of Analytical Chemistry, Faculty of Chemistry, Universidad Complutense de Madrid, Plaza de las Ciencias, Ciudad Universitaria, 28040, Madrid, Spain
| | - Beatriz Jurado-Sánchez
- Department of Analytical Chemistry, Physical Chemistry and Chemical Engineering, University of Alcala, Alcala de Henares, 28805, Madrid, Spain; Chemical Research Institute "Andres M. del Rio", University of Alcala, Alcala de Henares, Madrid, E28805, Spain.
| | - Elena Benito-Peña
- Department of Analytical Chemistry, Faculty of Chemistry, Universidad Complutense de Madrid, Plaza de las Ciencias, Ciudad Universitaria, 28040, Madrid, Spain.
| | - Alberto Escarpa
- Department of Analytical Chemistry, Physical Chemistry and Chemical Engineering, University of Alcala, Alcala de Henares, 28805, Madrid, Spain; Chemical Research Institute "Andres M. del Rio", University of Alcala, Alcala de Henares, Madrid, E28805, Spain.
| | - María C Moreno-Bondi
- Department of Analytical Chemistry, Faculty of Chemistry, Universidad Complutense de Madrid, Plaza de las Ciencias, Ciudad Universitaria, 28040, Madrid, Spain
| |
Collapse
|
9
|
Shimada T, Kawakami D, Fujita A, Yamamoto R, Hara S, Ito K, Mizushima I, Kitajima S, Iwata Y, Sakai N, Kawano M, Wada T, Sai Y. Validation of an automated sample preparation module directly connected to LC-MS/MS (CLAM-LC-MS/MS system) and comparison with conventional immunoassays for quantitation of tacrolimus and cyclosporin A in a clinical setting. J Pharm Health Care Sci 2024; 10:5. [PMID: 38191469 PMCID: PMC10773076 DOI: 10.1186/s40780-023-00318-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 11/13/2023] [Indexed: 01/10/2024] Open
Abstract
BACKGROUND Therapeutic drug monitoring (TDM) systems generally use either liquid chromatography/tandem mass spectrometry (LC-MS/MS) or immunoassay, though both methodologies have disadvantages. In this study, we aimed to evaluate whether a CLAM-LC-MS/MS system, which consists of a sample preparation module directly connected to LC-MS/MS, could be used for clinical TDM work for immunosuppressive drugs in whole blood, which requires a hemolytic process. For this purpose, we prospectively validated this system for clinical measurement of tacrolimus and cyclosporin A in patients' whole blood. The results were also compared with those of commercial immunoassays. METHODS Whole blood from patients treated with tacrolimus or cyclosporin A at the Department of Nephrology and Departments of Rheumatology, Kanazawa University Hospital, from May 2018 to July 2019 was collected with informed consent, and drug concentrations were measured by CLAM-LC-MS/MS and by chemiluminescence immunoassay (CLIA) for tacrolimus and affinity column-mediated immunoassay (ACMIA) for cyclosporin A. Correlations between the CLAM-LC-MS/MS and immunoassay results were analyzed. RESULTS Two hundred and twenty-four blood samples from 80 patients were used for tacrolimus measurement, and 76 samples from 21 patients were used for cyclosporin A. Intra- and inter-assay precision values of quality controls were less than 7%. There were significant correlations between CLAM-LC-MS/MS and the immunoassays for tacrolimus and cyclosporin A (Spearman rank correlation coefficients: 0.861, 0.941, P < 0.00001 in each case). The drug concentrations measured by CLAM-LC-MS/MS were about 20% lower than those obtained using the immunoassays. CLAM-LC-MS/MS maintenance requirements did not interfere with clinical operations. Compared to manual pretreatment, automated pretreatment by CLAM showed lower inter-assay precision values and greatly reduced the pretreatment time. CONCLUSIONS The results obtained by CLAM-LC-MS/MS were highly correlated with those of commercial immunoassay methods. CLAM-LC-MS/MS offers advantages in clinical TDM practice, including simple, automatic pretreatment, low maintenance requirement, and avoidance of interference.
Collapse
Affiliation(s)
- Tsutomu Shimada
- Department of Clinical Pharmacokinetics, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Ishikawa, Japan.
- Department of Hospital Pharmacy, University Hospital, Kanazawa University, 13-1 Takara-machi, Kanazawa, Ishikawa, 920-8641, Japan.
| | - Daisuke Kawakami
- Shimadzu Corporation, Kyoto, Japan
- Shimadzu Europa GmbH, Duisburg, Germany
| | - Arimi Fujita
- Department of Clinical Pharmacokinetics, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Ishikawa, Japan
- Department of Hospital Pharmacy, University Hospital, Kanazawa University, 13-1 Takara-machi, Kanazawa, Ishikawa, 920-8641, Japan
| | | | - Satoshi Hara
- Department of Rheumatology, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Ishikawa, Japan
| | - Kiyoaki Ito
- Department of Rheumatology, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Ishikawa, Japan
| | - Ichiro Mizushima
- Department of Rheumatology, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Ishikawa, Japan
| | - Shinji Kitajima
- Department of Nephrology and Laboratory Medicine, Faculty of Medicine, Institute of Medical, Pharmaceutical and Health Sciences, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Ishikawa, Japan
| | - Yasunori Iwata
- Department of Nephrology and Laboratory Medicine, Faculty of Medicine, Institute of Medical, Pharmaceutical and Health Sciences, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Ishikawa, Japan
| | - Norihiko Sakai
- Department of Nephrology and Laboratory Medicine, Faculty of Medicine, Institute of Medical, Pharmaceutical and Health Sciences, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Ishikawa, Japan
| | - Mitsuhiro Kawano
- Department of Rheumatology, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Ishikawa, Japan
| | - Takashi Wada
- Department of Nephrology and Laboratory Medicine, Faculty of Medicine, Institute of Medical, Pharmaceutical and Health Sciences, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Ishikawa, Japan
| | - Yoshimichi Sai
- Department of Clinical Pharmacokinetics, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Ishikawa, Japan
- Department of Hospital Pharmacy, University Hospital, Kanazawa University, 13-1 Takara-machi, Kanazawa, Ishikawa, 920-8641, Japan
- AI Hospital/Macro Signal Dynamics Research and Development Center, Kanazawa University, Kanazawa, Ishikawa, Japan
| |
Collapse
|
10
|
Zhang A, Conklin SE. Multiplex Immunosuppressant (ISD) Method for the Measurement of Cyclosporine A, Tacrolimus, Sirolimus/Rapamycin, and Everolimus in Whole Blood Using MassTrak™ Kit. Methods Mol Biol 2024; 2737:307-318. [PMID: 38036832 DOI: 10.1007/978-1-0716-3541-4_28] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2023]
Abstract
Cyclosporine A, everolimus, sirolimus, and tacrolimus are the most commonly used immunosuppressant drugs in organ transplant and auto-immune patients. The narrow therapeutic window of these immunosuppressant drugs requires close monitoring of drug blood levels to ensure proper therapeutic response. A quick, robust high-throughput liquid chromatography-tandem mass spectrometry (LC-MS/MS) method was introduced for monitoring whole blood levels of these immunosuppressant drugs with the use of the MassTrak™ Immunosuppressant kit. The assay was carried out in 96-well plate format and requires a simple precipitation step; after which, the supernatant is subjected to liquid chromatography separation (2 min total run time) using a C18 Cartridge column. Identification and quantitation of cyclosporine A, everolimus, sirolimus, and tacrolimus was achieved by employing multiple reaction monitoring (MRM) in positive mode electrospray ionization (ESI). The method exhibits a linear measuring range from 10 to 1500 ng/mL (Cyclosporine A), 1.0-30.0 ng/mL (Everolimus), 1.0-26.0 ng/mL (Sirolimus), and 1.0-30.0 ng/mL (Tacrolimus) and has a within-run and between-run imprecision of <10%.
Collapse
Affiliation(s)
- Anqi Zhang
- Department of Pathology and Laboratory Medicine, Tufts Medical Center, Boston, MA, USA
| | - Steven E Conklin
- Department of Pathology and Laboratory Medicine, Tufts Medical Center, Boston, MA, USA.
- Department of Anatomic and Clinical Pathology, Tufts University School of Medicine, Boston, MA, USA.
| |
Collapse
|
11
|
Junger S, Hoene M, Shipkova M, Danzl G, Schöberl C, Peter A, Lehmann R, Wieland E, Braitmaier H. Automated LC-MS/MS: Ready for the clinical routine Laboratory? J Mass Spectrom Adv Clin Lab 2023; 30:1-9. [PMID: 37583571 PMCID: PMC10423925 DOI: 10.1016/j.jmsacl.2023.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 07/27/2023] [Accepted: 07/31/2023] [Indexed: 08/17/2023] Open
Abstract
Background Liquid chromatography-tandem mass spectrometry (LC-MS/MS) is a sensitive method with high specificity. However, its routine use in the clinical laboratory is hampered by its high complexity and lack of automation. Studies demonstrate excellent analytical performance using the first fully automated LC-MS/MS for 25-hydroxy vitamin D and immunosuppressant drugs (ISD) in hospital routine laboratories. Objectives Our objectives were (1) to verify the suitability of an automated LC-MS/MS in a commercial laboratory, which differs from the needs of hospital laboratories, and (2) examine its usability among operators with various professional backgrounds. Methods We assessed the analytical assay performance for vitamin D and the ISDs cyclosporine A and tacrolimus over five months. The assays were compared to an identical analyzer in a hospital laboratory, to in-house LC-MS/MS methods, and to chemiluminescent microparticle immunoassays (CMIA). Nine operators evaluated the usability of the fully automated LC-MS/MS system by means of a structured questionnaire. Results The automated system exhibited a high precision (CV < 8%), accuracy (bias < 7%) and good agreement with concentrations of external quality assessment (EQA) samples. Comparable results were obtained with an identical analyzer in a hospital routine laboratory. Acceptable median deviations of results versus an in-house LC-MS/MS were observed for 25-OH vitamin D3 (-10.6%), cyclosporine A (-4.3%) and tacrolimus (-6.6%). The median bias between the automated system and immunoassays was only acceptable for 25-OH vitamin D3 (6.6%). All users stated that they had had a good experience with the fully automated LC-MS/MS system. Conclusions A fully automated LC-MS/MS can be easily integrated for routine diagnostics in a commercial laboratory.
Collapse
Affiliation(s)
- Sina Junger
- SYNLAB MVZ Leinfelden-Echterdingen GmbH, Leinfelden-Echterdingen, Germany
| | - Miriam Hoene
- Institute for Clinical Chemistry and Pathobiochemistry, Department for Diagnostic Laboratory Medicine, University Hospital Tübingen, Tübingen, Germany
| | - Maria Shipkova
- SYNLAB MVZ Leinfelden-Echterdingen GmbH, Leinfelden-Echterdingen, Germany
| | | | - Christof Schöberl
- SYNLAB MVZ Leinfelden-Echterdingen GmbH, Leinfelden-Echterdingen, Germany
| | - Andreas Peter
- Institute for Clinical Chemistry and Pathobiochemistry, Department for Diagnostic Laboratory Medicine, University Hospital Tübingen, Tübingen, Germany
| | - Rainer Lehmann
- Institute for Clinical Chemistry and Pathobiochemistry, Department for Diagnostic Laboratory Medicine, University Hospital Tübingen, Tübingen, Germany
| | - Eberhard Wieland
- SYNLAB MVZ Leinfelden-Echterdingen GmbH, Leinfelden-Echterdingen, Germany
| | - Helmine Braitmaier
- SYNLAB MVZ Leinfelden-Echterdingen GmbH, Leinfelden-Echterdingen, Germany
| |
Collapse
|
12
|
Gqamana PP, Militello L, McMaster JM, Daley SJ, Zhang YV. Analytical Concordance of Total Vitamin D on a Fully Automated Random-Access LC-MS/MS Platform. J Appl Lab Med 2023; 8:940-951. [PMID: 37473445 DOI: 10.1093/jalm/jfad036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 04/05/2023] [Indexed: 07/22/2023]
Abstract
BACKGROUND The adoption of LC-MS/MS laboratory developed tests in the clinical laboratory is limited by many factors including the lack of automation. Recently, the Cascadion™ clinical analyzer was introduced as a fully automated random-access LC-MS/MS platform. Here, the analytical concordance between the platform and a Roche immunoassay analyzer was investigated for vitamin D analysis in human serum, including samples selected for high triglyceride levels. METHODS Analytical precision was evaluated on 3 levels of QC samples (10, 30, and 90 ng/mL) within days (n = 4, 5 days) and between days (20 days). Assay comparison to the Roche was performed using reference samples from the CDC and CAP programs for accuracy. Concordance was also monitored using routine patient samples, as well as samples selected for elevated triglyceride levels (>250 mg/dL). RESULTS Precision met manufacturer specifications (<10% CV and <15% bias), whereas the accuracy evaluations showed a linear fit (y = 0.97x - 1.1, r = 0.995) with 1:1 correlation to reference samples, independent of C-3-epi-vitamin D levels. A mean positive bias (11%) was observed for the Roche measurements in normal patient samples, whereas a mean negative bias (-8%) was observed in samples selected for elevated triglyceride levels. CONCLUSIONS Cascadion measurements of total vitamin D compared favorably with Roche results in our laboratory, although discordance was observed in the analysis of patient serum, which could be explained in terms of known differences between the 2 assays. However, operational issues need to be addressed to effect clinical adoption.
Collapse
Affiliation(s)
- Putuma P Gqamana
- Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, NY, United States
| | - Leah Militello
- Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, NY, United States
| | - Jeffrey M McMaster
- Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, NY, United States
| | - Stacy J Daley
- Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, NY, United States
| | - Y Victoria Zhang
- Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, NY, United States
| |
Collapse
|
13
|
Zijp TR, van Hateren K, Kuiper H, Jongedijk EM, Touw DJ. Ultra-high throughput dual channel liquid chromatography with tandem mass spectrometry for quantification of four immunosuppressants in whole blood for therapeutic drug monitoring. J Chromatogr A 2023; 1702:464086. [PMID: 37247493 DOI: 10.1016/j.chroma.2023.464086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 04/28/2023] [Accepted: 05/18/2023] [Indexed: 05/31/2023]
Abstract
Liquid chromatography with tandem mass spectrometry (LC-MS/MS) is the golden standard for immunosuppressants analyses, where optimising throughput by parallel chromatography can reduce costs and turnaround time. We aimed to double our system throughput using a dual LC-MS/MS setup. Therefore, two independent UPLC systems were hyphenated to one triple quadrupole MS, with staggered injections from one autosampler on alternating columns. The method simultaneously measured the analytes tacrolimus, sirolimus, everolimus, and cyclosporin A in whole blood using isotope dilution, with a run time of 1.5 min. Using the dual LC-MS/MS system, net run-to-run time improved from 2.3 to 0.98 min per injection, where throughput increased from 26 to 61 injections per hour. For Performance Qualification, 1101 clinical samples were measured on the dual LC-MS/MS system in addition to the standard system, during a period of one month, and the results were compared using Passing Bablok regression and Bland Altman analysis. There was excellent agreement for all four analytes, with regression slopes of 0.98-1.02x and intercepts of -0.11-0.88 µg/L. Minor bias was demonstrated between the systems with mean differences from -0.93 to 1.43%. In conclusion, the throughput was doubled and idle MS time was reduced with good agreement to the standard system. Currently, the method is applied for clinical routine with frequent peak intensities of >180 injections per day.
Collapse
Affiliation(s)
- Tanja R Zijp
- University of Groningen, University Medical Center Groningen, Department of Clinical Pharmacy and Pharmacology, Hanzeplein 1, 9700 RB Groningen, the Netherlands
| | - Kai van Hateren
- University of Groningen, University Medical Center Groningen, Department of Clinical Pharmacy and Pharmacology, Hanzeplein 1, 9700 RB Groningen, the Netherlands
| | - Hiltjo Kuiper
- University of Groningen, University Medical Center Groningen, Department of Clinical Pharmacy and Pharmacology, Hanzeplein 1, 9700 RB Groningen, the Netherlands
| | - Erwin M Jongedijk
- University of Groningen, University Medical Center Groningen, Department of Clinical Pharmacy and Pharmacology, Hanzeplein 1, 9700 RB Groningen, the Netherlands
| | - Daan J Touw
- University of Groningen, University Medical Center Groningen, Department of Clinical Pharmacy and Pharmacology, Hanzeplein 1, 9700 RB Groningen, the Netherlands; University of Groningen, Department of Pharmaceutical Analysis, Groningen Research Institute of Pharmacy, University of Groningen, A. Deusinglaan 1, 9713 AV Groningen, the Netherlands.
| |
Collapse
|
14
|
Noguez JH, Koch CD. Bridging the gap: The critical role of laboratory developed tests in clinical toxicology. J Mass Spectrom Adv Clin Lab 2023; 28:70-74. [PMID: 36872953 PMCID: PMC9982682 DOI: 10.1016/j.jmsacl.2023.02.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 02/16/2023] [Accepted: 02/17/2023] [Indexed: 02/24/2023] Open
Abstract
•Toxicology testing provides valuable information for patient management.•Current in vitro diagnostics (IVDs) are unable to meet all clinical needs.•Lab-developed tests (LDTs) in toxicology can be used to close clinical care gaps.•LDTs in clinical toxicology are almost exclusively mass spectrometry-based methods.
Collapse
Affiliation(s)
- Jaime H Noguez
- Department of Pathology, Case Western Reserve University, Cleveland, OH, USA.,Department of Pathology, University Hospitals Cleveland Medical Center, Cleveland, OH, USA
| | - Christopher D Koch
- Department of Pathology, University of South Dakota Sanford School of Medicine, Sioux Falls, SD, USA.,Sanford Laboratories, Sanford Health, Sioux Falls, SD, USA
| |
Collapse
|
15
|
Immunosuppressant Monitoring-Performance of the First Mass Spectrometry-Based Automated Clinical Analyzer Cascadion. Ther Drug Monit 2023; 45:14-19. [PMID: 36301627 DOI: 10.1097/ftd.0000000000001051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 09/13/2022] [Indexed: 02/01/2023]
Abstract
BACKGROUND Automatic analyzers simplify processes and may help improve standardization. The first automated analyzer based on mass spectrometry is available and offers a panel for monitoring cyclosporin A, tacrolimus, sirolimus, and everolimus. Method comparisons and evaluation tests are presented to verify the capability of the Cascadion system for use in a clinical laboratory. METHODS Sample preparation and measurements were performed using the Cascadion clinical analyzer. More than 1000 measurement values of patient samples were compared with an in vitro diagnostic-certified assay run on a liquid chromatography tandem mass spectrometry instrument. Precision and accuracy were determined using commercial quality control and external quality assessment (EQA) samples. RESULTS A good correlation between the 2 instruments was observed (Pearson correlation r = 0.956-0.996). Deming regression revealed 95% confidence intervals of slopes and intercepts covering the values 1 and 0, for sirolimus and everolimus, respectively, indicating equivalence of both measuring systems. However, for cyclosporin A, a bias was observed and confirmed using a Bland-Altman plot (-9.1%). Measurement repeatability and intermediate measurement precision were appropriate showing coefficients of variation of 0.9%-6.1% and 2.0%-5.3%, respectively. Accuracy according to internal quality controls was 85%-111% and 81%-100% in the EQA samples of Reference Institute of Bioanalytics and Laboratory of the Government Chemist, respectively. High robustness was found with regard to the linearity of the calibration lines (linear regression coefficient r2 > 0.99). Carryover was negligible (0.1%). CONCLUSIONS The Cascadion automatic analyzer produced convincing results in the measurement of patient, control, and EQA samples. The throughput was sufficient for routine use. Overall, it can be used as an alternative to open liquid chromatography tandem mass spectrometry instruments for immunosuppressant monitoring, simplifying processes without the need for specially trained personnel.
Collapse
|
16
|
Mathieu E, Duterme C, Fage D, Cotton F. Cascadion™ SM Clinical Analyzer: Evaluation of the whole blood immunosuppressants quantification and routine usability. Clin Chim Acta 2023; 539:97-104. [PMID: 36509135 DOI: 10.1016/j.cca.2022.11.029] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Revised: 11/09/2022] [Accepted: 11/28/2022] [Indexed: 12/13/2022]
Abstract
BACKGROUND Liquid chromatography coupled with tandem mass spectrometry (LC- MS/MS) tends to overcome other methods for therapeutic drugs monitoring (TDM) due to its very good analytical performances. Nevertheless, the lack of automation still limits its use in laboratory medicine. The Cascadion SM Clinical Analyzer (Thermo Fisher Scientific) is the first fully automated LC-MS/MS instrument available. We evaluated its immunosuppressant drugs (ISD) assay and the incorporation of such instrument into a core-laboratory. METHODS An extended analytical verification of the Cascadion ISD panel including cyclosporin A, tacrolimus, everolimus and sirolimus was performed. It was compared to the MassTox ISD assay (Chromsystems). Different preanalytical and analytical conditions were tested. Finally, a turnaround-time evaluation and a satisfaction survey of users after 11 months of use in a core-laboratory were performed. RESULTS Precision and linearity results were within the analytical goals fixed. The comparison with the MassTox ISD assay showed results in agreement except for cyclosporin A where a bias of -11.6% was observed, probably due to a greater trueness of the Cascadion method. Additional experiments showed good performances. The random accessibility and the ease of use by non-specialized staff members allowed a wider working time range and a reduction of the turnaround-time of 55%. CONCLUSION The Cascadion ISD Panel held its promises in term of analytical performances, workflow aspects and ease of use by non-specialized staff.
Collapse
Affiliation(s)
- Elise Mathieu
- Department of Clinical Chemistry, LHUB-ULB, Université Libre de Bruxelles, Brussels, Belgium.
| | - Cécile Duterme
- Department of Clinical Chemistry, LHUB-ULB, Université Libre de Bruxelles, Brussels, Belgium
| | - David Fage
- Department of Clinical Chemistry, LHUB-ULB, Université Libre de Bruxelles, Brussels, Belgium
| | - Frédéric Cotton
- Department of Clinical Chemistry, LHUB-ULB, Université Libre de Bruxelles, Brussels, Belgium
| |
Collapse
|
17
|
Glahn-Martínez B, Lucchesi G, Pradanas-González F, Manzano AI, Canales Á, Caminati G, Benito-Peña E, Moreno-Bondi MC. Biosensing Tacrolimus in Human Whole Blood by Using a Drug Receptor Fused to the Emerald Green Fluorescent Protein. Anal Chem 2022; 94:16337-16344. [DOI: 10.1021/acs.analchem.2c03122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Affiliation(s)
- Bettina Glahn-Martínez
- Department of Analytical Chemistry, Faculty of Chemistry, Universidad Complutense de Madrid, Plaza de las Ciencias, Ciudad Universitaria, 28040Madrid, Spain
| | - Giacomo Lucchesi
- Department of Chemistry “Ugo Schiff” and CSGI, University of Florence, Via della Lastruccia 13, 50019Sesto Fiorentino, Italy
| | - Fernando Pradanas-González
- Department of Analytical Chemistry, Faculty of Chemistry, Universidad Complutense de Madrid, Plaza de las Ciencias, Ciudad Universitaria, 28040Madrid, Spain
| | - Ana Isabel Manzano
- Department of Organic Chemistry, Faculty of Chemistry, Universidad Complutense de Madrid, Plaza de las Ciencias, Ciudad Universitaria, 28040Madrid, Spain
| | - Ángeles Canales
- Department of Organic Chemistry, Faculty of Chemistry, Universidad Complutense de Madrid, Plaza de las Ciencias, Ciudad Universitaria, 28040Madrid, Spain
| | - Gabriella Caminati
- Department of Chemistry “Ugo Schiff” and CSGI, University of Florence, Via della Lastruccia 13, 50019Sesto Fiorentino, Italy
| | - Elena Benito-Peña
- Department of Analytical Chemistry, Faculty of Chemistry, Universidad Complutense de Madrid, Plaza de las Ciencias, Ciudad Universitaria, 28040Madrid, Spain
| | - María C. Moreno-Bondi
- Department of Analytical Chemistry, Faculty of Chemistry, Universidad Complutense de Madrid, Plaza de las Ciencias, Ciudad Universitaria, 28040Madrid, Spain
| |
Collapse
|
18
|
Rankin-Turner S, Heaney LM. Mass spectrometry in the clinical laboratory. A short journey through the contribution to the scientific literature by CCLM. Clin Chem Lab Med 2022; 61:873-879. [PMID: 36282951 DOI: 10.1515/cclm-2022-0984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Accepted: 10/04/2022] [Indexed: 11/15/2022]
Abstract
Abstract
Mass spectrometry (MS) has been a gold standard in the clinical laboratory for decades. Although historically refined to limited areas of study such as neonatal screening and steroid analysis, technological advancements in the field have resulted in MS becoming more powerful, versatile, and user-friendly than ever before. As such, the potential for the technique in clinical chemistry has exploded. The past two decades have seen advancements in biomarker detection for disease diagnostics, new methods for protein measurement, improved methodologies for reliable therapeutic drug monitoring, and novel technologies for automation and high throughput. Throughout this time, Clinical Chemistry and Laboratory Medicine has embraced the rapidly developing field of mass spectrometry, endeavoring to highlight the latest techniques and applications that have the potential to revolutionize clinical testing. This mini review will highlight a selection of these critical contributions to the field.
Collapse
Affiliation(s)
- Stephanie Rankin-Turner
- W. Harry Feinstone Department of Molecular Microbiology and Immunology , Johns Hopkins Bloomberg School of Public Health, Johns Hopkins University , Baltimore , MD , USA
| | - Liam M. Heaney
- School of Sport, Exercise and Health Sciences , Loughborough University , Loughborough , UK
| |
Collapse
|
19
|
Zahr N, Duce H, Duffy J, Webster C, Rentsch KM. Interlaboratory comparison study of immunosuppressant analysis using a fully automated LC-MS/MS system. Clin Chem Lab Med 2022; 60:1753-1762. [PMID: 36044751 DOI: 10.1515/cclm-2021-1340] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Accepted: 08/11/2022] [Indexed: 11/15/2022]
Abstract
OBJECTIVES All guidelines recommend LC-MS/MS as the analytical method of choice for the quantification of immunosuppressants in whole blood. Until now, the lack of harmonization of methods and the complexity of the analytical technique have prevented its widespread use in clinical laboratories. This can be seen in international proficiency schemes, where more than half of the participants used immunoassays. With the Cascadion SM Clinical analyzer (Thermo Fisher Scientific, Oy, Vantaa, FI) a fully automated LC-MS/MS system has been introduced, which enables the use of LC-MS/MS without being an expert in mass spectrometry. METHODS To verify the interlaboratory comparison of the immunosuppressant assay on this type of instrument, three centers across Europe compared 1097 routine whole blood samples, each site sharing its own samples with the other two. In other experiments, the effects of freezing and thawing of whole blood samples was studied, and the use of secondary cups instead of primary tubes was assessed. RESULTS In the Bland-Altman plot, the comparison of the results of tacrolimus in fresh and frozen samples had an average bias of only 0.36%. The respective data for the comparison between the primary and secondary tubes had an average bias of 1.14%. The correlation coefficients for patient samples with cyclosporine A (n=411), everolimus (n=139), sirolimus (n=114) and tacrolimus (n=433) were 0.993, 0.993, 0.993 and 0.990, respectively. CONCLUSIONS The outcome of this study demonstrates a new level of result harmonization for LC-MS/MS based immunosuppressant analysis with a commercially available fully automated platform for routine clinical application.
Collapse
Affiliation(s)
- Noël Zahr
- Pharmacokinetics and Therapeutic Drug Monitoring Unit, Department of Pharmacology and Clinical Investigation Center (CIC-1901), AP-HP, Sorbonne Université, Paris, France
| | - Helen Duce
- Department of Pathology, University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK
| | - Joanne Duffy
- Department of Pathology, University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK
| | - Craig Webster
- Department of Pathology, University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK
| | - Katharina M Rentsch
- Laboratory Medicine, University Hospital Basel, University Basel, Basel, Switzerland
| |
Collapse
|
20
|
Clinical Mass Spectrometry in Immunosuppressant Analysis: Toward a Full Automation? APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12073695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The analysis of immunosuppressive drugs allows the physician to monitor, and eventually correct, immunosuppressive therapy. The panel of molecules under evaluation includes cyclosporine A (CsA), tacrolimus, sirolimus, and everolimus. Initially, assays were performed by immunometric methods, but in the past few years this methodology has been largely superseded by a more accurate and specific technique, liquid chromatography coupled to tandem mass spectrometry (LC-MS/MS), which is now considered the “gold standard” for immunosuppressant analysis. Both LC-MS/MS and often also immunoassays require a preanalytical manual sample preparation, which involves time-consuming sequential operations whose traceability is often hampered and adds up to the probability of gross errors. The aim of this work was to compare an “open” LC-MS/MS with a fully automated system, consisting of LC instrumentation combined with a triple quadrupole MS, named Thermo ScientificTM CascadionTM SM Clinical Analyzer (Cascadion). Such automated systems suit the requirements of the reference method and are designed to completely eliminate all of the manual procedures. More than 2000 immunosuppressant samples were analyzed both with the open LC-MS/MS and with Cascadion. Statistics allowed the evaluation of linearity, intra- and inter-assay CV%, bias %, limit of detection and of quantitation, and Passing–Bablok and Bland–Altman plots. Results indicated a good correlation between the two methods. In both cases, methods confirmed their suitability for diagnostic settings. Cascadion could provide support when the presence of specialized personnel is lacking, and/or when great productivity and continuous workflow are required.
Collapse
|
21
|
Affiliation(s)
- Young Jin Kim
- Department of Laboratory Medicine, Kyung Hee University Hospital, Kyung Hee University School of Medicine, Seoul, Korea
| | - Soo-Youn Lee
- Department of Laboratory Medicine and Genetics, Sungkyunkwan University School of Medicine, Seoul, Korea.,Department of Clinical Pharmacology and Therapeutics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Mina Hur
- Department of Laboratory Medicine, Konkuk University School of Medicine, Seoul, Korea
| |
Collapse
|
22
|
Robak A, Kistowski M, Wojtas G, Perzanowska A, Targowski T, Michalak A, Krasowski G, Dadlez M, Domański D. Diagnosing pleural effusions using mass spectrometry-based multiplexed targeted proteomics quantitating mid- to high-abundance markers of cancer, infection/inflammation and tuberculosis. Sci Rep 2022; 12:3054. [PMID: 35197508 PMCID: PMC8866415 DOI: 10.1038/s41598-022-06924-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 02/09/2022] [Indexed: 01/08/2023] Open
Abstract
Pleural effusion (PE) is excess fluid in the pleural cavity that stems from lung cancer, other diseases like extra-pulmonary tuberculosis (TB) and pneumonia, or from a variety of benign conditions. Diagnosing its cause is often a clinical challenge and we have applied targeted proteomic methods with the aim of aiding the determination of PE etiology. We developed a mass spectrometry (MS)-based multiple reaction monitoring (MRM)-protein-panel assay to precisely quantitate 53 established cancer-markers, TB-markers, and infection/inflammation-markers currently assessed individually in the clinic, as well as potential biomarkers suggested in the literature for PE classification. Since MS-based proteomic assays are on the cusp of entering clinical use, we assessed the merits of such an approach and this marker panel based on a single-center 209 patient cohort with established etiology. We observed groups of infection/inflammation markers (ADA2, WARS, CXCL10, S100A9, VIM, APCS, LGALS1, CRP, MMP9, and LDHA) that specifically discriminate TB-PEs and other-infectious-PEs, and a number of cancer markers (CDH1, MUC1/CA-15-3, THBS4, MSLN, HPX, SVEP1, SPINT1, CK-18, and CK-8) that discriminate cancerous-PEs. Some previously suggested potential biomarkers did not show any significant difference. Using a Decision Tree/Multiclass classification method, we show a very good discrimination ability for classifying PEs into one of four types: cancerous-PEs (AUC: 0.863), tuberculous-PEs (AUC of 0.859), other-infectious-PEs (AUC of 0.863), and benign-PEs (AUC: 0.842). This type of approach and the indicated markers have the potential to assist in clinical diagnosis in the future, and help with the difficult decision on therapy guidance.
Collapse
Affiliation(s)
- Aleksandra Robak
- Mass Spectrometry Laboratory, Institute of Biochemistry and Biophysics - Polish Academy of Sciences, Warsaw, Poland
| | - Michał Kistowski
- Mass Spectrometry Laboratory, Institute of Biochemistry and Biophysics - Polish Academy of Sciences, Warsaw, Poland
| | - Grzegorz Wojtas
- Mazovian Center of Pulmonary Disease and Tuberculosis Treatment, Otwock, Poland
| | - Anna Perzanowska
- Mass Spectrometry Laboratory, Institute of Biochemistry and Biophysics - Polish Academy of Sciences, Warsaw, Poland
| | - Tomasz Targowski
- Department of Geriatrics, National Institute of Geriatrics, Rheumatology and Rehabilitation, Warsaw, Poland
| | - Agata Michalak
- Mazovian Center of Pulmonary Disease and Tuberculosis Treatment, Otwock, Poland
| | - Grzegorz Krasowski
- Mazovian Center of Pulmonary Disease and Tuberculosis Treatment, Otwock, Poland
| | - Michał Dadlez
- Mass Spectrometry Laboratory, Institute of Biochemistry and Biophysics - Polish Academy of Sciences, Warsaw, Poland
| | - Dominik Domański
- Mass Spectrometry Laboratory, Institute of Biochemistry and Biophysics - Polish Academy of Sciences, Warsaw, Poland.
| |
Collapse
|
23
|
Delaney SR, Tacker DH, Snozek CLH. The North American opioid epidemic: opportunities and challenges for clinical laboratories. Crit Rev Clin Lab Sci 2022; 59:309-331. [PMID: 35166639 DOI: 10.1080/10408363.2022.2037122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Since 1999, the opioid epidemic in North America has resulted in over 1 million deaths, and it continues to escalate despite numerous efforts in various arenas to combat the upward trend. Clinical laboratories provide drug testing to support practices such as emergency medicine, substance use disorder treatment, and pain management; increasingly, these laboratories are collaborating in novel partnerships including drug-checking services (DCS) and multidisciplinary treatment teams. This review examines drug testing related to management of licit and illicit opioid use, new technologies and test strategies employed by clinical laboratories, barriers hindering laboratory response to the opioid epidemic, and areas for improvement and standardization within drug testing. Literature search terms included combinations of "opioid," "opiate," "fentanyl," "laboratory," "epidemic," "crisis," "mass spectrometry," "immunoassay," "drug screen," "drug test," "guidelines," plus review of PubMed "similar articles" and references within publications. While immunoassay (IA) and point-of-care (POC) test options for synthetic opioids are increasingly available, mass spectrometry (MS) platforms offer the greatest flexibility and sensitivity for detecting novel, potent opioids. Previously reserved as a second-tier application in most drug test algorithms, MS assays are gaining a larger role in initial screening for specific patients and DCS. However, there are substantial differences among laboratories in terms of updating test menus, algorithms, and technologies to meet changing clinical needs. While some clinical laboratories lack the resources and expertise to implement MS, many are also slow to adopt available IA and POC tests for newer opioids such as fentanyl. MS-based testing also presents challenges, including gaps in available guidance for assay validation and ongoing performance assessment that contribute to a dramatic lack of standardization among laboratories. We identify opportunities for improvement in laboratory operations, reporting, and interpretation of drug test results, including laboratorian and provider education and laboratory-focused guidelines. We also highlight the need for collaboration with providers, assay and instrument manufacturers, and national organizations to increase the effectiveness of clinical laboratory and provider efforts in preventing morbidity and mortality associated with opioid use and misuse.
Collapse
Affiliation(s)
- Sarah R Delaney
- Department of Laboratory Medicine, St. Michael's Hospital, Unity Health Toronto, Toronto, ON, Canada.,Department of Laboratory Medicine & Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Danyel H Tacker
- Department of Pathology, Anatomy, and Laboratory Medicine, West Virginia University School of Medicine, Morgantown, WV, USA
| | - Christine L H Snozek
- Department of Laboratory Medicine and Pathology, Mayo Clinic Arizona, Phoenix, AZ, USA
| |
Collapse
|
24
|
Li Z, Zhang Y, Hoene M, Fritsche L, Zheng S, Birkenfeld A, Fritsche A, Peter A, Liu X, Zhao X, Zhou L, Luo P, Weigert C, Lin X, Xu G, Lehmann R. Diagnostic Performance of Sex-Specific Modified Metabolite Patterns in Urine for Screening of Prediabetes. Front Endocrinol (Lausanne) 2022; 13:935016. [PMID: 35909528 PMCID: PMC9333093 DOI: 10.3389/fendo.2022.935016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 06/13/2022] [Indexed: 12/03/2022] Open
Abstract
AIMS/HYPOTHESIS Large-scale prediabetes screening is still a challenge since fasting blood glucose and HbA1c as the long-standing, recommended analytes have only moderate diagnostic sensitivity, and the practicability of the oral glucose tolerance test for population-based strategies is limited. To tackle this issue and to identify reliable diagnostic patterns, we developed an innovative metabolomics-based strategy deviating from common concepts by employing urine instead of blood samples, searching for sex-specific biomarkers, and focusing on modified metabolites. METHODS Non-targeted, modification group-assisted metabolomics by liquid chromatography-mass spectrometry (LC-MS) was applied to second morning urine samples of 340 individuals from a prediabetes cohort. Normal (n = 208) and impaired glucose-tolerant (IGT; n = 132) individuals, matched for age and BMI, were randomly divided in discovery and validation cohorts. ReliefF, a feature selection algorithm, was used to extract sex-specific diagnostic patterns of modified metabolites for the detection of IGT. The diagnostic performance was compared with conventional screening parameters fasting plasma glucose (FPG), HbA1c, and fasting insulin. RESULTS Female- and male-specific diagnostic patterns were identified in urine. Only three biomarkers were identical in both. The patterns showed better AUC and diagnostic sensitivity for prediabetes screening of IGT than FPG, HbA1c, insulin, or a combination of FPG and HbA1c. The AUC of the male-specific pattern in the validation cohort was 0.889 with a diagnostic sensitivity of 92.6% and increased to an AUC of 0.977 in combination with HbA1c. In comparison, the AUCs of FPG, HbA1c, and insulin alone reached 0.573, 0.668, and 0.571, respectively. Validation of the diagnostic pattern of female subjects showed an AUC of 0.722, which still exceeded the AUCs of FPG, HbA1c, and insulin (0.595, 0.604, and 0.634, respectively). Modified metabolites in the urinary patterns include advanced glycation end products (pentosidine-glucuronide and glutamyl-lysine-sulfate) and microbiota-associated compounds (indoxyl sulfate and dihydroxyphenyl-gamma-valerolactone-glucuronide). CONCLUSIONS/INTERPRETATION Our results demonstrate that the sex-specific search for diagnostic metabolite biomarkers can be superior to common metabolomics strategies. The diagnostic performance for IGT detection was significantly better than routinely applied blood parameters. Together with recently developed fully automatic LC-MS systems, this opens up future perspectives for the application of sex-specific diagnostic patterns for prediabetes screening in urine.
Collapse
Affiliation(s)
- Zaifang Li
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
- University of Chinese Academy of Sciences, Beijing, China
- Liaoning Province Key Laboratory of Metabolomics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
| | - Yanhui Zhang
- School of Computer Science & Technology, Dalian University of Technology, Dalian, China
| | - Miriam Hoene
- Department for Diagnostic Laboratory Medicine, Institute for Clinical Chemistry and Pathobiochemistry, University Hospital Tübingen, Tübingen, Germany
| | - Louise Fritsche
- Institute for Diabetes Research and Metabolic Diseases (IDM) of the Helmholtz Zentrum München at the University of Tuebingen, Tuebingen, Germany
- German Center for Diabetes Research (DZD), Tübingen, Germany
| | - Sijia Zheng
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
- University of Chinese Academy of Sciences, Beijing, China
- Liaoning Province Key Laboratory of Metabolomics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
| | - Andreas Birkenfeld
- Institute for Diabetes Research and Metabolic Diseases (IDM) of the Helmholtz Zentrum München at the University of Tuebingen, Tuebingen, Germany
- German Center for Diabetes Research (DZD), Tübingen, Germany
- Internal Medicine 4, University Hospital Tuebingen, Tuebingen, Germany
| | - Andreas Fritsche
- Institute for Diabetes Research and Metabolic Diseases (IDM) of the Helmholtz Zentrum München at the University of Tuebingen, Tuebingen, Germany
- German Center for Diabetes Research (DZD), Tübingen, Germany
- Internal Medicine 4, University Hospital Tuebingen, Tuebingen, Germany
| | - Andreas Peter
- Department for Diagnostic Laboratory Medicine, Institute for Clinical Chemistry and Pathobiochemistry, University Hospital Tübingen, Tübingen, Germany
- Institute for Diabetes Research and Metabolic Diseases (IDM) of the Helmholtz Zentrum München at the University of Tuebingen, Tuebingen, Germany
- German Center for Diabetes Research (DZD), Tübingen, Germany
| | - Xinyu Liu
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
- University of Chinese Academy of Sciences, Beijing, China
- Liaoning Province Key Laboratory of Metabolomics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
| | - Xinjie Zhao
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
- University of Chinese Academy of Sciences, Beijing, China
- Liaoning Province Key Laboratory of Metabolomics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
| | - Lina Zhou
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
- University of Chinese Academy of Sciences, Beijing, China
- Liaoning Province Key Laboratory of Metabolomics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
| | - Ping Luo
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
- University of Chinese Academy of Sciences, Beijing, China
- Liaoning Province Key Laboratory of Metabolomics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
| | - Cora Weigert
- Department for Diagnostic Laboratory Medicine, Institute for Clinical Chemistry and Pathobiochemistry, University Hospital Tübingen, Tübingen, Germany
- Institute for Diabetes Research and Metabolic Diseases (IDM) of the Helmholtz Zentrum München at the University of Tuebingen, Tuebingen, Germany
- German Center for Diabetes Research (DZD), Tübingen, Germany
| | - Xiaohui Lin
- School of Computer Science & Technology, Dalian University of Technology, Dalian, China
- *Correspondence: Guowang Xu, ; Rainer Lehmann,
| | - Guowang Xu
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
- University of Chinese Academy of Sciences, Beijing, China
- Liaoning Province Key Laboratory of Metabolomics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
- *Correspondence: Guowang Xu, ; Rainer Lehmann,
| | - Rainer Lehmann
- Department for Diagnostic Laboratory Medicine, Institute for Clinical Chemistry and Pathobiochemistry, University Hospital Tübingen, Tübingen, Germany
- Institute for Diabetes Research and Metabolic Diseases (IDM) of the Helmholtz Zentrum München at the University of Tuebingen, Tuebingen, Germany
- German Center for Diabetes Research (DZD), Tübingen, Germany
- *Correspondence: Guowang Xu, ; Rainer Lehmann,
| |
Collapse
|
25
|
Gaspar VP, Ibrahim S, Zahedi RP, Borchers CH. Utility, promise, and limitations of liquid chromatography-mass spectrometry-based therapeutic drug monitoring in precision medicine. JOURNAL OF MASS SPECTROMETRY : JMS 2021; 56:e4788. [PMID: 34738286 PMCID: PMC8597589 DOI: 10.1002/jms.4788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 10/05/2021] [Accepted: 10/06/2021] [Indexed: 05/03/2023]
Abstract
Therapeutic drug monitoring (TDM) is typically referred to as the measurement of the concentration of drugs in patient blood. Although in the past, TDM was restricted to drugs with a narrow therapeutic range in order to avoid drug toxicity, TDM has recently become a major tool for precision medicine being applied to many more drugs. Through compensating for interindividual differences in a drug's pharmacokinetics, improved dosing of individual patients based on TDM ensures maximum drug effectiveness while minimizing side effects. This is especially relevant for individuals that present a particularly high intervariability in pharmacokinetics, such as newborns, or for critically/severely ill patients. In this article, we will review the applications for and limitations of TDM, discuss for which patients TDM is most beneficial and why, examine which techniques are being used for TDM, and demonstrate how mass spectrometry is increasingly becoming a reliable and convenient alternative for the TDM of different classes of drugs. We will also highlight the advances, challenges, and limitations of the existing repertoire of TDM methods and discuss future opportunities for TDM-based precision medicine.
Collapse
Affiliation(s)
- Vanessa P. Gaspar
- Segal Cancer Proteomics CentreMcGill UniversityMontrealQuebecCanada
- Gerald Bronfman Department of OncologyMcGill UniversityMontrealQuebecCanada
| | - Sahar Ibrahim
- Segal Cancer Proteomics CentreMcGill UniversityMontrealQuebecCanada
- Division of Experimental MedicineMcGill UniversityMontrealQuebecCanada
- Clinical Pathology DepartmentMenoufia UniversityShibin el KomEgypt
| | - René P. Zahedi
- Segal Cancer Proteomics CentreMcGill UniversityMontrealQuebecCanada
- Center for Computational and Data‐Intensive Science and EngineeringSkolkovo Institute of Science and TechnologyMoscowRussia
| | - Christoph H. Borchers
- Segal Cancer Proteomics CentreMcGill UniversityMontrealQuebecCanada
- Gerald Bronfman Department of OncologyMcGill UniversityMontrealQuebecCanada
- Center for Computational and Data‐Intensive Science and EngineeringSkolkovo Institute of Science and TechnologyMoscowRussia
| |
Collapse
|