1
|
Devis L, Catry E, Honore PM, Mansour A, Lippi G, Mullier F, Closset M. Interventions to improve appropriateness of laboratory testing in the intensive care unit: a narrative review. Ann Intensive Care 2024; 14:9. [PMID: 38224401 PMCID: PMC10789714 DOI: 10.1186/s13613-024-01244-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 01/03/2024] [Indexed: 01/16/2024] Open
Abstract
Healthcare expenses are increasing, as is the utilization of laboratory resources. Despite this, between 20% and 40% of requested tests are deemed inappropriate. Improper use of laboratory resources leads to unwanted consequences such as hospital-acquired anemia, infections, increased costs, staff workload and patient stress and discomfort. The most unfavorable consequences result from unnecessary follow-up tests and treatments (overuse) and missed or delayed diagnoses (underuse). In this context, several interventions have been carried out to improve the appropriateness of laboratory testing. To date, there have been few published assessments of interventions specific to the intensive care unit. We reviewed the literature for interventions implemented in the ICU to improve the appropriateness of laboratory testing. We searched literature from 2008 to 2023 in PubMed, Embase, Scopus, and Google Scholar databases between April and June 2023. Five intervention categories were identified: education and guidance (E&G), audit and feedback, gatekeeping, computerized physician order entry (including reshaping of ordering panels), and multifaceted interventions (MFI). We included a sixth category exploring the potential role of artificial intelligence and machine learning (AI/ML)-based assisting tools in such interventions. E&G-based interventions and MFI are the most frequently used approaches. MFI is the most effective type of intervention, and shows the strongest persistence of effect over time. AI/ML-based tools may offer valuable assistance to the improvement of appropriate laboratory testing in the near future. Patient safety outcomes are not impaired by interventions to reduce inappropriate testing. The literature focuses mainly on reducing overuse of laboratory tests, with only one intervention mentioning underuse. We highlight an overall poor quality of methodological design and reporting and argue for standardization of intervention methods. Collaboration between clinicians and laboratory staff is key to improve appropriate laboratory utilization. This article offers practical guidance for optimizing the effectiveness of an intervention protocol designed to limit inappropriate use of laboratory resources.
Collapse
Affiliation(s)
- Luigi Devis
- Department of Laboratory Medicine, Biochemistry, CHU UCL Namur, Université catholique de Louvain, Yvoir, Belgium
| | - Emilie Catry
- Department of Laboratory Medicine, Biochemistry, CHU UCL Namur, Université catholique de Louvain, Yvoir, Belgium
- Institute for Experimental and Clinical Research (IREC), Pôle Mont Godinne (MONT), UCLouvain, Yvoir, Belgium
| | - Patrick M Honore
- Department of Intensive Care, CHU UCL Namur, Université catholique de Louvain, Yvoir, Belgium
| | - Alexandre Mansour
- Department of Anesthesia and Critical Care, Pontchaillou University Hospital of Rennes, Rennes, France
- IRSET-INSERM-1085, Univ Rennes, Rennes, France
| | - Giuseppe Lippi
- Section of Clinical Biochemistry and School of Medicine, University Hospital of Verona, Verona, Italy
| | - François Mullier
- Department of Laboratory Medicine, Hematology, CHU UCL Namur, Université catholique de Louvain, Yvoir, Belgium
- Namur Thrombosis and Hemostasis Center (NTHC), Namur Research Institute for Life Sciences (NARILIS), Namur, Belgium
- Institute for Experimental and Clinical Research (IREC), Pôle Mont Godinne (MONT), UCLouvain, Yvoir, Belgium
| | - Mélanie Closset
- Department of Laboratory Medicine, Biochemistry, CHU UCL Namur, Université catholique de Louvain, Yvoir, Belgium.
- Institute for Experimental and Clinical Research (IREC), Pôle Mont Godinne (MONT), UCLouvain, Yvoir, Belgium.
| |
Collapse
|
2
|
Rovegno L, Infusino I, Dolci A, Panteghini M. Appropriateness of serum free light chain orders in an academic medical institution. Am J Clin Pathol 2023; 160:540. [PMID: 37449364 DOI: 10.1093/ajcp/aqad082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 06/22/2023] [Indexed: 07/18/2023] Open
|
3
|
Proto-Siqueira R, Lanes S, Bortolini JF, Zouain-Figueiredo G, Barros-Nascimento E, Marinato AF. Remote Onco-Hematology Laboratory Using Reflex Testing for Increased Accessibility and Reduced Costs in a Developing Country: A Proof of Concept. J Appl Lab Med 2023; 8:1190-1192. [PMID: 37738660 DOI: 10.1093/jalm/jfad056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 07/13/2023] [Indexed: 09/24/2023]
Affiliation(s)
| | - Silvania Lanes
- Flow Diagnósticos, Laboratório e Diagnósticos de Alta Complexidade, São Paulo, Brazil
| | - Joana F Bortolini
- Hospital Infantil Nossa Senhora da Glória (HINSG), Serviço de Pediatria e de Oncohematologia, Vitória, Brazil
| | - Glaucia Zouain-Figueiredo
- Hospital Infantil Nossa Senhora da Glória (HINSG), Serviço de Pediatria e de Oncohematologia, Vitória, Brazil
| | | | - André F Marinato
- Flow Diagnósticos, Laboratório e Diagnósticos de Alta Complexidade, São Paulo, Brazil
| |
Collapse
|
4
|
Plebani M. Why C-reactive protein is one of the most requested tests in clinical laboratories? Clin Chem Lab Med 2023; 61:1540-1545. [PMID: 36745137 DOI: 10.1515/cclm-2023-0086] [Citation(s) in RCA: 34] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 01/26/2023] [Indexed: 02/07/2023]
Abstract
C-reactive protein (CRP) is an acute-phase protein which is synthesized by the liver in response to the secretion of several inflammatory cytokines including interleukin 6 (IL-6), IL-1 and tumor necrosis factor (TNF). CRP was the first acute-phase protein to be described and adopted in clinical laboratories as an exquisitely sensitive systemic marker of inflammation and tissue damage. The measurement of CRP is widely used for the diagnosis and monitoring of inflammatory conditions, including sepsis, trauma, and malignancies. In the last decades, impressive advances in analytical methods (from qualitative to high-sensitivity assays), automation and availability of results in a short time, not only translated in an increasing demand for the right management of systemic inflammatory diseases, but also in evaluating subclinical inflammatory processes underlying atherothrombotic events. CRP measurement is one of the most requested laboratory tests for both the wide range of clinical conditions in which it may assure a valuable information and some analytical advantages due to the evidence that it is a "robust biomarker". Even recently, the measurement of CRP received new interest, particularly as a biomarker of severity of Coronavirus disease 2019 (COVID-19), and it deserves further concern for improving demand appropriateness and result interpretation.
Collapse
Affiliation(s)
- Mario Plebani
- Clinical Biochemistry and Clinical Molecular Biology, University of Padova, Padova, Italy
- Department of Pathology, University of Texas, Galveston, USA
| |
Collapse
|
5
|
Cadamuro J, Simundic AM. The preanalytical phase – from an instrument-centred to a patient-centred laboratory medicine. Clin Chem Lab Med 2022; 61:732-740. [PMID: 36330758 DOI: 10.1515/cclm-2022-1036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 10/16/2022] [Indexed: 11/06/2022]
Abstract
Abstract
In order to guarantee patient safety, medical laboratories around the world strive to provide highest quality in the shortest amount of time. A major leap in quality improvement was achieved by aiming to avoid preanalytical errors within the total testing process. Although these errors were first described in the 1970s, it took additional years/decades for large-scale efforts, aiming to improve preanalytical quality by standardisation and/or harmonisation. Initially these initiatives were mostly on the local or national level. Aiming to fill this void, in 2011 the European Federation of Clinical Chemistry and Laboratory Medicine (EFLM) working group “Preanalytical Phase” (WG-PRE) was founded. In the 11 years of its existence this group was able to provide several recommendations on various preanalytical topics. One major achievement of the WG-PRE was the development of an European consensus guideline on venous blood collection. In recent years the definition of the preanalytical phase has been extended, including laboratory test selection, thereby opening a huge field for improvement, by implementing strategies to overcome misuse of laboratory testing, ideally with the support of artificial intelligence models. In this narrative review, we discuss important aspects and milestones in the endeavour of preanalytical process improvement, which would not have been possible without the support of the Clinical Chemistry and Laboratory Medicine (CCLM) journal, which was one of the first scientific journals recognising the importance of the preanalytical phase and its impact on laboratory testing quality and ultimately patient safety.
Collapse
Affiliation(s)
- Janne Cadamuro
- Department of Laboratory Medicine , Paracelsus Medical University Salzburg , Salzburg , Austria
| | - Ana-Maria Simundic
- Department of Medical Laboratory Diagnostics , University Hospital “Sveti Duh”, University of Zagreb, Faculty of Pharmacy and Biochemistry , Zagreb , Croatia
| |
Collapse
|