1
|
Guamán-Pilco D, Chocano E, Palà E, Lamana-Vallverdú M, Penalba A, García-Rodríguez P, Rubiera M, Bustamante A, Rovira À, Pérez-Sánchez S, Azurmendi L, Reymond S, Sánchez JC, Montaner J. H-FABP as a Biomarker in Transient Ischemic Attack. J Cardiovasc Transl Res 2024:10.1007/s12265-024-10552-4. [PMID: 39160445 DOI: 10.1007/s12265-024-10552-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 08/06/2024] [Indexed: 08/21/2024]
Abstract
The study investigates the utility of heart fatty-acid binding protein (H-FABP) in distinguishing TIA from mimics. Data from 175 patients from the StrokeChip multicenter study was retrospectively analyzed. H-FABP level was measured using a rapid point-of-care test. Findings revealed that H-FABP levels were higher in individuals with TIA compared to mimics [3.10 ng/mL (IQR 2.13-4.78) vs. 1.70 ng/mL (IQR 1.23-2.38)] (p < 0.001). The diagnostic performance of H-FABP, assessed using the area under the curve operating characteristic curve (AUC) was 0. 83 (95% CI = 0.76-0.90) for the final model, indicating good discriminative ability. The PanelomiX determined that a combined cutoff of > 1.85 ng/ml for H-FABP, age > 42.5 years, and baseline NIHSS > 3.5 had a 100% of sensitivity and 23.30% of specificity. The study suggests that H-FABP has potential as a TIA diagnostic biomarker. The rapid application of POCT's for H-FABP measurement supports its potential use in emergency departments and primary care settings.
Collapse
Affiliation(s)
- Daisy Guamán-Pilco
- Neurovascular Research Laboratory Vall d'Hebron Institute of Research (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Elvira Chocano
- Neurovascular Research Laboratory Vall d'Hebron Institute of Research (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Elena Palà
- Neurovascular Research Laboratory Vall d'Hebron Institute of Research (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Marcel Lamana-Vallverdú
- Neurovascular Research Laboratory Vall d'Hebron Institute of Research (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Anna Penalba
- Neurovascular Research Laboratory Vall d'Hebron Institute of Research (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Paula García-Rodríguez
- Neurovascular Research Laboratory Vall d'Hebron Institute of Research (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Marta Rubiera
- Stroke, Unit, Department of Neurology, Hospital Universitari Vall d'Hebron, Barcelona, Spain
| | - Alejandro Bustamante
- Department of Neurology, Hospital Germans Trias i Pujol, Universitat Autonoma de Barcelona, 08916, Badalona, Spain
| | - Àlex Rovira
- Section of Neuroradiology, Department of Radiology, Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Soledad Pérez-Sánchez
- Institute de Biomedicine of Seville, IBiS/Hospital Universitario Virgen del Rocío/CSIC/University of Seville, Seville, Spain
- Department of Neurology, Hospital Universitario Virgen Macarena, Seville, Spain
| | - Leire Azurmendi
- Translational Biomarker Group, Internal Medicine Department, University Medical Center, University of Geneva, Geneva, Switzerland
| | - Sandrine Reymond
- Translational Biomarker Group, Internal Medicine Department, University Medical Center, University of Geneva, Geneva, Switzerland
| | - Jean-Charles Sánchez
- Translational Biomarker Group, Internal Medicine Department, University Medical Center, University of Geneva, Geneva, Switzerland
| | - Joan Montaner
- Neurovascular Research Laboratory Vall d'Hebron Institute of Research (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain.
- Institute de Biomedicine of Seville, IBiS/Hospital Universitario Virgen del Rocío/CSIC/University of Seville, Seville, Spain.
- Department of Neurology, Hospital Universitario Virgen Macarena, Seville, Spain.
- Neurovascular Research Group, IBiS/Hospital Universitario Virgen Macarena/CSIC/University of Seville, Av. Manuel Siurot s/n, 41013, Seville, Spain.
| |
Collapse
|
2
|
Zhong FF, Wei B, Bao GX, Lou YP, Wei ME, Wang XY, Xiao X, Tian JJ. FABP3 Induces Mitochondrial Autophagy to Promote Neuronal Cell Apoptosis in Brain Ischemia-Reperfusion Injury. Neurotox Res 2024; 42:35. [PMID: 39008165 DOI: 10.1007/s12640-024-00712-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 05/30/2024] [Accepted: 07/05/2024] [Indexed: 07/16/2024]
Abstract
This study elucidates the molecular mechanisms by which FABP3 regulates neuronal apoptosis via mitochondrial autophagy in the context of cerebral ischemia-reperfusion (I/R). Employing a transient mouse model of middle cerebral artery occlusion (MCAO) established using the filament method, brain tissue samples were procured from I/R mice. High-throughput transcriptome sequencing on the Illumina CN500 platform was performed to identify differentially expressed mRNAs. Critical genes were selected by intersecting I/R-related genes from the GeneCards database with the differentially expressed mRNAs. The in vivo mechanism was explored by infecting I/R mice with lentivirus. Brain tissue injury, infarct volume ratio in the ischemic penumbra, neurologic deficits, behavioral abilities, neuronal apoptosis, apoptotic factors, inflammatory factors, and lipid peroxidation markers were assessed using H&E staining, TTC staining, Longa scoring, rotation experiments, immunofluorescence staining, and Western blot. For in vitro validation, an OGD/R model was established using primary neuron cells. Cell viability, apoptosis rate, mitochondrial oxidative stress, morphology, autophagosome formation, membrane potential, LC3 protein levels, and colocalization of autophagosomes and mitochondria were evaluated using MTT assay, LDH release assay, flow cytometry, ROS/MDA/GSH-Px measurement, transmission electron microscopy, MitoTracker staining, JC-1 method, Western blot, and immunofluorescence staining. FABP3 was identified as a critical gene in I/R through integrated transcriptome sequencing and bioinformatics analysis. In vivo experiments revealed that FABP3 silencing mitigated brain tissue damage, reduced infarct volume ratio, improved neurologic deficits, restored behavioral abilities, and attenuated neuronal apoptosis, inflammation, and mitochondrial oxidative stress in I/R mice. In vitro experiments demonstrated that FABP3 silencing restored OGD/R cell viability, reduced neuronal apoptosis, and decreased mitochondrial oxidative stress. Moreover, FABP3 induced mitochondrial autophagy through ROS, which was inhibited by the free radical scavenger NAC. Blocking mitochondrial autophagy with sh-ATG5 lentivirus confirmed that FABP3 induces mitochondrial dysfunction and neuronal apoptosis by activating mitochondrial autophagy. In conclusion, FABP3 activates mitochondrial autophagy through ROS, leading to mitochondrial dysfunction and neuronal apoptosis, thereby promoting cerebral ischemia-reperfusion injury.
Collapse
Affiliation(s)
- Fang-Fang Zhong
- Department of Neurology, Shaoxing People's Hospital, Shaoxing, China.
| | - Bo Wei
- Department of Neurology, Shaoxing People's Hospital, Shaoxing, China
| | - Guo-Xiang Bao
- Department of Clinical Laboratory Center, Shaoxing People's Hospital, Shaoxing, China
| | - Yi-Ping Lou
- Department of Neurology, Shaoxing People's Hospital, Shaoxing, China
| | - Ming-Er Wei
- Department of Neurology, Shaoxing People's Hospital, Shaoxing, China
| | - Xin-Yue Wang
- Department of Neurology, Shaoxing People's Hospital, Shaoxing, China
| | - Xiao Xiao
- School of Medicine, Shaoxing University, Shaoxing, China
| | - Jin-Jin Tian
- School of Medicine, Shaoxing University, Shaoxing, China
| |
Collapse
|
3
|
Trombetta BA, Wu C, Kuo E, de Geus MB, Dodge HH, Carlyle BC, Kivisäkk P, Arnold SE. Cerebrospinal fluid biomarker profiling of diverse pathophysiological domains in Alzheimer's disease. ALZHEIMER'S & DEMENTIA (NEW YORK, N. Y.) 2024; 10:e12440. [PMID: 38356471 PMCID: PMC10865489 DOI: 10.1002/trc2.12440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 11/20/2023] [Accepted: 11/22/2023] [Indexed: 02/16/2024]
Abstract
INTRODUCTION While Alzheimer's disease (AD) is defined by amyloid-β plaques and tau tangles in the brain, it is evident that many other pathophysiological processes such as inflammation, neurovascular dysfunction, oxidative stress, and metabolic derangements also contribute to the disease process and that varying contributions of these pathways may reflect the heterogeneity of AD. Here, we used a previously validated panel of cerebrospinal fluid (CSF) biomarkers to explore the degree to which different pathophysiological domains are dysregulated in AD and how they relate to each other. METHODS Twenty-five CSF biomarkers were analyzed in individuals with a clinical diagnosis of AD verified by positive CSF AD biomarkers (AD, n = 54) and cognitively unimpaired controls negative for CSF AD biomarkers (CU-N, n = 26) using commercial single- and multi-plex immunoassays. RESULTS We noted that while AD was associated with increased levels of only three biomarkers (MMP-10, FABP3, and 8OHdG) on a group level, half of all AD participants had increased levels of biomarkers belonging to at least two pathophysiological domains reflecting the diversity in AD. LASSO modeling showed that a panel of FABP3, 24OHC, MMP-10, MMP-2, and 8OHdG constituted the most relevant and minimally correlated set of variables differentiating AD from CU-N. Interestingly, factor analysis showed that two markers of metabolism and oxidative stress (24OHC and 8OHdG) contributed independent information separate from MMP-10 and FABP3 suggestive of two independent pathophysiological pathways in AD, one reflecting neurodegeneration and vascular pathology, and the other associated with metabolism and oxidative stress. DISCUSSION Better understanding of the heterogeneity among individuals with AD and the different contributions of pathophysiological processes besides amyloid-β and tau will be crucial for optimizing personalized treatment strategies. Highlights A panel of 25 highly validated biomarker assays were measured in CSF.MMP10, FABP3, and 8OHdG were increased in AD in univariate analysis.Many individuals with AD had increased levels of more than one biomarker.Markers of metabolism and oxidative stress contributed to an AD multianalyte profile.Assessing multiple biomarker domains is important to understand disease heterogeneity.
Collapse
Affiliation(s)
- Bianca A. Trombetta
- Department of Neurology, Alzheimer's Clinical and Translational Research UnitMassachusetts General Hospital, Harvard Medical SchoolBostonMassachusettsUSA
| | - Chao‐Yi Wu
- Department of Neurology, Alzheimer's Clinical and Translational Research UnitMassachusetts General Hospital, Harvard Medical SchoolBostonMassachusettsUSA
| | - Evan Kuo
- Department of Neurology, Alzheimer's Clinical and Translational Research UnitMassachusetts General Hospital, Harvard Medical SchoolBostonMassachusettsUSA
| | - Matthijs B. de Geus
- Department of Neurology, Alzheimer's Clinical and Translational Research UnitMassachusetts General Hospital, Harvard Medical SchoolBostonMassachusettsUSA
- Department of Cell & Chemical BiologyLeiden University Medical CenterLeidenThe Netherlands
| | - Hiroko H. Dodge
- Department of Neurology, Alzheimer's Clinical and Translational Research UnitMassachusetts General Hospital, Harvard Medical SchoolBostonMassachusettsUSA
| | - Becky C. Carlyle
- Department of Neurology, Alzheimer's Clinical and Translational Research UnitMassachusetts General Hospital, Harvard Medical SchoolBostonMassachusettsUSA
- Department of Physiology, Anatomy and GeneticsUniversity of OxfordOxfordUK
- Kavli Institute for Nanoscience DiscoveryUniversity of OxfordOxfordUK
| | - Pia Kivisäkk
- Department of Neurology, Alzheimer's Clinical and Translational Research UnitMassachusetts General Hospital, Harvard Medical SchoolBostonMassachusettsUSA
| | - Steven E. Arnold
- Department of Neurology, Alzheimer's Clinical and Translational Research UnitMassachusetts General Hospital, Harvard Medical SchoolBostonMassachusettsUSA
| |
Collapse
|
4
|
D’Anneo A, Bavisotto CC, Gammazza AM, Paladino L, Carlisi D, Cappello F, de Macario EC, Macario AJL, Lauricella M. Lipid chaperones and associated diseases: a group of chaperonopathies defining a new nosological entity with implications for medical research and practice. Cell Stress Chaperones 2020; 25:805-820. [PMID: 32856199 PMCID: PMC7591661 DOI: 10.1007/s12192-020-01153-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 07/16/2020] [Accepted: 08/10/2020] [Indexed: 02/08/2023] Open
Abstract
Fatty acid-binding proteins (FABPs) are lipid chaperones assisting in the trafficking of long-chain fatty acids with functions in various cell compartments, including oxidation, signaling, gene-transcription regulation, and storage. The various known FABP isoforms display distinctive tissue distribution, but some are active in more than one tissue. Quantitative and/or qualitative changes of FABPs are associated with pathological conditions. Increased circulating levels of FABPs are biomarkers of disorders such as obesity, insulin resistance, cardiovascular disease, and cancer. Deregulated expression and malfunction of FABPs can result from genetic alterations or posttranslational modifications and can be pathogenic. We have assembled the disorders with abnormal FABPs as chaperonopathies in a distinct nosological entity. This entity is similar but separate from that encompassing the chaperonopathies pertaining to protein chaperones. In this review, we discuss the role of FABPs in the pathogenesis of metabolic syndrome, cancer, and neurological diseases. We highlight the opportunities for improving diagnosis and treatment that open by encompassing all these pathological conditions within of a coherent nosological group, focusing on abnormal lipid chaperones as biomarkers of disease and etiological-pathogenic factors.
Collapse
Affiliation(s)
- Antonella D’Anneo
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), Laboratory of Biochemistry, University of Palermo, 90127 Palermo, Italy
| | - Celeste Caruso Bavisotto
- Department of Biomedicine, Neurosciences and Advanced Diagnostics (BIND), Institute of Anatomy, University of Palermo, 90127 Palermo, Italy
- Euro-Mediterranean Institute of Science and Technology (IEMEST), 90139 Palermo, Italy
| | - Antonella Marino Gammazza
- Department of Biomedicine, Neurosciences and Advanced Diagnostics (BIND), Institute of Anatomy, University of Palermo, 90127 Palermo, Italy
- Euro-Mediterranean Institute of Science and Technology (IEMEST), 90139 Palermo, Italy
| | - Letizia Paladino
- Department of Biomedicine, Neurosciences and Advanced Diagnostics (BIND), Institute of Anatomy, University of Palermo, 90127 Palermo, Italy
- Euro-Mediterranean Institute of Science and Technology (IEMEST), 90139 Palermo, Italy
| | - Daniela Carlisi
- Department of Biomedicine, Neurosciences and Advanced Diagnostics (BIND), Institute of Biochemistry, University of Palermo, 90127 Palermo, Italy
| | - Francesco Cappello
- Department of Biomedicine, Neurosciences and Advanced Diagnostics (BIND), Institute of Anatomy, University of Palermo, 90127 Palermo, Italy
- Euro-Mediterranean Institute of Science and Technology (IEMEST), 90139 Palermo, Italy
| | - Everly Conway de Macario
- Euro-Mediterranean Institute of Science and Technology (IEMEST), 90139 Palermo, Italy
- Department of Microbiology and Immunology, School of Medicine, University of Maryland at Baltimore-Institute of Marine and Environmental Technology (IMET), Baltimore, MD 21202 USA
| | - Alberto J. L. Macario
- Euro-Mediterranean Institute of Science and Technology (IEMEST), 90139 Palermo, Italy
- Department of Microbiology and Immunology, School of Medicine, University of Maryland at Baltimore-Institute of Marine and Environmental Technology (IMET), Baltimore, MD 21202 USA
| | - Marianna Lauricella
- Department of Biomedicine, Neurosciences and Advanced Diagnostics (BIND), Institute of Biochemistry, University of Palermo, 90127 Palermo, Italy
| |
Collapse
|
5
|
Iborra-Egea O, Rueda F, García-García C, Borràs E, Sabidó E, Bayes-Genis A. Molecular signature of cardiogenic shock. Eur Heart J 2019; 41:3839-3848. [DOI: 10.1093/eurheartj/ehz783] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Revised: 07/16/2019] [Accepted: 10/25/2019] [Indexed: 12/24/2022] Open
Abstract
AbstractThe incidence of cardiogenic shock (CS) has increased remarkably over the past decade and remains a challenging condition with mortality rates of ∼50%. Cardiogenic shock encompasses cardiac contractile dysfunction; however, it is also a multiorgan dysfunction syndrome, often complicated by a systemic inflammatory response with severe cellular and metabolic dysregulations. Here, we review the evidence on the biochemical manifestations of CS, elaborating on current gold standard biomarkers and novel candidates from molecular signatures of CS. Glucose and lactate, both identified over a century ago, remain the only clinically used biomarkers in current predictive risk scores. Novel genomic, transcriptomic, and proteomic data are discussed, and a recently reported molecular score derived from unbiased proteomic discovery, the CS4P, which includes liver fatty acid-binding protein, beta-2-microglobulin, fructose-bisphosphate aldolase B, and SerpinG1 is comprehensively described. Recent advances in -omics technologies provide new insight into a more holistic molecular signature of CS. Thus, we need to open new diagnostic and therapeutic avenues if we aim to improve outcomes.
Collapse
Affiliation(s)
- Oriol Iborra-Egea
- Department of Cardiology, Heart Institute, Hospital Universitari Germans Trias i Pujol, Carretera de Canyet s/n 08916, Barcelona, Spain
- Department of Medicine, CIBERCV, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Ferran Rueda
- Department of Cardiology, Heart Institute, Hospital Universitari Germans Trias i Pujol, Carretera de Canyet s/n 08916, Barcelona, Spain
- Department of Medicine, CIBERCV, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Cosme García-García
- Department of Cardiology, Heart Institute, Hospital Universitari Germans Trias i Pujol, Carretera de Canyet s/n 08916, Barcelona, Spain
- Department of Medicine, CIBERCV, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Eva Borràs
- Proteomics Unit, Centre de Regulació Genòmica (CRG), Barcelona Institute of Science and Technology (BIST), Dr Aiguader 88, Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Dr Aiguader 88, Barcelona, Spain
| | - Eduard Sabidó
- Proteomics Unit, Centre de Regulació Genòmica (CRG), Barcelona Institute of Science and Technology (BIST), Dr Aiguader 88, Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Dr Aiguader 88, Barcelona, Spain
| | - Antoni Bayes-Genis
- Department of Cardiology, Heart Institute, Hospital Universitari Germans Trias i Pujol, Carretera de Canyet s/n 08916, Barcelona, Spain
- Department of Medicine, CIBERCV, Universitat Autònoma de Barcelona, Barcelona, Spain
| |
Collapse
|
6
|
Lagerstedt L, Egea-Guerrero JJ, Rodríguez-Rodríguez A, Bustamante A, Montaner J, El Rahal A, Andereggen E, Rinaldi L, Sarrafzadeh A, Schaller K, Sanchez JC. Early measurement of interleukin-10 predicts the absence of CT scan lesions in mild traumatic brain injury. PLoS One 2018; 13:e0193278. [PMID: 29466474 PMCID: PMC5821397 DOI: 10.1371/journal.pone.0193278] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Accepted: 02/07/2018] [Indexed: 12/26/2022] Open
Abstract
Traumatic brain injury is a common event where 70%-90% will be classified as mild TBI (mTBI). Among these, only 10% will have a brain lesion visible via CT scan. A triage biomarker would help clinicians to identify patients with mTBI who are at risk of developing a brain lesion and require a CT scan. The brain cells damaged by the shearing, tearing and stretching of a TBI event set off inflammation cascades. These cause altered concentrations of a high number of both pro-inflammatory and anti-inflammatory proteins. This study aimed to discover a novel diagnostic biomarker of mTBI by investigating a broad panel of inflammation biomarkers and their capacity to correctly identify CT-positive and CT-negative patients. Patients enrolled in this study had been diagnosed with mTBI, had a GCS score of 15 and suffered from at least one clinical symptom. There were nine patients in the discovery group, 45 for verification, and 133 mTBI patients from two different European sites in the validation cohort. All patients gave blood samples, underwent a CT scan and were dichotomised into CT-positive and CT-negative groups for statistical analyses. The ability of each protein to classify patients was evaluated with sensitivity set at 100%. Three of the 92 inflammation proteins screened-MCP-1, MIP-1alpha and IL-10 -were further investigated in the verification group, and at 100% sensitivity their specificities reached 7%, 0% and 31%, respectively. IL-10 was validated on a larger cohort in comparison to the most studied mTBI diagnostic triage protein to date, S100B. Levels of both proteins were significantly higher in CT-positive than in CT-negative patients (p < 0.001). S100B's specificity at 100% sensitivity was 18% (95% CI 10.8-25.2), whereas IL-10 reached a specificity of 27% (95% CI 18.9-35.1). These results showed that IL-10 might be an interesting and clinically useful diagnostic tool, capable of differentiating between CT-positive and CT-negative mTBI patients.
Collapse
Affiliation(s)
- Linnéa Lagerstedt
- Department of Human Protein Sciences, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | | | | | - Alejandro Bustamante
- Neurovascular Research Laboratory, Vall d’Hebron Institute of Research (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Joan Montaner
- Neurovascular Research Laboratory, Vall d’Hebron Institute of Research (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain
- Stroke Research Programme, IBiS/Hospital Universitario Virgen del Rocío/CSIC/University of Seville, Seville, Spain
- Department of Neurology, Hospital Universitario Virgen Macarena, Seville, Spain
| | - Amir El Rahal
- Division of Neurosurgery, Geneva Neuroscience Center, Department of Clinical Neurosciences, Geneva University Hospitals, Geneva, Switzerland
| | - Elisabeth Andereggen
- Emergency Center, Geneva University Hospitals, Geneva, Switzerland
- Department of Surgery, Geneva University Hospitals, Geneva, Switzerland
| | - Lara Rinaldi
- Emergency Center, Geneva University Hospitals, Geneva, Switzerland
| | - Asita Sarrafzadeh
- Division of Neurosurgery, Geneva Neuroscience Center, Department of Clinical Neurosciences, Geneva University Hospitals, Geneva, Switzerland
| | - Karl Schaller
- Division of Neurosurgery, Geneva Neuroscience Center, Department of Clinical Neurosciences, Geneva University Hospitals, Geneva, Switzerland
| | - Jean-Charles Sanchez
- Department of Human Protein Sciences, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| |
Collapse
|
7
|
Karvellas CJ, Speiser JL, Tremblay M, Lee WM, Rose CF. The association between FABP7 serum levels with survival and neurological complications in acetaminophen-induced acute liver failure: a nested case-control study. Ann Intensive Care 2017; 7:99. [PMID: 28983815 PMCID: PMC5629189 DOI: 10.1186/s13613-017-0323-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Accepted: 09/19/2017] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Acetaminophen (APAP)-induced acute liver failure (ALF) is associated with significant mortality due to intracranial hypertension (ICH), a result of cerebral edema (CE) and astrocyte swelling. Brain-type fatty acid-binding protein (FABP7) is a small (15 kDa) cytoplasmic protein abundantly expressed in astrocytes. The aim of this study was to determine whether serum FABP7 levels early (day 1) or late (days 3-5) level were associated with 21-day mortality and/or the presence of ICH/CE in APAP-ALF patients. METHODS Serum samples from 198 APAP-ALF patients (nested case-control study with 99 survivors and 99 non-survivors) were analyzed by ELISA methods and assessed with clinical data from the US Acute Liver Failure Study Group (ALFSG) Registry (1998-2014). RESULTS APAP-ALF survivors had significantly lower serum FABP7 levels on admission (147.9 vs. 316.5 ng/ml, p = 0.0002) and late (87.3 vs. 286.2 ng/ml, p < 0.0001) compared with non-survivors. However, a significant association between 21-day mortality and increased serum FABP7 early [log FABP7 odds ratio (OR) 1.16, p = 0.32] and late (log FABP7 ~ OR 1.34, p = 0.21) was not detected after adjusting for significant covariates (MELD, vasopressor use). Areas under the receiver-operating curve for early and late multivariable models were 0.760 and 0.892, respectively. In a second analysis, patients were grouped based on the presence (n = 46) or absence (n = 104) of ICH/CE. A significant difference in FABP7 levels between patients with or without ICH/CE at early (259.7 vs. 228.2 ng/ml, p = 0.61) and late (223.8 vs. 192.0 ng/ml, p = 0.19) time points was not identified. CONCLUSION Serum FABP7 levels were significantly elevated at early and late time points in APAP-ALF non-survivors compared to survivors. However, significant differences in FABP7 levels by 21-day mortality were not ascertained after adjusting for significant covariates (reflecting severity of illness). Our study suggests that FABP7 may not discriminate between patients with or without intracranial complications.
Collapse
Affiliation(s)
- Constantine J Karvellas
- Division of Gastroenterology (Liver Unit), Department of Critical Care Medicine, University of Alberta, 1-40 Zeidler Ledcor Building, Edmonton, AB, T6G-2X8, Canada.
| | - Jaime L Speiser
- Department of Public Health Sciences, Medical University of South Carolina, Charleston, SC, USA
| | - Mélanie Tremblay
- Hepato-Neuro Laboratory, CRCHUM, Université de Montréal, Montreal, Canada
| | - William M Lee
- Division of Digestive and Liver Diseases, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Christopher F Rose
- Hepato-Neuro Laboratory, CRCHUM, Université de Montréal, Montreal, Canada
| | | |
Collapse
|
8
|
Lagerstedt L, Egea-Guerrero JJ, Bustamante A, Montaner J, Rodríguez-Rodríguez A, El Rahal A, Turck N, Quintana M, García-Armengol R, Prica CM, Andereggen E, Rinaldi L, Sarrafzadeh A, Schaller K, Sanchez JC. H-FABP: A new biomarker to differentiate between CT-positive and CT-negative patients with mild traumatic brain injury. PLoS One 2017; 12:e0175572. [PMID: 28419114 PMCID: PMC5395174 DOI: 10.1371/journal.pone.0175572] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Accepted: 03/28/2017] [Indexed: 11/18/2022] Open
Abstract
The majority of patients with mild traumatic brain injury (mTBI) will have normal Glasgow coma scale (GCS) of 15. Furthermore, only 5%-8% of them will be CT-positive for an mTBI. Having a useful biomarker would help clinicians evaluate a patient's risk of developing intracranial lesions. The S100B protein is currently the most studied and promising biomarker for this purpose. Heart fatty-acid binding protein (H-FABP) has been highlighted in brain injury models and investigated as a biomarker for stroke and severe TBI, for example. Here, we evaluate the performances of S100B and H-FABP for differentiating between CT-positive and CT-negative patients. A total of 261 patients with a GCS score of 15 and at least one clinical symptom of mTBI were recruited at three different European sites. Blood samples from 172 of them were collected ≤ 6 h after trauma. Patients underwent a CT scan and were dichotomised into CT-positive and CT-negative groups for statistical analyses. H-FABP and S100B levels were measured using commercial kits, and their capacities to detect all CT-positive scans were evaluated, with sensitivity set to 100%. For patients recruited ≤ 6 h after trauma, the CT-positive group demonstrated significantly higher levels of both H-FABP (p = 0.004) and S100B (p = 0.003) than the CT-negative group. At 100% sensitivity, specificity reached 6% (95% CI 2.8-10.7) for S100B and 29% (95% CI 21.4-37.1) for H-FABP. Similar results were obtained when including all the patients recruited, i.e. hospital arrival within 24 h of trauma onset. H-FABP out-performed S100B and thus seems to be an interesting protein for detecting all CT-positive mTBI patients with a GCS score of 15 and at least one clinical symptom.
Collapse
Affiliation(s)
- Linnéa Lagerstedt
- Department of Human Protein Sciences, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | | | - Alejandro Bustamante
- Neurovascular Research Laboratory, Vall d’Hebron Institute of Research (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Joan Montaner
- Neurovascular Research Laboratory, Vall d’Hebron Institute of Research (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain
| | | | - Amir El Rahal
- Division of Neurosurgery, Geneva Neuroscience Center, Department of Clinical Neurosciences, Geneva University Hospitals, Geneva, Switzerland
| | - Natacha Turck
- Department of Human Protein Sciences, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Manuel Quintana
- Intensive Medicine Unit, Hospital Universitario La Paz, idiPAZ, Department of Medicine, Universidad Autónoma de Madrid, Madrid, Spain
| | - Roser García-Armengol
- Neurosurgical department, Neuroscience Unit, Hospital Universitari Germans Trias i Pujol, Badalona, Spain
| | | | - Elisabeth Andereggen
- Emergency Center, Geneva University Hospitals, Geneva, Switzerland
- Department of Surgery, Geneva University Hospitals, Geneva, Switzerland
| | - Lara Rinaldi
- Emergency Center, Geneva University Hospitals, Geneva, Switzerland
| | - Asita Sarrafzadeh
- Department of Neurosurgery, University Hospital Heidelberg, Heidelberg, Germany
| | - Karl Schaller
- Division of Neurosurgery, Geneva Neuroscience Center, Department of Clinical Neurosciences, Geneva University Hospitals, Geneva, Switzerland
| | - Jean-Charles Sanchez
- Department of Human Protein Sciences, Faculty of Medicine, University of Geneva, Geneva, Switzerland
- * E-mail:
| |
Collapse
|
9
|
Karvellas CJ, Speiser JL, Tremblay M, Lee WM, Rose CF. Elevated FABP1 serum levels are associated with poorer survival in acetaminophen-induced acute liver failure. Hepatology 2017; 65:938-949. [PMID: 27859489 PMCID: PMC5319885 DOI: 10.1002/hep.28945] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Revised: 09/02/2016] [Accepted: 09/16/2016] [Indexed: 12/14/2022]
Abstract
UNLABELLED Acetaminophen (APAP)-induced acute liver failure (ALF) is associated with significant mortality. Traditional prognostic scores lack sensitivity. Serum liver-type fatty acid binding protein (FABP1) early (day 1) or late (day 3-5) levels are associated with 21-day mortality in the absence of liver transplant. Serum samples from 198 APAP-ALF patients (nested case-control study with 99 survivors, 99 nonsurvivors) were analyzed by enzyme-linked immunosorbent assay with clinical data from the US Acute Liver Failure Study Group registry (1998-2014). APAP-ALF survivors had significantly lower serum FABP1 levels early (238.6 versus 690.8 ng/mL, P < 0.0001) and late (148.4 versus 612.3 ng/mL, P < 0.0001) compared with nonsurvivors. FABP1 > 350 ng/mL was associated with significantly higher risk of death at early (P = 0.0004) and late (P < 0.0001) time points. Increased serum FABP1 early (log FABP1 odds ratio = 1.31, P = 0.027) and late (log FABP1 odds ratio = 1.50, P = 0.005) were associated with significantly increased 21-day mortality after adjusting for significant covariates (Model for End-Stage Liver Disease, vasopressor use). Areas under the receiver operating characteristic curve for early and late multivariable models were 0.778 and 0.907, respectively. The area under the receiver operating characteristic curve of the King's College criteria (early, 0.552 alone, 0.711 with FABP1; late, 0.604 alone, 0.797 with FABP1) and the Acute Liver Failure Study Group prognostic index (early, 0.686 alone, 0.766 with FABP1; late, 0.711 alone, 0.815 with FABP1) significantly improved with the addition of FABP1 (P < 0.002 for all). CONCLUSION In patients with APAP-ALF, FABP1 may have good potential to discriminate survivors from nonsurvivors and may improve models currently used in clinical practice; validation of FABP1 as a clinical prediction tool in APAP-ALF warrants further investigation. (Hepatology 2017;65:938-949).
Collapse
Affiliation(s)
- Constantine J. Karvellas
- Divisions of Hepatology and Critical Care Medicine, University of Alberta, Edmonton, Canada,Corresponding author/reprints: Constantine J. Karvellas, MD, SM, FRCPC, Associate Professor of Medicine, Division of Gastroenterology (Liver Unit), Division of Critical Care Medicine, University of Alberta, 1-40 Zeidler Ledcor Building, Edmonton, Alberta T6G-2X8, Phone: (780) 248-1555, Fax: (780) 492-5643,
| | - Jaime L. Speiser
- Department of Public Health Sciences, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Mélanie Tremblay
- Hepato-neuro Laboratory, CRCHUM, Université de Montréal, Montréal, Canada
| | - William M. Lee
- Division of Digestive and Liver Diseases, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | | | | |
Collapse
|
10
|
Höglund K, Kern S, Zettergren A, Börjesson-Hansson A, Zetterberg H, Skoog I, Blennow K. Preclinical amyloid pathology biomarker positivity: effects on tau pathology and neurodegeneration. Transl Psychiatry 2017; 7:e995. [PMID: 28072416 PMCID: PMC5545720 DOI: 10.1038/tp.2016.252] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2016] [Revised: 06/01/2016] [Accepted: 06/30/2016] [Indexed: 11/15/2022] Open
Abstract
Brain autopsy and biomarker studies indicate that the pathology of Alzheimer's disease (AD) is initiated at least 10-20 years before clinical symptoms. This provides a window of opportunity to initiate preventive treatment. However, this emphasizes the necessity for biomarkers that identify individuals at risk for developing AD later in life. In this cross-sectional study, originating from three epidemiologic studies in Sweden (n=1428), the objective was to examine whether amyloid pathology, as determined by low cerebrospinal fluid (CSF) concentration of the 42 amino acid form of β-amyloid (Aβ42), is associated with biomarker evidence of other pathological changes in cognitively healthy elderly. A total of 129 patients were included and CSF levels of Aβ42, total tau, tau phosphorylated at threonine 181 (p-tau), neurogranin, VILIP-1, VEGF, FABP3, Aβ40, neurofilament light, MBP, orexin A, BDNF and YKL-40 were measured. Among these healthy elderly, 35.6% (N=46) had CSF Aβ42 levels below 530 pg ml-1. These individuals displayed significantly higher CSF concentrations of t-tau (P<0.001), p-tau (181) (P<0.001), neurogranin (P=0.009) and FABP3 (P=0.044) compared with amyloid-negative individuals. Our study indicates that there is a subpopulation among healthy older individuals who have amyloid pathology along with signs of ongoing neuronal and synaptic degeneration, as well as tangle pathology. Previous studies have demonstrated that increase in CSF tau and p-tau is a specific sign of AD progression that occurs downstream of the deposition of Aβ. On the basis of this, our data suggest that these subjects are at risk for developing AD. We also confirm the association between APOE ɛ4 and amyloid pathology in healthy older individuals.
Collapse
Affiliation(s)
- K Höglund
- Clinical Neurochemistry Laboratory, Institute of Neuroscience and Physiology, Department of Psychiatry and Neurochemistry, The Sahlgrenska Academy, Centre for ageing and Health, AgeCap, University of Gothenburg, Sahlgrenska University Hospital, Mölndal, Sweden,Department of Neurobiology, Care Sciences and Society, Center for Alzheimer Disease Research, Neurogeriatrics Division, Karolinska Institutet, Novum, Stockholm, Sweden,Clinical Neurochemistry Laboratory, Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, the Sahlgrenska Academy at University of Gothenburg, Sahlgrenska University Hospital, Mölndal SE-431 80, Sweden. E-mail:
| | - S Kern
- Clinical Neurochemistry Laboratory, Institute of Neuroscience and Physiology, Department of Psychiatry and Neurochemistry, The Sahlgrenska Academy, Centre for ageing and Health, AgeCap, University of Gothenburg, Sahlgrenska University Hospital, Mölndal, Sweden,Department of Molecular Neuroscience, UCL Institute of Neurology, Queen Square, London, UK
| | - A Zettergren
- Clinical Neurochemistry Laboratory, Institute of Neuroscience and Physiology, Department of Psychiatry and Neurochemistry, The Sahlgrenska Academy, Centre for ageing and Health, AgeCap, University of Gothenburg, Sahlgrenska University Hospital, Mölndal, Sweden,Department of Molecular Neuroscience, UCL Institute of Neurology, Queen Square, London, UK
| | - A Börjesson-Hansson
- Clinical Neurochemistry Laboratory, Institute of Neuroscience and Physiology, Department of Psychiatry and Neurochemistry, The Sahlgrenska Academy, Centre for ageing and Health, AgeCap, University of Gothenburg, Sahlgrenska University Hospital, Mölndal, Sweden,Department of Molecular Neuroscience, UCL Institute of Neurology, Queen Square, London, UK
| | - H Zetterberg
- Clinical Neurochemistry Laboratory, Institute of Neuroscience and Physiology, Department of Psychiatry and Neurochemistry, The Sahlgrenska Academy, Centre for ageing and Health, AgeCap, University of Gothenburg, Sahlgrenska University Hospital, Mölndal, Sweden,Neuropsychiatric Epidemiology Unit, Institute of Neuroscience and Physiology, Department of Psychiatry and Neurochemistry, The Sahlgrenska Academy, Centre for Ageing and Health, AgeCap, University of Gothenburg, Mölndal, Sweden
| | - I Skoog
- Clinical Neurochemistry Laboratory, Institute of Neuroscience and Physiology, Department of Psychiatry and Neurochemistry, The Sahlgrenska Academy, Centre for ageing and Health, AgeCap, University of Gothenburg, Sahlgrenska University Hospital, Mölndal, Sweden,Department of Molecular Neuroscience, UCL Institute of Neurology, Queen Square, London, UK
| | - K Blennow
- Clinical Neurochemistry Laboratory, Institute of Neuroscience and Physiology, Department of Psychiatry and Neurochemistry, The Sahlgrenska Academy, Centre for ageing and Health, AgeCap, University of Gothenburg, Sahlgrenska University Hospital, Mölndal, Sweden
| |
Collapse
|
11
|
Figueroa JD, Serrano-Illan M, Licero J, Cordero K, Miranda JD, De Leon M. Fatty Acid Binding Protein 5 Modulates Docosahexaenoic Acid-Induced Recovery in Rats Undergoing Spinal Cord Injury. J Neurotrauma 2016; 33:1436-49. [PMID: 26715431 DOI: 10.1089/neu.2015.4186] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Omega-3 polyunsaturated fatty acids (n-3 PUFAs) promote functional recovery in rats undergoing spinal cord injury (SCI). However, the precise molecular mechanism coupling n-3 PUFAs to neurorestorative responses is not well understood. The aim of the present study was to determine the spatiotemporal expression of fatty acid binding protein 5 (FABP5) after contusive SCI and to investigate whether this protein plays a role in n-3 PUFA-mediated functional recovery post-SCI. We found that SCI resulted in a robust spinal cord up-regulation in FABP5 mRNA levels (556 ± 187%) and protein expression (518 ± 195%), when compared to sham-operated rats, at 7 days post-injury (dpi). This upregulation coincided with significant alterations in the metabolism of fatty acids in the injured spinal cord, as revealed by metabolomics-based lipid analyses. In particular, we found increased levels of the n-3 series PUFAs, particularly docosahexaenoic acid (DHA; 22:6 n-3) and eicosapentaenoic acid (EPA; 20:5 n-3) at 7 dpi. Animals consuming a diet rich in DHA and EPA exhibited a significant upregulation in FABP5 mRNA levels at 7 dpi. Immunofluorescence showed low basal FABP5 immunoreactivity in spinal cord ventral gray matter NeuN(+) neurons of sham-operated rats. SCI resulted in a robust induction of FABP5 in glial (GFAP(+), APC(+), and NG2(+)) and precursor cells (DCX(+), nestin(+)). We found that continuous intrathecal administration of FABP5 silencing with small interfering RNA (2 μg) impaired spontaneous open-field locomotion post-SCI. Further, FABP5 siRNA administration hindered the beneficial effects of DHA to ameliorate functional recovery at 7 dpi. Altogether, our findings suggest that FABP5 may be an important player in the promotion of cellular uptake, transport, and/or metabolism of DHA post-SCI. Given the beneficial roles of n-3 PUFAs in ameliorating functional recovery, we propose that FABP5 is an important contributor to basic repair mechanisms in the injured spinal cord.
Collapse
Affiliation(s)
- Johnny D Figueroa
- 1 Department of Basic Sciences, Center for Health Disparities and Molecular Medicine, Loma Linda University School of Medicine , Loma Linda, California
| | - Miguel Serrano-Illan
- 1 Department of Basic Sciences, Center for Health Disparities and Molecular Medicine, Loma Linda University School of Medicine , Loma Linda, California
| | - Jenniffer Licero
- 1 Department of Basic Sciences, Center for Health Disparities and Molecular Medicine, Loma Linda University School of Medicine , Loma Linda, California
| | - Kathia Cordero
- 1 Department of Basic Sciences, Center for Health Disparities and Molecular Medicine, Loma Linda University School of Medicine , Loma Linda, California
| | - Jorge D Miranda
- 2 Physiology Department, University of Puerto Rico Medical Sciences Campus , San Juan, Puerto Rico
| | - Marino De Leon
- 1 Department of Basic Sciences, Center for Health Disparities and Molecular Medicine, Loma Linda University School of Medicine , Loma Linda, California
| |
Collapse
|
12
|
Hulscher JB, Vervliet BHD, Wilczak N, van der Naalt J. The diagnostic value of brain-fatty acid binding protein in traumatic brain injury. J Neurotrauma 2014; 31:411. [PMID: 24044775 DOI: 10.1089/neu.2013.3099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Jan B Hulscher
- 1 Department of Surgery, University of Groningen , University Medical Center Groningen, Groningen, The Netherlands
| | | | | | | |
Collapse
|
13
|
Omega-3 fatty acids and traumatic neurological injury: from neuroprotection to neuroplasticity? Trends Neurosci 2014; 37:30-8. [DOI: 10.1016/j.tins.2013.10.005] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2013] [Revised: 10/22/2013] [Accepted: 10/24/2013] [Indexed: 01/21/2023]
|
14
|
Hyttel-Sorensen S, Austin T, van Bel F, Benders M, Claris O, Dempsey E, Fumagalli M, Greisen G, Grevstad B, Hagmann C, Hellström-Westas L, Lemmers P, Lindschou J, Naulaers G, van Oeveren W, Pellicer A, Pichler G, Roll C, Skoog M, Winkel P, Wolf M, Gluud C. A phase II randomized clinical trial on cerebral near-infrared spectroscopy plus a treatment guideline versus treatment as usual for extremely preterm infants during the first three days of life (SafeBoosC): study protocol for a randomized controlled trial. Trials 2013; 14:120. [PMID: 23782447 PMCID: PMC3680969 DOI: 10.1186/1745-6215-14-120] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2013] [Accepted: 04/15/2013] [Indexed: 11/12/2022] Open
Abstract
Background Every year in Europe about 25,000 infants are born extremely preterm. These infants have a 20% mortality rate, and 25% of survivors have severe long-term cerebral impairment. Preventative measures are key to reduce mortality and morbidity in an extremely preterm population. The primary objective of the SafeBoosC phase II trial is to examine if it is possible to stabilize the cerebral oxygenation of extremely preterm infants during the first 72 hours of life through the application of cerebral near-infrared spectroscopy (NIRS) oximetry and implementation of an clinical treatment guideline based on intervention thresholds of cerebral regional tissue saturation rStO2. Methods/Design SafeBoosC is a randomized, blinded, multinational, phase II clinical trial. The inclusion criteria are: neonates born more than 12 weeks preterm; decision to conduct full life support; parental informed consent; and possibility to place the cerebral NIRS oximeter within 3 hours after birth. The infants will be randomized into one of two groups. Both groups will have a cerebral oximeter monitoring device placed within three hours of birth. In the experimental group, the cerebral oxygenation reading will supplement the standard treatment using a predefined treatment guideline. In the control group, the cerebral oxygenation reading will not be visible and the infant will be treated according to the local standards. The primary outcome is the multiplication of the duration and magnitude of rStO2 values outside the target ranges of 55% to 85%, that is, the ‘burden of hypoxia and hyperoxia’ expressed in ‘%hours’. To detect a 50% difference between the experimental and control group in %hours, 166 infants in total must be randomized. Secondary outcomes are mortality at term date, cerebral ultrasound score, and interburst intervals on an amplitude-integrated electroencephalogram at 64 hours of life and explorative outcomes include neurodevelopmental outcome at 2 years corrected age, magnetic resonance imaging at term, blood biomarkers at 6 and 64 hours after birth, and adverse events. Discussion Cerebral oximetry guided interventions have the potential to improve neurodevelopmental outcome in extremely preterm infants. It is a logical first step to test if it is possible to reduce the burden of hypoxia and hyperoxia. Trial registration ClinicalTrial.gov, NCT01590316
Collapse
Affiliation(s)
- Simon Hyttel-Sorensen
- Department of Neonatology, Rigshospitalet, Blegdamsvej 9, Copenhagen DK-2100, Denmark.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Pahari DR, Gu YJ, van Oeveren W, El-Essawi A, Harringer W, Brouwer RMH. Effect of minimized perfusion circuit on brain injury markers carnosinase and brain-type fatty binding protein in coronary artery bypass grafting patients. Artif Organs 2012; 37:128-35. [PMID: 23020859 DOI: 10.1111/j.1525-1594.2012.01532.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A minimized perfusion circuit (MPC) has proven to be superior to the conventional circulatory perfusion bypass (CCPB) as it reduces the blood-material interaction and hemodilution. Until now not much is known about impact these different perfusion systems have on the brain. The objective of this study is to determine carnosinase and brain-type fatty binding protein (BFABP) activity as novel specific biomarkers for ischemic brain tissue damage and how their activity differs during and after MPC and CCPB as well as to compare the inflammatory response of both perfusion systems. In a prospective pilot study, 28 patients undergoing coronary artery bypass grafting were randomly divided into an MPC group (n = 14) and a CCPB group (n = 14). Blood samples were taken before, during, and after operation until the fifth postoperative day. The brain biomarker carnosinase was determined by measuring the rate of histidine production from the substrate homocarnosine, whereas BFABP and interleukin-6 were determined by enzyme-linked immunosorbent assay (ELISA). C-reactive protein (CRP) and endothelin-1 were determined by enzyme immunoassay. The mean serum carnosinase activity was significantly higher in MPC (0.57 ± 0.34 nM histidine/mL/min) as compared with the CCPB group (0.36 ± 0.13 nM histidine/mL/min) at the end of operation (P = 0.02). The BFABP did not show any difference between the two groups in the immediate postoperative period until the second postoperative day. From that time point onward, it showed a steep increase in the CCPB group (581.3 ± 157.11 pg/mL) as compared with the concentrations in the MPC group (384.6 ± 39 pg/mL) (P = 0.04). The inflammation markers interleukin-6 and CRP showed a similar pattern in both groups without significant difference. In contrast, the leukocyte count on operation day and endothelin-1 on the first postoperative day were significantly higher in the CCPB group (P = 0.01, P = 0.03, respectively). MPC showed a significant higher and stable serum carnosinase activity during extracorporeal circulation as compared with the CCPB due to less hemodilution and a better preserved oxygen capacity. As a consequence, the antioxidant stress during MPC is limited as compared with CCPB, which means less brain tissue damage reflected by a lower BFABP release. Except endothelin-1 and leukocyte count, the inflammatory response of the MPC and CCPB was equal.
Collapse
Affiliation(s)
- Dipak R Pahari
- Department of Cardiothoracic and Vascular Surgery, Städtisches Klinikum Braunschweig, Braunschweig, Germany.
| | | | | | | | | | | |
Collapse
|
16
|
Bettermann K, Slocomb JE. Clinical Relevance of Biomarkers for Traumatic Brain Injury. BIOMARKERS FOR TRAUMATIC BRAIN INJURY 2012. [DOI: 10.1039/9781849734745-00001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Approximately 1.4 million people in the United States sustain a traumatic brain injury (TBI) each year, resulting in more than 235 000 hospitalizations and 50 000 deaths. An estimated 5.3 million Americans have current long-term disabilities as a result of TBI, which results in an estimated $60 billion in healthcare expenditures. Mild TBI (mTBI), which accounts for 80% to 90% of all cases, is the most prevalent form of brain injury in athletes. Many of these traumas still remain undetected, as they are difficult to diagnose. New biomarkers of TBI may allow more rapid diagnosis of TBI, improving early identification and treatment, and could help to predict clinical outcome. The field of TBI biomarkers is rapidly evolving. This chapter will discuss some of the most clinically relevant biomarkers for TBI that have been recently studied in human subjects.
Collapse
Affiliation(s)
- Kerstin Bettermann
- Penn State College of Medicine, Department of Neurology 500 University Drive Hershey, PA 17033 USA
| | - Julia E. Slocomb
- Penn State College of Medicine, Department of Neurology 500 University Drive Hershey, PA 17033 USA
| |
Collapse
|
17
|
Protein Biomarkers for Traumatic and Ischemic Brain Injury: From Bench to Bedside. Transl Stroke Res 2011; 2:455-62. [DOI: 10.1007/s12975-011-0137-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2011] [Revised: 11/07/2011] [Accepted: 11/08/2011] [Indexed: 12/31/2022]
|
18
|
Teunissen CE, Veerhuis R, De Vente J, Verhey FRJ, Vreeling F, van Boxtel MPJ, Glatz JFC, Pelsers MAL. Brain-specific fatty acid-binding protein is elevated in serum of patients with dementia-related diseases. Eur J Neurol 2010; 18:865-71. [PMID: 21143341 DOI: 10.1111/j.1468-1331.2010.03273.x] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
BACKGROUND There is a need for biomarkers in accessible matrices, such as blood, for the diagnosis of neurodegenerative diseases. The aim of this study was to measure the serum levels of brain-type fatty acid-binding protein (FABP) and heart-type FABP in patients with dementia-involving diseases. METHODS Brain- and heart-type FABP were measured in serum samples from patients with either Alzheimer's disease (AD) (n = 31), Parkinson's disease (PD, n = 43), or other cognitive disorders (OCD, n = 42) and in 52 healthy controls. The localization of brain- and heart-type FABP was determined in brain sections by immunohistochemistry. RESULTS Brain-type FABP levels were elevated in serum of 29%, 35%, and 24% of the patients with AD, PD, and OCD, respectively, and in 2% of the healthy donors. Heart-type FABP serum levels were not different amongst the patient groups. Brain-type and heart-type FABP expression was observed in reactive astrocytes in brain sections of patients with AD. CONCLUSIONS In contrast to heart-type FABP, serum levels of brain-type FABP are elevated in a significant proportion of patients with various neurodegenerative diseases and can therefore have importance for defining subgroups of these patients.
Collapse
Affiliation(s)
- C E Teunissen
- Neurological Laboratory, Department of Clinical Chemistry, VU University Medical Center, Amsterdam, The Netherlands.
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Herisson F, Delaroche O, Auffray-Calvier E, Daumas Duport B, Guillon B. Ischemia-modified Albumin and Heart Fatty Acid–binding Protein: Could Early Ischemic Cardiac Biomarkers Be Used in Acute Stroke Management? J Stroke Cerebrovasc Dis 2010; 19:279-82. [DOI: 10.1016/j.jstrokecerebrovasdis.2009.07.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2009] [Revised: 06/16/2009] [Accepted: 07/01/2009] [Indexed: 11/28/2022] Open
|
20
|
Gass P, Leonardi-Essmann F, Zueger M, Spanagel R, Gebicke-Haerter PJ. Transcriptional changes in insulin- and lipid metabolism-related genes in the hippocampus of olfactory bulbectomized mice. J Neurosci Res 2009; 86:3184-93. [PMID: 18543339 DOI: 10.1002/jnr.21753] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Affymetrix chips were used to perform a hypothesis-free large-scale screening of transcripts in the hippocampus of olfactory bulbectomized mice, an established animal model of depression. Because only 11 transcripts were significantly changed, the statistically subsequent 25 transcripts below the significance level were additionally included in a first round of qRT-PCR evaluations. Furthermore, all 36 genes were then tested for mutual interactions or interactions with other molecules in a physiological context using PathwayArchitect software. Thirty of them were displayed in a network interacting with at least one partner molecule from the list or with other partner molecules known from the literature. All partner molecules from the most prominent 10 molecules of this network were then identified and put together into a new list. On those grounds, the hypothesis was made that metabolic network components of the insulin signaling pathway are perturbed in the disease. This pathway was subsequently tested by a second round of qRT-PCR, adding also a few additional candidate molecules belonging to this pathway. It turned out that the key target -- FABP7 -- fell into the group of transcripts not significantly regulated within the chip data, and another key target -- IRS1 -- did not show up in the chip experiments at all. In conclusion, our data reveal a problem with adhering to statistical significances in microarray experiments, insofar as molecules important for the disease may fall into the range of statistical noise. This approach may also be useful to find new targets for pharmacotherapy in affective disorders.
Collapse
Affiliation(s)
- Peter Gass
- RG Behavioral Biology, University of Heidelberg, Mannheim, Germany.
| | | | | | | | | |
Collapse
|
21
|
Kim Y, Lee Y, Lee H, Jung MW, Lee C. Impaired avoidance learning and increased hsp70 mRNA expression in pentylenetetrazol‐treated zebrafish. Anim Cells Syst (Seoul) 2009. [DOI: 10.1080/19768354.2009.9647219] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
|
22
|
Abstract
Biomarkers of tissue injury have evolved empirically over the last 50–100 years. With the advent of immunoassays and discovery tools such as RNA expression and proteomics, more systematic approaches to the discovery of biomarkers can be expected in the future. This review discusses the evolution of biomarkers of muscle, liver, heart and brain injury and illustrates that a modern discovery tool, such as mRNA profiling, would have predicted the biomarkers for cardiac injury (heart attacks) that actually evolved over 50 years by empiric approaches. We also discuss how novel biomarkers for brain injury were identified using RNA expression approaches. It is our prediction that there will be a growth in the number of valuable biomarkers for identifying cell and organ injury in the next 5–10 years.
Collapse
Affiliation(s)
- Omar F Laterza
- Merck Research Laboratories, Clinical Development laboratory, Rahway, NJ 07065, USA
| | - Vijay R Modur
- Washington University, School of Medicine, Division of Laboratory and Genomic Medicine, Department of Pathology and Immunology, 660 S. Euclid Avenue, Box 8118, St. Louis, MO 63110, USA
| | - Jack H Ladenson
- Washington University, School of Medicine, Division of Laboratory and Genomic Medicine, Department of Pathology and Immunology, 660 S. Euclid Avenue, Box 8118, St. Louis, MO 63110, USA
| |
Collapse
|
23
|
Lippi G, Schena F, Montagnana M, Salvagno GL, Guidi GC. Influence of acute physical exercise on emerging muscular biomarkers. Clin Chem Lab Med 2008; 46:1313-8. [DOI: 10.1515/cclm.2008.250] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract: Although there is comprehensive information on traditional biomarkers of muscle and cardiac damage following exercise, less is known on the kinetics of innovative markers, including ischemia modified albumin (IMA), glycogen phosphorylase isoenzyme BB (GPBB), carbonic anhydrase III (CAIII) and heart-type fatty acid-binding protein (H-FABP) in athletes performing a sub-maximal exercise.: A total of 10 healthy trained Caucasian males performed a 21-km run. Blood samples were collected before the run, immediately after (post), 3, 6 and 24 h thereafter. Cardiac troponin I (cTnI), myoglobin, creatine kinase isoenzyme MB (CK-MB), GPBB, CAIII and H-FABP were assayed using a new diagnostic system based on protein biochip array technology. IMA was measured by a commercial colorimetric assay on a Roche Modular system P.: Significant variations by one-way analysis of variance were observed for CK-MB (p=0.013), myoglobin (p<0.001), GPBB (p=0.029), H-FABP (p<0.001), CAIII (p=0.006), but not for cTnI (p=1.00) and IMA (p=0.881). In particular, values of all the biomarkers tested, but cTnI and IMA, increased significantly immediately after the run. GPBB and H-FABP values returned to baseline 6 and 3 h thereafter, those of CAIII, CK-MB and myoglobin remained significantly elevated from the pre-run value up to 24 h after the run. The major variation over pre-run values was recorded for myoglobin (nearly 4-fold increment), whereas CAIII, CK-MB, GPBB and H-FABP increased by 2.9-, 1.8-, 1.4- and 1.2-fold, respectively.: We conclude that a sub-maximal aerobic exercise influences the concentration of several markers of muscle damage. Except for IMA, not one of the emerging biomarkers tested can be safely used to rule out myocardial damage as well as cardiospecific troponins in patients who had undergone recent physical activity.Clin Chem Lab Med 2008;46:1313–8.
Collapse
|
24
|
De Oliveira CO, Reimer AG, Da Rocha AB, Grivicich I, Schneider RF, Roisenberg I, Regner A, Simon D. Plasma von Willebrand factor levels correlate with clinical outcome of severe traumatic brain injury. J Neurotrauma 2007; 24:1331-8. [PMID: 17711394 DOI: 10.1089/neu.2006.0159] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Biochemical markers of cellular stress/injury have been proposed to indicate outcome after head injury. The aim of the present study was to determine whether plasma von Willebrand factor (VWF) levels correlate with primary outcome and with clinical variables in severe traumatic brain injury (TBI). Forty-four male patients, victims of severe TBI, were analyzed. Clinical outcome variables of severe TBI comprised survival and neurological assessment using the Glasgow Outcome Scale (GOS) at intensive care unit (ICU) discharge. Computerized tomography (CT) scans were analyzed according to Marshall CT classification. Three consecutive venous blood samples were taken: first sample (11.4 +/- 5.2 h after trauma, mean +/- SD), and 24 h and 7 days later. The result of mean plasma VWF concentration was significantly higher in the TBI group (273 U/dL) than in the control group (107 U/dL; p < 0.001). Severe TBI was associated with a 50% mortality rate. Nonsurvivors presented significantly higher APACHE II scores than survivors (nonsurvivors mean, 18.8; survivors mean, 12.7; p < 0.001), and also presented higher scores in Marshall CT classification (nonsurvivors mean, 4.6; survivors mean, 2.7; p < 0.05). There was a significant positive correlation between plasma levels at second plasma sampling and scores in Marshall CT classification (p < 0.05). The sensitivity of plasma VWF concentration in predicting mortality according to the cut-off of 234 U/dL was 64%, with a specificity of 68%. Therefore, VWF increases following severe TBI may be a marker of unfavorable outcome.
Collapse
|
25
|
Mollenhauer B, Steinacker P, Bahn E, Bibl M, Brechlin P, Schlossmacher MG, Locascio JJ, Wiltfang J, Kretzschmar HA, Poser S, Trenkwalder C, Otto M. Serum heart-type fatty acid-binding protein and cerebrospinal fluid tau: marker candidates for dementia with Lewy bodies. NEURODEGENER DIS 2007; 4:366-75. [PMID: 17622779 DOI: 10.1159/000105157] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2006] [Accepted: 08/27/2006] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND The measurement of biomarkers in cerebrospinal fluid (CSF) has gained increasing acceptance in establishing the diagnosis of some neurodegenerative diseases. Heart-type fatty acid-binding protein (H-FABP) was recently discovered in CSF and serum of patients with neurodegenerative diseases. OBJECTIVE We investigated H-FABP in CSF and serum alone and in combination with CSF tau protein to evaluate these as potential biomarkers for the differentiation between dementia with Lewy bodies (DLB) and Alzheimer's disease (AD). METHODS We established H-FABP and tau protein values in a set of 144 persons with DLB (n = 33), Parkinson disease with dementia (PDD; n = 25), AD (n = 35) and nondemented neurological controls (NNC; n = 51). Additionally, serum H-FABP levels were analyzed in idiopathic Parkinson disease patients without evidence of cognitive decline (n = 45) using commercially available enzyme-linked immunosorbent assays. We calculated absolute values of H-FABP and tau protein in CSF and serum and established relative ratios between the two to obtain the best possible match for the clinical working diagnosis. RESULTS Serum H-FABP levels were elevated in DLB and PDD patients compared with NNC and AD subjects. To better discriminate between DLB and AD, we calculated the ratio of serum H-FABP to CSF tau protein levels. At the arbitrary chosen cutoff ratio > or =8 this quotient reached a sensitivity of 91% and a specificity of 66%. CONCLUSION Our results suggest that the measurement of CSF tau protein, together with H-FABP quantification in serum and CSF, and the ratio of serum H-FABP to CSF tau protein represent marker candidates for the differentiation between AD and DLB.
Collapse
Affiliation(s)
- Brit Mollenhauer
- Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Institutes of Medicine, 77 Avenue Louis Pasteur, Boston, MA 02115, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Haqqani AS, Hutchison JS, Ward R, Stanimirovic DB. Biomarkers and diagnosis; protein biomarkers in serum of pediatric patients with severe traumatic brain injury identified by ICAT-LC-MS/MS. J Neurotrauma 2007; 24:54-74. [PMID: 17263670 DOI: 10.1089/neu.2006.0079] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
This report is a feasibility study on the utility of gel-free proteomics in identifying peripheral biomarkers of brain injury. The study was performed in six pediatric patients admitted to the intensive care unit for severe traumatic brain injury (TBI). Serum samples collected at admission (less than 8 h after injury) were used for determining the levels of S100beta by enzyme-linked immunosorbent assay (ELISA) and for proteomics analyses. Serum samples were depleted of high abundant albumin and immunoglobulin, and were compared to a pooled reference from several healthy individuals. After labeling and separation on an ionic column, six different serum fractions were analyzed using Isotope-Coded Affinity Tag (ICAT), followed by tandem mass spectrometry (MS/MS) protein sequencing and identification. Ninety-five unique, differentially expressed proteins were identified, including several with a likely brain origin. Several proteins with pattern similarity to S100beta identified by hierarchical clustering could be considered for evaluation in a larger patient sample as potential peripheral markers of TBI.
Collapse
Affiliation(s)
- Arsalan S Haqqani
- Institute for Biological Sciences, National Research Council of Canada, Ottawa, Canada
| | | | | | | |
Collapse
|
27
|
Laterza OF, Modur VR, Crimmins DL, Olander JV, Landt Y, Lee JM, Ladenson JH. Identification of Novel Brain Biomarkers. Clin Chem 2006; 52:1713-21. [PMID: 16858073 DOI: 10.1373/clinchem.2006.070912] [Citation(s) in RCA: 95] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Abstract
Background: The diagnosis of diseases leading to brain injury, such as stroke, Alzheimer disease, and Parkinson disease, can often be problematic. In this study, we pursued the discovery of biomarkers that might be specific and sensitive to brain injury.
Methods: We performed gene array analyses on a mouse model to look for biomarkers that are both preferentially and abundantly produced in the brain. Via bioinformatics databases, we identified the human homologs of genes that appeared abundant in brain but not in other tissues. We then confirmed protein production of the genes via Western blot of various tissue homogenates and assayed for one of the markers, visinin-like protein 1 (VLP-1), in plasma from patients after ischemic stroke.
Results: Twenty-nine genes that were preferentially and abundantly expressed in the mouse brain were identified; of these 29 genes, 26 had human homologs. We focused on 17 of these genes and their protein products on the basis of their molecular characteristics, novelty, and/or availability of antibodies. Western blot showed strong signals in brain homogenates for 13 of these proteins. Tissue specificity was tested by Western blot on a human tissue array, and a sensitive and quantitative sandwich immunoassay was developed for the most abundant gene product observed in our search, VLP-1. VLP-1 was detected in plasma of patients after stroke and in cerebrospinal fluid of a rat model of stroke.
Conclusions: The use of relative mRNA production appears to be a valid method of identifying possible biomarkers of tissue injury. The tissue specificity suggested by gene expression was confirmed by Western blot. One of the biomarkers identified, VLP-1, was increased in a rat model of stroke and in plasma of patients after stroke. More extensive, prospective studies of the candidate biomarkers identified appear warranted.
Collapse
Affiliation(s)
- Omar F Laterza
- Department of Pathology and Immunology, Division of Laboratory Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | | | | | | | | | | | | |
Collapse
|