1
|
Pirotton L, de Cartier d’Yves E, Bertrand L, Beauloye C, Horman S. Platelet lipidomics and de novo lipogenesis: impact on health and disease. Curr Opin Hematol 2024; 31:217-223. [PMID: 38727017 PMCID: PMC11296274 DOI: 10.1097/moh.0000000000000820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/02/2024]
Abstract
PURPOSE OF REVIEW Lipids play vital roles in platelet structure, signaling, and metabolism. In addition to capturing exogenous lipids, platelets possess the capacity for de novo lipogenesis, regulated by acetyl-coA carboxylase 1 (ACC1). This review aims to cover the critical roles of platelet de novo lipogenesis and lipidome in platelet production, function, and diseases. RECENT FINDINGS Upon platelet activation, approximately 20% of the platelet lipidome undergoes significant modifications, primarily affecting arachidonic acid-containing species. Multiple studies emphasize the impact of de novo lipogenesis, with ACC1 as key player, on platelet functions. Mouse models suggest the importance of the AMPK-ACC1 axis in regulating platelet membrane arachidonic acid content, associated with TXA 2 secretion, and thrombus formation. In human platelets, ACC1 inhibition leads to reduced platelet reactivity. Remodeling of the platelet lipidome, alongside with de novo lipogenesis, is also crucial for platelet biogenesis. Disruptions in the platelet lipidome are observed in various pathological conditions, including cardiovascular and inflammatory diseases, with associations between these alterations and shifts in platelet reactivity highlighted. SUMMARY The platelet lipidome, partially regulated by ACC-driven de novo lipogenesis, is indispensable for platelet production and function. It is implicated in various pathological conditions involving platelets.
Collapse
Affiliation(s)
- Laurence Pirotton
- Pôle de Recherche Cardiovasculaire (CARD), Institut de Recherche Expérimentale et Clinique (IREC), Université catholique de Louvain (UCLouvain)
| | - Emma de Cartier d’Yves
- Pôle de Recherche Cardiovasculaire (CARD), Institut de Recherche Expérimentale et Clinique (IREC), Université catholique de Louvain (UCLouvain)
| | - Luc Bertrand
- Pôle de Recherche Cardiovasculaire (CARD), Institut de Recherche Expérimentale et Clinique (IREC), Université catholique de Louvain (UCLouvain)
| | - Christophe Beauloye
- Pôle de Recherche Cardiovasculaire (CARD), Institut de Recherche Expérimentale et Clinique (IREC), Université catholique de Louvain (UCLouvain)
- Department of Cardiovascular Intensive Care, Cliniques Universitaires Saint-Luc, Brussels, Belgium
| | - Sandrine Horman
- Pôle de Recherche Cardiovasculaire (CARD), Institut de Recherche Expérimentale et Clinique (IREC), Université catholique de Louvain (UCLouvain)
| |
Collapse
|
2
|
Zhou M, Liu X, Wu Y, Xiang Q, Yu R. Liver Lipidomics Analysis Revealed the Protective mechanism of Zuogui Jiangtang Qinggan Formula in type 2 diabetes mellitus with non-alcoholic fatty liver disease. JOURNAL OF ETHNOPHARMACOLOGY 2024; 329:118160. [PMID: 38588985 DOI: 10.1016/j.jep.2024.118160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 03/23/2024] [Accepted: 04/05/2024] [Indexed: 04/10/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Hepatic steatosis, a hallmark of non-alcoholic fatty liver disease (NAFLD), represents a significant global health issue. Liver lipidomics has garnered increased focus recently, highlighting Traditional Chinese Medicine's (TCM) role in mitigating such conditions through lipid metabolism regulation. The Zuogui Jiangtang Qinggan Formula (ZGJTQGF), a longstanding TCM regimen for treating Type 2 Diabetes Mellitus (T2DM) with NAFLD, lacks a definitive mechanism for its lipid metabolism regulatory effects. AIM OF THE STUDY This research aims to elucidate ZGJTQGF's mechanism on lipid metabolism in T2DM with NAFLD. MATERIALS AND METHODS The study, utilized db/db mice to establish T2DM with NAFLD models. Evaluations included Hematoxylin-Eosin (HE) and Oil Red O stainedstaining of liver tissues, alongside biochemical lipid parameter analysis. Liver lipidomics and Western blotting further substantiated the findings, systematically uncovering the mechanism of action mechanism. RESULTS ZGJTQGF notably reduced body weight, and Fasting Blood Glucose (FBG), enhancing glucose tolerance in db/db mice. HE, and Oil Red O staining, complemented by biochemical and liver lipidomics analyses, confirmed ZGJTQGF's efficacy in ameliorating liver steatosis and lipid metabolism anomalies. Lipidomics identified 1571 significantly altered lipid species in the model group, primarily through the upregulation of triglycerides (TG) and diglycerides (DG), and the downregulation of phosphatidylcholine (PC) and phosphatidylethanolamine (PE). Post-ZGJTQGF treatment, 496 lipid species were modulated, with increased PC and PE levels and decreased TG and DG, showcasing significant lipid metabolism improvement in T2DM with NAFLD. Moreover, ZGJTQGF's influence on lipid synthesis-related proteins was observed, underscoring its anti-steatotic impact through liver lipidomic alterations and offering novel insights into hepatic steatosis pathogenesis. CONCLUSIONS Liver lipidomics analysis combined with protein verification further demonstrated that ZGJTQGF could ameliorate the lipid disturbance of TG, DG, PC, PE in T2DM with NAFLD, as well as improve fatty acid and cholesterol synthesis and metabolism through De novo lipogenesis pathway.
Collapse
Affiliation(s)
- Min Zhou
- Hunan University of Traditional Chinese Medicine, 300 Xueshi Road, Changsha, Hunan 410208, China; Hunan Provincial Key Laboratory of Translational Research in TCM Prescriptions and Zheng, Hunan University of Traditional Chinese Medicine, 300 Xueshi Road, Changsha, Hunan, 410208, China
| | - Xiu Liu
- Hunan University of Traditional Chinese Medicine, 300 Xueshi Road, Changsha, Hunan 410208, China
| | - Yongjun Wu
- Hunan University of Traditional Chinese Medicine, 300 Xueshi Road, Changsha, Hunan 410208, China
| | - Qin Xiang
- Hunan University of Traditional Chinese Medicine, 300 Xueshi Road, Changsha, Hunan 410208, China; Hunan Provincial Key Laboratory of Translational Research in TCM Prescriptions and Zheng, Hunan University of Traditional Chinese Medicine, 300 Xueshi Road, Changsha, Hunan, 410208, China.
| | - Rong Yu
- Hunan University of Traditional Chinese Medicine, 300 Xueshi Road, Changsha, Hunan 410208, China; Hunan Provincial Key Laboratory of Translational Research in TCM Prescriptions and Zheng, Hunan University of Traditional Chinese Medicine, 300 Xueshi Road, Changsha, Hunan, 410208, China.
| |
Collapse
|
3
|
Huang Y, Sun Q, Zhou B, Peng Y, Li J, Li C, Xia Q, Meng L, Shan C, Long W. Lipidomic signatures in patients with early-onset and late-onset Preeclampsia. Metabolomics 2024; 20:65. [PMID: 38879866 PMCID: PMC11180640 DOI: 10.1007/s11306-024-02134-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Accepted: 05/22/2024] [Indexed: 06/19/2024]
Abstract
BACKGROUND Preeclampsia is a pregnancy-specific clinical syndrome and can be subdivided into early-onset preeclampsia (EOPE) and late-onset preeclampsia (LOPE) according to the gestational age of delivery. Patients with preeclampsia have aberrant lipid metabolism. This study aims to compare serum lipid profiles of normal pregnant women with EOPE or LOPE and screening potential biomarkers to diagnose EOPE or LOPE. METHODS Twenty normal pregnant controls (NC), 19 EOPE, and 19 LOPE were recruited in this study. Untargeted lipidomics based on ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) was used to compare their serum lipid profiles. RESULTS The lipid metabolism profiles significantly differ among the NC, EOPE, and LOPE. Compared to the NC, there were 256 and 275 distinct lipids in the EOPE and LOPE, respectively. Furthermore, there were 42 different lipids between the LOPE and EOPE, of which eight were significantly associated with fetal birth weight and maternal urine protein. The five lipids that both differed in the EOPE and LOPE were DGTS (16:3/16:3), LPC (20:3), LPC (22:6), LPE (22:6), PC (18:5e/4:0), and a combination of them were a potential biomarker for predicting EOPE or LOPE. The receiver operating characteristic analysis revealed that the diagnostic power of the combination for distinguishing the EOPE from the NC and for distinguishing the LOPE from the NC can reach 1.000 and 0.992, respectively. The association between the lipid modules and clinical characteristics of EOPE and LOPE was investigated by the weighted gene co-expression network analysis (WGCNA). The results demonstrated that the main different metabolism pathway between the EOPE and LOPE was enriched in glycerophospholipid metabolism. CONCLUSIONS Lipid metabolism disorders may be a potential mechanism of the pathogenesis of preeclampsia. Lipid metabolites have the potential to serve as biomarkers in patients with EOPE or LOPE. Furthermore, lipid metabolites correlate with clinical severity indicators for patients with EOPE and LOPE, including fetal birth weight and maternal urine protein levels.
Collapse
Affiliation(s)
- Yu Huang
- Department of Obstetrics, Women's Hospital of Nanjing Medical University, Nanjing Women and Children's Healthcare Hospital, 123rd Tianfei Street, Mochou Road, Nanjing, 210004, China
| | - Qiaoqiao Sun
- Department of Obstetrics, Women's Hospital of Nanjing Medical University, Nanjing Women and Children's Healthcare Hospital, 123rd Tianfei Street, Mochou Road, Nanjing, 210004, China
| | - Beibei Zhou
- Department of Obstetrics, Women's Hospital of Nanjing Medical University, Nanjing Women and Children's Healthcare Hospital, 123rd Tianfei Street, Mochou Road, Nanjing, 210004, China
| | - Yiqun Peng
- Department of Obstetrics, Women's Hospital of Nanjing Medical University, Nanjing Women and Children's Healthcare Hospital, 123rd Tianfei Street, Mochou Road, Nanjing, 210004, China
| | - Jingyun Li
- Nanjing Maternal and Child Health Institute, Women's Hospital of Nanjing Medical University, Nanjing Women and Children's Healthcare Hospital, Nanjing, China
| | - Chunyan Li
- Department of Obstetrics, Women's Hospital of Nanjing Medical University, Nanjing Women and Children's Healthcare Hospital, 123rd Tianfei Street, Mochou Road, Nanjing, 210004, China
| | - Qing Xia
- Department of Obstetrics, Women's Hospital of Nanjing Medical University, Nanjing Women and Children's Healthcare Hospital, 123rd Tianfei Street, Mochou Road, Nanjing, 210004, China
| | - Li Meng
- Department of Obstetrics, Women's Hospital of Nanjing Medical University, Nanjing Women and Children's Healthcare Hospital, 123rd Tianfei Street, Mochou Road, Nanjing, 210004, China
| | - Chunjian Shan
- Department of Obstetrics, Women's Hospital of Nanjing Medical University, Nanjing Women and Children's Healthcare Hospital, 123rd Tianfei Street, Mochou Road, Nanjing, 210004, China
| | - Wei Long
- Department of Obstetrics, Women's Hospital of Nanjing Medical University, Nanjing Women and Children's Healthcare Hospital, 123rd Tianfei Street, Mochou Road, Nanjing, 210004, China.
- Department of Obstetrics, Women's Hospital of Nanjing Medical University, Nanjing Women and Children's Healthcare Hospital, Nanjing, China.
| |
Collapse
|
4
|
Sarkar S, Roy D, Chatterjee B, Ghosh R. Clinical advances in analytical profiling of signature lipids: implications for severe non-communicable and neurodegenerative diseases. Metabolomics 2024; 20:37. [PMID: 38459207 DOI: 10.1007/s11306-024-02100-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 02/06/2024] [Indexed: 03/10/2024]
Abstract
BACKGROUND Lipids play key roles in numerous biological processes, including energy storage, cell membrane structure, signaling, immune responses, and homeostasis, making lipidomics a vital branch of metabolomics that analyzes and characterizes a wide range of lipid classes. Addressing the complex etiology, age-related risk, progression, inflammation, and research overlap in conditions like Alzheimer's Disease, Parkinson's Disease, Cardiovascular Diseases, and Cancer poses significant challenges in the quest for effective therapeutic targets, improved diagnostic markers, and advanced treatments. Mass spectrometry is an indispensable tool in clinical lipidomics, delivering quantitative and structural lipid data, and its integration with technologies like Liquid Chromatography (LC), Magnetic Resonance Imaging (MRI), and few emerging Matrix-Assisted Laser Desorption Ionization- Imaging Mass Spectrometry (MALDI-IMS) along with its incorporation into Tissue Microarray (TMA) represents current advances. These innovations enhance lipidomics assessment, bolster accuracy, and offer insights into lipid subcellular localization, dynamics, and functional roles in disease contexts. AIM OF THE REVIEW The review article summarizes recent advancements in lipidomic methodologies from 2019 to 2023 for diagnosing major neurodegenerative diseases, Alzheimer's and Parkinson's, serious non-communicable cardiovascular diseases and cancer, emphasizing the role of lipid level variations, and highlighting the potential of lipidomics data integration with genomics and proteomics to improve disease understanding and innovative prognostic, diagnostic and therapeutic strategies. KEY SCIENTIFIC CONCEPTS OF REVIEW Clinical lipidomic studies are a promising approach to track and analyze lipid profiles, revealing their crucial roles in various diseases. This lipid-focused research provides insights into disease mechanisms, biomarker identification, and potential therapeutic targets, advancing our understanding and management of conditions such as Alzheimer's Disease, Parkinson's Disease, Cardiovascular Diseases, and specific cancers.
Collapse
Affiliation(s)
- Sutanu Sarkar
- Amity Institute of Biotechnology (AIBNK), Amity University, Rajarhat, Newtown Action Area 2, Kolkata, 700135, West Bengal, India
| | - Deotima Roy
- Amity Institute of Biotechnology (AIBNK), Amity University, Rajarhat, Newtown Action Area 2, Kolkata, 700135, West Bengal, India
| | - Bhaskar Chatterjee
- Amity Institute of Biotechnology (AIBNK), Amity University, Rajarhat, Newtown Action Area 2, Kolkata, 700135, West Bengal, India
| | - Rajgourab Ghosh
- Amity Institute of Biotechnology (AIBNK), Amity University, Rajarhat, Newtown Action Area 2, Kolkata, 700135, West Bengal, India.
| |
Collapse
|
5
|
Gerhardtova I, Jankech T, Majerova P, Piestansky J, Olesova D, Kovac A, Jampilek J. Recent Analytical Methodologies in Lipid Analysis. Int J Mol Sci 2024; 25:2249. [PMID: 38396926 PMCID: PMC10889185 DOI: 10.3390/ijms25042249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 02/09/2024] [Accepted: 02/11/2024] [Indexed: 02/25/2024] Open
Abstract
Lipids represent a large group of biomolecules that are responsible for various functions in organisms. Diseases such as diabetes, chronic inflammation, neurological disorders, or neurodegenerative and cardiovascular diseases can be caused by lipid imbalance. Due to the different stereochemical properties and composition of fatty acyl groups of molecules in most lipid classes, quantification of lipids and development of lipidomic analytical techniques are problematic. Identification of different lipid species from complex matrices is difficult, and therefore individual analytical steps, which include extraction, separation, and detection of lipids, must be chosen properly. This review critically documents recent strategies for lipid analysis from sample pretreatment to instrumental analysis and data interpretation published in the last five years (2019 to 2023). The advantages and disadvantages of various extraction methods are covered. The instrumental analysis step comprises methods for lipid identification and quantification. Mass spectrometry (MS) is the most used technique in lipid analysis, which can be performed by direct infusion MS approach or in combination with suitable separation techniques such as liquid chromatography or gas chromatography. Special attention is also given to the correct evaluation and interpretation of the data obtained from the lipid analyses. Only accurate, precise, robust and reliable analytical strategies are able to bring complex and useful lipidomic information, which may contribute to clarification of some diseases at the molecular level, and may be used as putative biomarkers and/or therapeutic targets.
Collapse
Affiliation(s)
- Ivana Gerhardtova
- Institute of Neuroimmunology, Slovak Academy of Sciences, Dubravska cesta 9, SK-845 10 Bratislava, Slovakia
- Department of Analytical Chemistry, Faculty of Natural Sciences, Comenius University in Bratislava, Ilkovicova 6, SK-842 15 Bratislava, Slovakia
| | - Timotej Jankech
- Institute of Neuroimmunology, Slovak Academy of Sciences, Dubravska cesta 9, SK-845 10 Bratislava, Slovakia
- Department of Analytical Chemistry, Faculty of Natural Sciences, Comenius University in Bratislava, Ilkovicova 6, SK-842 15 Bratislava, Slovakia
| | - Petra Majerova
- Institute of Neuroimmunology, Slovak Academy of Sciences, Dubravska cesta 9, SK-845 10 Bratislava, Slovakia
| | - Juraj Piestansky
- Institute of Neuroimmunology, Slovak Academy of Sciences, Dubravska cesta 9, SK-845 10 Bratislava, Slovakia
- Toxicological and Antidoping Center, Faculty of Pharmacy, Comenius University in Bratislava, Odbojarov 10, SK-832 32 Bratislava, Slovakia
- Department of Galenic Pharmacy, Faculty of Pharmacy, Comenius University in Bratislava, Odbojarov 10, SK-832 32 Bratislava, Slovakia
| | - Dominika Olesova
- Institute of Neuroimmunology, Slovak Academy of Sciences, Dubravska cesta 9, SK-845 10 Bratislava, Slovakia
- Institute of Experimental Endocrinology, Biomedical Research Center, Slovak Academy of Sciences, Dubravska cesta 9, SK-845 05 Bratislava, Slovakia
| | - Andrej Kovac
- Institute of Neuroimmunology, Slovak Academy of Sciences, Dubravska cesta 9, SK-845 10 Bratislava, Slovakia
- Department of Pharmacology and Toxicology, University of Veterinary Medicine and Pharmacy in Kosice, Komenskeho 68/73, SK-041 81 Kosice, Slovakia
| | - Josef Jampilek
- Institute of Neuroimmunology, Slovak Academy of Sciences, Dubravska cesta 9, SK-845 10 Bratislava, Slovakia
- Department of Analytical Chemistry, Faculty of Natural Sciences, Comenius University in Bratislava, Ilkovicova 6, SK-842 15 Bratislava, Slovakia
| |
Collapse
|
6
|
Kronborg TM, Gao Q, Trošt K, Ytting H, O’Connell MB, Werge MP, Thing M, Gluud LL, Hamberg O, Møller S, Moritz T, Bendtsen F, Kimer N. Low sphingolipid levels predict poor survival in patients with alcohol-related liver disease. JHEP Rep 2024; 6:100953. [PMID: 38283758 PMCID: PMC10820332 DOI: 10.1016/j.jhepr.2023.100953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 10/08/2023] [Accepted: 10/20/2023] [Indexed: 01/30/2024] Open
Abstract
Background & Aims Alcohol-related hepatitis (AH) and alcohol-related cirrhosis are grave conditions with poor prognoses. Altered hepatic lipid metabolism can impact disease development and varies between different alcohol-related liver diseases. Therefore, we aimed to investigate lipidomics and metabolomics at various stages of alcohol-related liver diseases and their correlation with survival. Methods Patients with newly diagnosed alcohol-related cirrhosis, who currently used alcohol (ALC-A), stable outpatients with decompensated alcohol-related cirrhosis with at least 8 weeks of alcohol abstinence (ALC), and patients with AH, were compared with each other and with healthy controls (HC). Circulating lipids and metabolites were analysed using HPLC and mass spectrometry. Results Forty patients with ALC, 95 with ALC-A, 30 with AH, and 42 HC provided plasma. Lipid levels changed according to disease severity, with generally lower levels in AH and cirrhosis than in the HC group; this was most pronounced for AH, followed by ALC-A. Nine out of 10 free fatty acids differed between cirrhosis groups by relative increases of 0.12-0.66 in ALC compared with the ALC-A group (p <0.0005). For metabolomics, total bile acids increased by 19.7, 31.3, and 80.4 in the ALC, ALC-A, and AH groups, respectively, compared with HC (all p <0.0001). Low sphingolipid ([d42:1] and [d41:1]) levels could not predict 180-day mortality (AUC = 0.73, p = 0.95 and AUC = 0.73, p = 0.95) more accurately than the model for end-stage liver disease score (AUC = 0.71), but did predict 90-day mortality (AUC d42:1 = 0.922, AUC d41:1 = 0.893; pd42:1 = 0.005, pd41:1 = 0.007) more accurately than the MELD score AUCMELD = 0.70, pMELD = 0.19). Conclusions Alcohol-related severe liver disease is characterised by low lipid levels progressing with severity of liver disease, especially low sphingomyelins, which also associate to poor prognoses. Impact and implications Lipidomics has the potential to diagnose and risk stratify patients with liver diseases. Lipidomics differed between patients with alcohol-related hepatitis and alcohol-related cirrhosis with and without recent alcohol use. Furthermore, lipidomics could predict short-term mortality and might be suitable as a prognostic tool in the future. Clinical Trials Registration Scientific Ethics Committee of the Capital Region of Denmark, journal no. H-21013476.
Collapse
Affiliation(s)
| | - Qian Gao
- Novo Nordisk Foundation Centre for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Kajetan Trošt
- Novo Nordisk Foundation Centre for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Henriette Ytting
- Gastro Unit, Medical Division, University Hospital Hvidovre, Hvidovre, Denmark
- Department of Clinical Medicine, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | | | | | - Mira Thing
- Gastro Unit, Medical Division, University Hospital Hvidovre, Hvidovre, Denmark
| | - Lise Lotte Gluud
- Gastro Unit, Medical Division, University Hospital Hvidovre, Hvidovre, Denmark
| | - Ole Hamberg
- Medical Department, University Hospital of Zealand, Koege, Denmark
| | - Søren Møller
- Department of Clinical Medicine, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
- Centre for Functional and Diagnostic Imaging and Research, Department of Clinical Physiology and Nuclear Medicine, Hvidovre Hospital, Hvidovre, Denmark
| | - Thomas Moritz
- Novo Nordisk Foundation Centre for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Flemming Bendtsen
- Gastro Unit, Medical Division, University Hospital Hvidovre, Hvidovre, Denmark
| | - Nina Kimer
- Gastro Unit, Medical Division, University Hospital Hvidovre, Hvidovre, Denmark
| |
Collapse
|
7
|
Du Z, Zhao X, Sun L, Chi B, Ma Z, Tian Z, Liu Y. Untargeted lipidomics-based study reveals the treatment mechanism of Qingxue Bawei tablets on atherosclerotic in ApoE -/- mice. J Chromatogr B Analyt Technol Biomed Life Sci 2023; 1229:123889. [PMID: 37738809 DOI: 10.1016/j.jchromb.2023.123889] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 09/08/2023] [Accepted: 09/11/2023] [Indexed: 09/24/2023]
Abstract
Qingxue Bawei (QXBW) tablets, a Mongolian medicine prescription, have proved to possess good lipid-lowering and antihypertensive effects in previous studies. However, the therapeutic effects and potential mechanisms of QXBW tablets on atherosclerosis (AS) have not been well studied yet. This study aimed to investigate the potential liver-protective mechanism of QXBW tablets on AS mice by hepatic lipidomics analysis. After 10 weeks of administration, serum and liver were collected for biochemical, histopathological, and lipid metabolomics analysis to evaluate the efficacy of the QXBW tablets on high-fat diet (HFD) induced mice. The experimental results indicated that QXBW tablets could ameliorate liver injury and inflammatory response in AS mice. Liver lipid data from different groups of mice were collected by UPLC-Q-Orbitrap-MS, and a total of 22 potential biomarkers with significant differences between the model and control groups were identified finally, of which 16 potential biomarkers were back-regulated after the QXBW tablets intervention. These 22 potential differential metabolic markers were mainly involved in glycerolipid metabolism, glycerophospholipid metabolism, and cholesterol ester metabolism pathways. The results of this study showed that serum inflammatory factors, liver function indices, and lipid metabolism disorders were positively alleviated in AS mice after QXBW tablets treatment.
Collapse
Affiliation(s)
- Zhen Du
- Innovation Institute of Chinese Medicine and Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Xin Zhao
- Pharmacy Department of Boshan District Hospital, Zibo City, Shandong Province, Zibo 255000, China
| | - Luping Sun
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Bingqing Chi
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Zhen Ma
- Innovation Institute of Chinese Medicine and Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Zhenhua Tian
- Experimental Center, Shandong University of Traditional Chinese Medicine, Jinan 250355, China.
| | - Yuecheng Liu
- Shandong Academy of Chinese Medicine, Jinan 250014, China.
| |
Collapse
|
8
|
Dorochow E, Gurke R, Rischke S, Geisslinger G, Hahnefeld L. Effects of Different Storage Conditions on Lipid Stability in Mice Tissue Homogenates. Metabolites 2023; 13:metabo13040504. [PMID: 37110163 PMCID: PMC10144362 DOI: 10.3390/metabo13040504] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 03/24/2023] [Accepted: 03/28/2023] [Indexed: 04/03/2023] Open
Abstract
Lipids are biomolecules involved in numerous (patho-)physiological processes and their elucidation in tissue samples is of particular interest. However, tissue analysis goes hand in hand with many challenges and the influence of pre-analytical factors can intensively change lipid concentrations ex vivo, compromising the results of the whole research project. Here, we study the influence of pre-analytical factors on lipid profiles during the processing of homogenized tissues. Homogenates from four different mice tissues (liver, kidney, heart, spleen) were stored at room temperature as well as in ice water for up to 120 min and analyzed via ultra-high-performance liquid chromatography-high-resolution mass spectrometry (UHPLC-HRMS). Lipid class ratios were calculated since their suitability as indicators for sample stability has been previously illustrated. Only approx. 40% of lipid class ratios were unchanged after 35 min, which was further reduced to 25% after 120 min during storage at room temperature. In contrast, lipids in tissue homogenates were generally stable when samples were kept in ice water, as more than 90% of investigated lipid class ratios remained unchanged after 35 min. Ultimately, swift processing of tissue homogenates under cooled conditions represents a viable option for lipid analysis and pre-analytical factors require more attention to achieve reliable results.
Collapse
Affiliation(s)
- Erika Dorochow
- Pharmazentrum Frankfurt/ZAFES, Institute of Clinical Pharmacology, Johann Wolfgang Goethe University, Theodor Stern-Kai 7, 60590 Frankfurt am Main, Germany
| | - Robert Gurke
- Pharmazentrum Frankfurt/ZAFES, Institute of Clinical Pharmacology, Johann Wolfgang Goethe University, Theodor Stern-Kai 7, 60590 Frankfurt am Main, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, and Fraunhofer Cluster of Excellence for Immune Mediated Diseases CIMD, Theodor-Stern-Kai 7, 60596 Frankfurt am Main, Germany
- Correspondence: (R.G.); (L.H.)
| | - Samuel Rischke
- Pharmazentrum Frankfurt/ZAFES, Institute of Clinical Pharmacology, Johann Wolfgang Goethe University, Theodor Stern-Kai 7, 60590 Frankfurt am Main, Germany
| | - Gerd Geisslinger
- Pharmazentrum Frankfurt/ZAFES, Institute of Clinical Pharmacology, Johann Wolfgang Goethe University, Theodor Stern-Kai 7, 60590 Frankfurt am Main, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, and Fraunhofer Cluster of Excellence for Immune Mediated Diseases CIMD, Theodor-Stern-Kai 7, 60596 Frankfurt am Main, Germany
| | - Lisa Hahnefeld
- Pharmazentrum Frankfurt/ZAFES, Institute of Clinical Pharmacology, Johann Wolfgang Goethe University, Theodor Stern-Kai 7, 60590 Frankfurt am Main, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, and Fraunhofer Cluster of Excellence for Immune Mediated Diseases CIMD, Theodor-Stern-Kai 7, 60596 Frankfurt am Main, Germany
- Correspondence: (R.G.); (L.H.)
| |
Collapse
|
9
|
Ozben T. SMART and GREEN LABORATORIES. How to implement IVDR, emerging technologies and sustainable practices in medical laboratories? Clin Chem Lab Med 2023; 61:531-534. [PMID: 36749317 DOI: 10.1515/cclm-2023-0091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Tomris Ozben
- Medical Faculty, Department of Medical Biochemistry, Akdeniz University, Antalya, Türkiye.,Medical Faculty, Clinical and Experimental Medicine, Ph.D. Program, University of Modena and Reggio Emilia, Modena, Italy
| |
Collapse
|