1
|
Xanthohumol properties and strategies for extraction from hops and brewery residues: A review. Food Chem 2023; 404:134629. [DOI: 10.1016/j.foodchem.2022.134629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 09/16/2022] [Accepted: 10/13/2022] [Indexed: 11/22/2022]
|
2
|
Metabolomic and Proteomic Profile of Dried Hop Inflorescences (Humulus lupulus L. cv. Chinook and cv. Cascade) by SPME-GC-MS and UPLC-MS-MS. SEPARATIONS 2022. [DOI: 10.3390/separations9080204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Hop (Humulus lupulus L.) is grown mainly for the production of beer. The flowers of the female plant give it the bitter taste and pungent aroma. There are a large number of hop varieties differing in their α-acid content, essential oil levels and odor profiles. Aside from their use in brewing, more recently, hops have been used for the pharmacological properties of its derivatives that are of great importance to the pharmaceutical industry. Hop is known to have a fairly complex chemistry characterized by the presence of a variety of sesquiterpenoids, diterpenoids and triterpenoids, phytoestrogens and flavonoids. Additionally, considering the countless applications in the pharmacological sector in recent years, a chemical characterization of the different cultivars is essential to better identify the source of specific secondary metabolites. For this purpose, the dried inflorescences of two hop cultivars, Chinook and Cascade, were investigated using Solid-Phase Microextraction-Gas Chromatography-Mass Spectrometry and Liquid Chromatography-Tandem Mass Spectrometry (SPME-GC-MS and LC-MS-MS) to describe their metabolomic and proteomic profile. Furthermore, thanks to an in-depth statistical survey, it was possible to carry out a comparative study highlighting interesting implications deriving from this investigative study.
Collapse
|
3
|
Duarte LM, Aredes RS, Amorim TL, de Carvalho Marques FF, de Oliveira MAL. Determination of α- and β-acids in hops by liquid chromatography or electromigration techniques: A critical review. Food Chem 2022; 397:133671. [PMID: 35908460 DOI: 10.1016/j.foodchem.2022.133671] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 07/06/2022] [Accepted: 07/08/2022] [Indexed: 01/12/2023]
Abstract
Hop plays an essential role in brewing beer and its study and analysis is of paramount importance. - and -acids are considered two of the most important hop components. While -acids are associated with the bitter flavor, -acids have antimicrobial effects. This work aims to critically review the published analytical methods for - and -acids determination in hops employing separation methods in liquid medium: liquid chromatography (LC) and capillary electrophoresis (CE). The types of hop samples, the optimized protocols to extract the hop acids, and the main instrumental conditions for both LC and CE techniques are highlighted and discussed. Specific and critical aspects of the - and β-acids separation by LC and CE and some challenges in this field are raised. Several key aspects discussed in this review may be of practical importance for brewers, whether in the microbrewery or industry and for researchers in the brewing field.
Collapse
Affiliation(s)
- Lucas Mattos Duarte
- Department of Chemistry, Institute of Exact Sciences, Federal University of Juiz de Fora, José Lourenço Kelmer, 36036-900 Juiz de Fora, MG, Brazil; Graduate Program in Chemistry (PPGQ-UFF) - Institute of Chemistry, Fluminense Federal University, Outeiro de São João Batista, s/n, 24020-141 Niterói, RJ, Brazil.
| | - Rafaella Silva Aredes
- Graduate Program in Chemistry (PPGQ-UFF) - Institute of Chemistry, Fluminense Federal University, Outeiro de São João Batista, s/n, 24020-141 Niterói, RJ, Brazil.
| | - Tatiane Lima Amorim
- Department of Chemistry, Institute of Exact Sciences, Federal University of Juiz de Fora, José Lourenço Kelmer, 36036-900 Juiz de Fora, MG, Brazil
| | - Flávia Ferreira de Carvalho Marques
- Graduate Program in Chemistry (PPGQ-UFF) - Institute of Chemistry, Fluminense Federal University, Outeiro de São João Batista, s/n, 24020-141 Niterói, RJ, Brazil.
| | - Marcone Augusto Leal de Oliveira
- Department of Chemistry, Institute of Exact Sciences, Federal University of Juiz de Fora, José Lourenço Kelmer, 36036-900 Juiz de Fora, MG, Brazil.
| |
Collapse
|
4
|
Using Hydrofluorocarbon Extracts of Hop in a Pilot Scale Brewing Process. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12146959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
In recent years, the use of hop extracts in industrial and home brewing processes as an alternative to hop cones or pellets usually added to wort during boiling has become increasingly popular. These extracts represent concentrated sources of bitter compounds, i.e., α- and β-acids, which are involved in some of the main reactions that take place in the wort and are responsible for the bitterness and the final quality of beer. This work aims at proposing a novel extraction technique, using a hydrofluorocarbon solvent in subcritical conditions; this process provided an extraction yield of 19% and an α-acid recovery of approximately 49% in 120 min of process. The α-acid isomerization kinetics of thermally treated hop extracts were studied and compared with those of both hop pellets and a CO2 extract. Laboratory scale tests showed that shorter boiling times were needed using hydrofluorocarbon and CO2 extracts (approximately 25 min and 34 min, respectively) to reach the same isomerization efficiency of 16.73%, achieved in 50 min of boiling with pellets. Moreover, the process was scaled up and the possibility of considerably reducing the conventional treatment times using hydrofluorocarbon extracts was confirmed: the same isomerization yield (9.1%) obtained after 50 min using the traditional procedure with hop pellets was reached in a shorter time of approximately 35 min in a pilot apparatus.
Collapse
|
5
|
Olivares-Galván S, Marina M, García M. Extraction of valuable compounds from brewing residues: Malt rootlets, spent hops, and spent yeast. Trends Food Sci Technol 2022. [DOI: 10.1016/j.tifs.2022.06.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
6
|
Hop (Humulus lupulus L.) Essential Oils and Xanthohumol Derived from Extraction Process Using Solvents of Different Polarity. HORTICULTURAE 2022. [DOI: 10.3390/horticulturae8050368] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
This study evaluates the content of essential oils (EOs) and prenylated flavonoid Xanthohumol (XN) in extracts of Slovenian hops, cultivar Aurora, obtained by using fluids of different polarity. It is a continuation of our previous work, investigating the extraction of bitter acids from hops. Extraction was conducted semi-continuously, using sub- and supercritical fluids of different polarity, i.e., carbon dioxide (CO2) and propane as non-polar and dimethyl ether (DME) as the polar solvent. The experiments explored a temperature range between 20 °C and 80 °C and pressures ranging from 50 bar to 150 bar. The content of XN in extracts was analysed using high-performance liquid chromatography and experiments demonstrated the largest concentration of XN was obtained using DME. In order to analyse the EO components in extracts, connected with a distinct odour, the steam distillation of extracts was performed and GC analysis was employed. Hop oil derived from CO2 extracts at specific conditions, had the highest relative concentration of linalool, β-caryophyllene and α-humulene, and oil derived from propane extracts had the highest content of all other five selected components (myrcene, geraniol, farnesene, α-selinene and δ-cadinene). The relative content of the investigated EO components in DME extracts was similar to that in propane extracts.
Collapse
|
7
|
|
8
|
Nagybákay NE, Syrpas M, Vilimaitė V, Tamkutė L, Pukalskas A, Venskutonis PR, Kitrytė V. Optimized Supercritical CO 2 Extraction Enhances the Recovery of Valuable Lipophilic Antioxidants and Other Constituents from Dual-Purpose Hop ( Humulus lupulus L.) Variety Ella. Antioxidants (Basel) 2021; 10:antiox10060918. [PMID: 34204047 PMCID: PMC8228826 DOI: 10.3390/antiox10060918] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 05/27/2021] [Accepted: 06/01/2021] [Indexed: 11/21/2022] Open
Abstract
The article presents the optimization of supercritical CO2 extraction (SFE-CO2) parameters using response surface methodology (RSM) with central composite design (CCD) in order to produce single variety hop (cv. Ella) extracts with high yield and strong in vitro antioxidant properties. Optimized SFE-CO2 (37 MPa, 43 °C, 80 min) yielded 26.3 g/100 g pellets of lipophilic fraction. This extract was rich in biologically active α- and β-bitter acids (522.8 and 345.0 mg/g extract, respectively), and exerted 1481 mg TE/g extract in vitro oxygen radical absorbance capacity (ORAC). Up to ~3-fold higher extraction yield, antioxidant recovery (389.8 mg TE/g pellets) and exhaustive bitter acid extraction (228.4 mg/g pellets) were achieved under the significantly shorter time compared to the commercially used one-stage SFE-CO2 at 10–15 MPa and 40 °C. Total carotenoid and chlorophyll content was negligible, amounting to <0.04% of the total extract mass. Fruity, herbal, spicy and woody odor of extracts could be attributed to the major identified volatiles, namely β-pinene, β-myrcene, β-humulene, α-humulene, α-selinene and methyl-4-decenoate. Rich in valuable bioactive constituents and flavor compounds, cv. Ella hop SFE-CO2 extracts could find multipurpose applications in food, pharmaceutical, nutraceutical and cosmetics industries.
Collapse
|
9
|
Bioactive Compounds Obtained from Polish "Marynka" Hop Variety Using Efficient Two-Step Supercritical Fluid Extraction and Comparison of Their Antibacterial, Cytotoxic, and Anti-Proliferative Activities In Vitro. Molecules 2021; 26:molecules26082366. [PMID: 33921703 PMCID: PMC8073632 DOI: 10.3390/molecules26082366] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 04/15/2021] [Accepted: 04/17/2021] [Indexed: 12/14/2022] Open
Abstract
Given the health-beneficial properties of compounds from hop, there is still a growing trend towards developing successful extraction methods with the highest yield and also receiving the products with high added value. The aim of this study was to develop efficient extraction method for isolation of bioactive compounds from the Polish "Marynka" hop variety. The modified two-step supercritical fluid extraction allowed to obtain two hop samples, namely crude extract (E1), composed of α-acids, β-acids, and terpene derivatives, as well as pure xanthohumol with higher yield than that of other available methods. The post-extraction residues (R1) were re-extracted in order to obtain extract E2 enriched in xanthohumol. Then, both samples were subjected to investigation of their antibacterial (anti-acne, anti-caries), cytotoxic, and anti-proliferative activities in vitro. It was demonstrated that extract (E1) possessed more beneficial biological properties than xanthohumol. It exhibited not only better antibacterial activity against Gram-positive bacteria strains (MIC, MBC) but also possessed a higher synergistic effect with commercial antibiotics when compared to xanthohumol. Moreover, cell culture experiments revealed that crude extract neither inhibited viability nor divisions of normal skin fibroblasts as strongly as xanthohumol. In turn, calculated selectivity indexes showed that the crude extract had from slightly to significantly better selective anti-proliferative activity towards cancer cells in comparison with xanthohumol.
Collapse
|
10
|
Simple and green method for the extraction of xanthohumol from spent hops using deep eutectic solvents. Sep Purif Technol 2020. [DOI: 10.1016/j.seppur.2020.117196] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
11
|
Abstract
Beer is the most consumed alcoholic beverage in the world and the third most popular beverage after water and tea. Emerging health-oriented lifestyle trends, demographics, stricter legislation, religious prohibitions, and consumers’ preferences have led to a strong and steady growth of interest for non-alcoholic beers (NABs), low-alcohol beers (LABs), as well for craft beers (CBs). Conventional beer, as the worlds most consumed alcoholic beverage, recently gained more recognition also due to its potential functionality associated with the high content of phenolic antioxidants and low ethanol content. The increasing attention of consumers to health-issues linked to alcohol abuse urges breweries to expand the assortment of conventional beers through novel drinks concepts. The production of these beers employs several techniques that vary in performance, efficiency, and usability. Involved production technologies have been reviewed and evaluated in this paper in terms of efficiency and production costs, given the possibility that craft brewers might want to adapt them and finally introduce novel non-alcoholic drinks in the market.
Collapse
|
12
|
|
13
|
Uwineza PA, Waśkiewicz A. Recent Advances in Supercritical Fluid Extraction of Natural Bioactive Compounds from Natural Plant Materials. Molecules 2020; 25:molecules25173847. [PMID: 32847101 PMCID: PMC7504334 DOI: 10.3390/molecules25173847] [Citation(s) in RCA: 123] [Impact Index Per Article: 30.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 08/18/2020] [Accepted: 08/20/2020] [Indexed: 11/16/2022] Open
Abstract
In this review, recent advances in greener technology for extracting natural bioactive components from plant origin sources are discussed. Bioactive compounds of plant origin have been defined as natural chemical compounds present in small amounts in plants. Researchers have shown interest in extracting bioactive compounds because of their human health benefits and characteristics of being eco-friendly and generally recognized as safe. Various new extraction methods and conventional extraction methods have been developed, however, until now, no unique approach has been presented as a benchmark for extracting natural bioactive compounds from plants. The selectivity and productivity of traditional and modern extraction techniques generally depend on selecting the critical input parameters, knowing the nature of plant-based samples, the structure of bioactive compounds, and good scientific skills. This work aims to discuss the recent advances in supercritical fluid extraction techniques, especially supercritical carbon dioxide, along with the fundamental principles for extracting bioactive compounds from natural plant materials such as herbs, spices, aromatic and medicinal plants.
Collapse
|
14
|
Misic D, Tadic V, Korzeniowska M, Nisavic J, Aksentijevic K, Kuzmanovic J, Zizovic I. Supercritical Fluid Extraction of Celery and Parsley Fruit-Chemical Composition and Antibacterial Activity. Molecules 2020; 25:molecules25143163. [PMID: 32664342 PMCID: PMC7397072 DOI: 10.3390/molecules25143163] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 06/30/2020] [Accepted: 07/08/2020] [Indexed: 12/28/2022] Open
Abstract
Supercritical fluid extraction as an environmentally friendly technology was applied to isolate biologically active extracts from celery and parsley fruits for potential applications in the food industry. The extractions were performed under mild temperature conditions of 39.85 °C and at pressures of 10 and 30 MPa. The extracts were analyzed regarding their chemical composition, antibacterial activity, and cytotoxic effect. Sedanolide was the dominant component of the celery fruit extracts, comprising more than 70% of the obtained fraction, while the content of apiole in the parsley fruit SC CO2 extracts exceeded 85%. The celery fruit extracts showed strong and moderately strong antibacterial activity against tested Staphylococcus aureus, Bacillus (B.) cereus, B. subtilis, B. circulans, Listeria (L.) greyi, L. seeligeri and L. welshimeri, with minimal inhibitory concentration (MIC) values between 160 and 640 µg/mL, and weak activity against the selected Salmonella isolates with a MIC of 2560 µg/mL. The parsley extract obtained at 10 MPa showed strong and moderately strong antibacterial effects against Bacillus strains with obtained MICs of 160–640 µg/mL, and weak activity against Staphylococcus, Listeria, and Salmonella with a MIC of 2560 µg/mL. Cytotoxicity investigation showed that the extracts with proven antibacterial activity had no cytotoxic effect on rabbit kidney cells at concentrations of up to 640 µg/mL.
Collapse
Affiliation(s)
- Dusan Misic
- Faculty of Biotechnology and Food Science, Wroclaw University of Environmental and Life Sciences, 51-651 Wroclaw, Poland;
- Faculty of Veterinary Medicine, University of Belgrade, 11000 Belgrade, Serbia; (J.N.); (K.A.)
- Correspondence: or ; Tel.: +48-601-163-067
| | - Vanja Tadic
- Institute for Medicinal Plant Research ‘‘Dr. Josif Pancic’’, 11000 Belgrade, Serbia;
| | - Malgorzata Korzeniowska
- Faculty of Biotechnology and Food Science, Wroclaw University of Environmental and Life Sciences, 51-651 Wroclaw, Poland;
| | - Jakov Nisavic
- Faculty of Veterinary Medicine, University of Belgrade, 11000 Belgrade, Serbia; (J.N.); (K.A.)
| | - Ksenija Aksentijevic
- Faculty of Veterinary Medicine, University of Belgrade, 11000 Belgrade, Serbia; (J.N.); (K.A.)
| | - Jelena Kuzmanovic
- Center for Food Analyses, Department of Microbiology, 11000 Belgrade, Serbia;
| | - Irena Zizovic
- Faculty of Chemistry, Wroclaw University of Science and Technology, 50-373 Wroclaw, Poland;
| |
Collapse
|
15
|
Zizovic I. Supercritical Fluid Applications in the Design of Novel Antimicrobial Materials. Molecules 2020; 25:E2491. [PMID: 32471270 PMCID: PMC7321342 DOI: 10.3390/molecules25112491] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 05/22/2020] [Accepted: 05/26/2020] [Indexed: 11/17/2022] Open
Abstract
Bacterial resistance to antibiotics is one of the biggest problems in the modern world. The prevention of bacterial spreading from hospitals to the community and vice versa is an issue we have to deal with. This review presents a vast potential of contemporary high-pressure techniques in the design of materials with antimicrobial activity. Scientists from all over the world came up with ideas on how to exploit extraordinary properties of supercritical fluids in the production of advantageous materials in an environmentally friendly way. The review summarizes reported methods and results.
Collapse
Affiliation(s)
- Irena Zizovic
- Faculty of Chemistry, Wroclaw University of Science and Technology, Wybrzeze Wyspianskiego 27, 50-370 Wroclaw, Poland
| |
Collapse
|
16
|
Moens E, Bolca S, Van de Wiele T, Van Landschoot A, Goeman JL, Possemiers S, Verstraete W. Exploration of isoxanthohumol bioconversion from spent hops into 8-prenylnaringenin using resting cells of Eubacterium limosum. AMB Express 2020; 10:79. [PMID: 32333233 PMCID: PMC7182650 DOI: 10.1186/s13568-020-01015-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Accepted: 04/17/2020] [Indexed: 11/10/2022] Open
Abstract
Hops is an almost unique source of the potent phytoestrogen 8-prenylnaringenin (8-PN). As hops contain only low levels of 8-PN, synthesis may be more attractive than extraction. A strain of the Gram-positive Eubacterium limosum was isolated previously for 8-PN production from more abundant precursor isoxanthohumol (IX) from hops. In this study, spent hops, an industrial side stream from the beer industry, was identified as interesting source of IX. Yet, hop-derived compounds are well-known antibacterial agents and the traces of a large variety of different compounds in spent hops interfered with growth and IX conversion. Critical factors to finally enable bacterial 8-PN production from spent hops, using a food and feed grade medium, were evaluated in this research. The use of bacterial resting cells and complex medium at a pH of 7.8-8 best fulfilled the requirements for 8-PN production and generated a solid basis for development of an economic process.
Collapse
Affiliation(s)
- Esther Moens
- ProDigest BVBA, Technol Pk 82, 9052, Ghent, Belgium
- Ugent, CMET, Coupure Links 653, 9000, Ghent, Belgium
| | - Selin Bolca
- ProDigest BVBA, Technol Pk 82, 9052, Ghent, Belgium
| | | | | | - Jan L Goeman
- Ugent, Dept Organic and Macromolecular Chemistry, Krijgslaan 281-S4, 9000, Ghent, Belgium
| | | | | |
Collapse
|
17
|
Bhavya ML, Chandu AGS, Devi SS, Quirin KW, Pasha A, Vijayendra SVN. In-vitro evaluation of antimicrobial and insect repellent potential of supercritical-carbon dioxide (SCF-CO 2) extracts of selected botanicals against stored product pests and foodborne pathogens. Journal of Food Science and Technology 2020; 57:1071-1079. [PMID: 32123428 DOI: 10.1007/s13197-019-04141-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 09/19/2019] [Accepted: 10/24/2019] [Indexed: 02/06/2023]
Abstract
In the present study, the antimicrobial and the insect repellent activity of 16 botanical extracts obtained by supercritical CO2 (SCF) extraction were evaluated. The present investigation was conducted as there is a necessity for exploration of natural botanical extracts that target both stored product insects and microbes. The antimicrobial activity was studied by disc diffusion and broth microdilution methods against ten microbial species, including Gram-positive bacteria (Staphylococcus aureus, Bacillus subtilis and Listeria monocytogenes), Gram-negative bacteria (Escherichia coli and Salmonella enterica), and fungi (Aspergillus flavus, Aspergillus paraciticus, Aspergillus ochraceous, Aspergillus niger and Penicillium verrucosum). Repellency assay was carried out by area preference method against three coleopteran insects (Tribolium castaneum, Rhyzopertha dominica and Sitophilus oryzae). Among all the extracts, thyme and ajwain were effective against all the tested bacteria with a minimum inhibition concentration (MIC) of 256-1024 µg/mL. Hop extract resulted in better antibacterial activity against all the tested Gram-positive bacteria with a MIC of 32-64 µg/mL. Oregano, thyme and ajwain extracts showed broad-spectrum antifungal activity against all the tested fungi with MIC of 128-1024 µg/mL. Most of the extracts exhibited class V (80.1-100%) repellency against T. castaneum. Extracts of hop, ajwain and thyme were found to have strong repellency against T. castaneum and R. dominica. Therefore, SCF extracts of ajwain and thyme can be explored further for the application of bio-extracts as a growth limiting factors in a microcosm where such consortia thrive.
Collapse
Affiliation(s)
- M L Bhavya
- 1Food Protectants and Infestation Control Department, CSIR-Central Food Technological Research Institute, Mysuru, 570 020 India
| | - A G S Chandu
- 1Food Protectants and Infestation Control Department, CSIR-Central Food Technological Research Institute, Mysuru, 570 020 India
| | - Sumithra S Devi
- 1Food Protectants and Infestation Control Department, CSIR-Central Food Technological Research Institute, Mysuru, 570 020 India
| | - Karl-Werner Quirin
- Flavex Naturextrakte GmbH, Nordstrasse 7, 66780 Rehlingen-Siersburg, Germany
| | - Akmal Pasha
- 1Food Protectants and Infestation Control Department, CSIR-Central Food Technological Research Institute, Mysuru, 570 020 India
| | - S V N Vijayendra
- 3Department of Microbiology and Fermentation Technology, CSIR-Central Food Technological Research Institute, Mysuru, 570 020 India
| |
Collapse
|
18
|
|
19
|
Bajić M, Jalšovec H, Travan A, Novak U, Likozar B. Chitosan-based films with incorporated supercritical CO2 hop extract: Structural, physicochemical, and antibacterial properties. Carbohydr Polym 2019; 219:261-268. [DOI: 10.1016/j.carbpol.2019.05.003] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 05/02/2019] [Accepted: 05/02/2019] [Indexed: 12/14/2022]
|
20
|
Blatchford PA, Parkar SG, Hopkins W, Ingram JR, Sutton KH. Dose-Dependent Alterations to In Vitro Human Microbiota Composition and Butyrate Inhibition by a Supercritical Carbon Dioxide Hops Extract. Biomolecules 2019; 9:E390. [PMID: 31438572 PMCID: PMC6769549 DOI: 10.3390/biom9090390] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2019] [Revised: 08/19/2019] [Accepted: 08/19/2019] [Indexed: 12/16/2022] Open
Abstract
Hop cones (Humulus lupulus L.) have been used throughout history as an additive in beer brewing and as herbal supplements with medicinal and culinary properties. The objective of this study was to ascertain the effect of a range of concentrations of a supercritical CO2 extract of hops on the composition and metabolism of human gut bacterial communities using in vitro batch culture systems. Fermentations were conducted over 24 h using a mixed human fecal inoculum. Microbial metabolism was assessed by measuring organic acid production and microbial community alterations were determined by 16S rRNA gene sequencing. Butyrate, an important short chain fatty acid in maintaining colonic well-being, decreased at elevated concentrations of hops, which may partly be accounted for by the concomitant reduction of Eubacterium and Coprococcus, known butyrate-producing genera, and also the inhibition of Bifidobacterium, a beneficial organism that has a butyrogenic effect through metabolic cross-feeding with intestinal commensals. The hops compounds also caused dose-dependent increases in the potentially pathogenic Enterobacteriaceae and potentially beneficial Akkermansia. Thus, hops compounds had a significant impact on the structure of the bacterial consortium, which warrants further study including human clinical trials.
Collapse
Affiliation(s)
- Paul A Blatchford
- The New Zealand Institute for Plant and Food Research Limited (PFR), Private Bag 11600, Palmerston North 4442, New Zealand
| | - Shanthi G Parkar
- The New Zealand Institute for Plant and Food Research Limited (PFR), Private Bag 11600, Palmerston North 4442, New Zealand.
| | | | | | | |
Collapse
|
21
|
Knez Hrnčič M, Španinger E, Košir IJ, Knez Ž, Bren U. Hop Compounds: Extraction Techniques, Chemical Analyses, Antioxidative, Antimicrobial, and Anticarcinogenic Effects. Nutrients 2019; 11:E257. [PMID: 30678345 PMCID: PMC6412513 DOI: 10.3390/nu11020257] [Citation(s) in RCA: 83] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Revised: 01/10/2019] [Accepted: 01/18/2019] [Indexed: 12/11/2022] Open
Abstract
Hop plants comprise a variety of natural compounds greatly differing in their structure and properties. A wide range of methods have been developed for their isolation and chemical analysis, as well as for determining their antioxidative, antimicrobial, and antigenotoxic potentials. This contribution provides an overview of extraction and fractionation techniques of the most important hop compounds known for their health-promoting features. Although hops remain the principal ingredient for providing the taste, stability, and antimicrobial protection of beer, they have found applications in the pharmaceutical and other food industries as well. This review focuses on numerous health-promoting effects of hops raging from antioxidative, sedative, and anti-inflammatory potentials, over anticarcinogenic features to estrogenic activity. Therefore, hops should be exploited for the prevention and even healing of several prevalent diseases like cardiovascular disorders and various cancer types. New ideas for future studies on hops are finally presented: computational investigations of chemical reactivities of hop compounds, nanoencapsulation, and synergistic effects leading to a higher bioavailability of biologically active substances as well as the application of waste hop biomass from breweries for the production of high-added-value products in accordance with the biorefinery concept.
Collapse
Affiliation(s)
- Maša Knez Hrnčič
- Laboratory of Separation Processes and Product Design, Faculty of Chemistry and Chemical Engineering, University of Maribor, Smetanova ulica 17, SI-2000 Maribor, Slovenia.
| | - Eva Španinger
- Laboratory of Physical Chemistry and Chemical Thermodynamics, Faculty of Chemistry and Chemical Engineering, University of Maribor, Smetanova ulica 17, SI-2000 Maribor, Slovenia.
| | - Iztok Jože Košir
- Slovenian Institute of Hop Research and Brewing, Cesta Žalskega Tabora 2, SI-3310 Žalec, Slovenia.
| | - Željko Knez
- Laboratory of Separation Processes and Product Design, Faculty of Chemistry and Chemical Engineering, University of Maribor, Smetanova ulica 17, SI-2000 Maribor, Slovenia.
| | - Urban Bren
- Laboratory of Physical Chemistry and Chemical Thermodynamics, Faculty of Chemistry and Chemical Engineering, University of Maribor, Smetanova ulica 17, SI-2000 Maribor, Slovenia.
| |
Collapse
|
22
|
Tyśkiewicz K, Gieysztor R, Konkol M, Szałas J, Rój E. Essential Oils from Humulus Lupulus scCO₂ Extract by Hydrodistillation and Microwave-Assisted Hydrodistillation. Molecules 2018; 23:molecules23112866. [PMID: 30400271 PMCID: PMC6278360 DOI: 10.3390/molecules23112866] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Revised: 10/23/2018] [Accepted: 10/31/2018] [Indexed: 12/03/2022] Open
Abstract
Two different extraction methods were used for a comparative study of essential oils obtained from the Humulus lupulus scCO2 (sc-supercritical) extract: microwave-assisted hydrodistillation (MAHD) and conventional hydrodistillation (HD). As a result, the best conditions for the maximum essential oil production were determined for the MAHD method at 335 W microwave power for 30 min at water to raw material ratio of 8:3. The obtained essential oils were enriched in β-myrcene in the amount of 74.13%–89.32% (wt%). Moreover, the first application for determination of the above-mentioned volatile compounds by supercritical fluid chromatography (SFC) with photo-diode array detection (PDA) is presented, which in comparison with gas chromatography coupled with mass spectrometry (GC-MS/MS) resulted in similar values for β-myrcene and α-humulene in obtained samples within less than 1 min.
Collapse
Affiliation(s)
- Katarzyna Tyśkiewicz
- Supercritical Extraction Department, New Chemical Syntheses Institute, Al. Tysiąclecia Państwa Polskiego 13A, 24-110 Puławy, Poland.
| | - Roman Gieysztor
- Supercritical Extraction Department, New Chemical Syntheses Institute, Al. Tysiąclecia Państwa Polskiego 13A, 24-110 Puławy, Poland.
| | - Marcin Konkol
- Supercritical Extraction Department, New Chemical Syntheses Institute, Al. Tysiąclecia Państwa Polskiego 13A, 24-110 Puławy, Poland.
| | - Jan Szałas
- Import Export J.A. Szałas Company, Garbarska 125A, 26-600 Radom, Poland.
| | - Edward Rój
- Supercritical Extraction Department, New Chemical Syntheses Institute, Al. Tysiąclecia Państwa Polskiego 13A, 24-110 Puławy, Poland.
| |
Collapse
|
23
|
Połeć K, Barnaś B, Kowalska M, Dymek M, Rachwalik R, Sikora E, Biela A, Kobiałka M, Wójcik K, Hąc-Wydro K. The influence of the essential oil extracted from hops on monolayers and bilayers imitating plant pathogen bacteria membranes. Colloids Surf B Biointerfaces 2018; 173:672-680. [PMID: 30384263 DOI: 10.1016/j.colsurfb.2018.10.047] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2018] [Revised: 10/15/2018] [Accepted: 10/17/2018] [Indexed: 01/01/2023]
Abstract
Many plant-derived compounds possess antimicrobial, antioxidant and even anticancer activities. Therefore, they are considered as substances that can be used instead of synthetic compounds in various applications. In this work, the essential oil from hop cones was extracted and analyzed, and then its effects on model bacteria membranes were studied to verify whether the hop essential oils could be used as ecological pesticides. The experiments involved surface pressure-area measurements, penetration studies and Brewster angle microscopy (BAM) imaging of lipid monolayers as well as hydrodynamic diameter, zeta potential, steady-state fluorescence anisotropy and Cryo-Transmission Electron Microscopy (cryo-TEM) measurements of liposomes. Finally the bactericidal tests on plant pathogen bacteria Pseudomonas syringae pv. lachrymans PCM 1410 were performed. The obtained results showed that the components of the essential oils from hop cones incorporate into lipid monolayers and bilayers and alter their fluidity. However, the observed effect is determined by the system composition, its condensation and the oil concentration. Interestingly, at a given dose, the effect of the essential oil on membranes was found to stabilize. Moreover, BAM images proved that hop oil prevents the formation of a large fraction of a condensed phase at the interface. Both the studies on model membranes as well as the in vitro tests allow one to conclude that the hop essential oil could likely be considered as the candidate to be used in agriculture as a natural pesticide.
Collapse
Affiliation(s)
- Karolina Połeć
- Department of Environmental Chemistry, Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387, Kraków, Poland
| | - Beata Barnaś
- Department of Environmental Chemistry, Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387, Kraków, Poland
| | - Magdalena Kowalska
- Department of Physical Chemistry and Electrochemistry, Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387, Kraków, Poland
| | - Michał Dymek
- Institute of Organic Chemistry and Technology, Cracow University of Technology, Warszawska 24, Krakow, Poland
| | - Rafał Rachwalik
- Institute of Organic Chemistry and Technology, Cracow University of Technology, Warszawska 24, Krakow, Poland
| | - Elżbieta Sikora
- Institute of Organic Chemistry and Technology, Cracow University of Technology, Warszawska 24, Krakow, Poland
| | - Artur Biela
- Department of Cell Biology and Imaging, Institute of Zoology and Biomedical Research, Jagiellonian University, Gronostajowa 9, 30-387 Kraków, Poland; Bionanoscience and Biochemistry Laboratory, Malopolska Centre of Biotechnology, Jagiellonian University, Gronostajowa 7A, 30-387 Krakow, Poland
| | - Michał Kobiałka
- Department of Cell Biology and Imaging, Institute of Zoology and Biomedical Research, Jagiellonian University, Gronostajowa 9, 30-387 Kraków, Poland
| | - Kinga Wójcik
- Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Kraków, Poland
| | - Katarzyna Hąc-Wydro
- Department of Environmental Chemistry, Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387, Kraków, Poland.
| |
Collapse
|
24
|
Bartmańska A, Wałecka-Zacharska E, Tronina T, Popłoński J, Sordon S, Brzezowska E, Bania J, Huszcza E. Antimicrobial Properties of Spent Hops Extracts, Flavonoids Isolated Therefrom, and Their Derivatives. Molecules 2018; 23:E2059. [PMID: 30126093 PMCID: PMC6222488 DOI: 10.3390/molecules23082059] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Revised: 08/13/2018] [Accepted: 08/15/2018] [Indexed: 12/18/2022] Open
Abstract
Hop cones preparations possess a wide range of biological activities including antimicrobial properties. In this work, we evaluated the effect of various organic extracts obtained from spent hops, as well as six hops flavonoids and their twenty natural and synthetic derivatives on human and plant microbial pathogens. Methylene chloride, acetone, ethyl acetate, and methanol were used as extractants. Seven flavonoids, among them two natural (α,β-dihydroxanthohumol and 8-prenylnaringenin) showed significant activity against methicillin sensitive and resistant Staphylococcus aureus and Staphylococcus epidermidis strains with the lowest MIC80 value of 0.5 µg/mL. The crude ethyl acetate, acetone, and methanol extracts from the spent hops exhibited antifungal activity against Fusarium oxysporum, F. culmorum, and F. semitectum with the lowest MIC50 of 0.5 mg/mL, while the methylene chloride extract exerted antifungal activity against Botrytis cinerea with the MIC50 of 1 mg/mL. The preparation obtained after the removal of xanthohumol from the spent hops crude extracts retained up to 95% of activity. These findings suggest that various spent hops extracts may be effective agents for the control of plant pathogens of economic importance, like Botrytis cinerea and Fusarium oxysporum, while some compounds from spent hops or their derivatives may become useful for staphylococcal infections.
Collapse
Affiliation(s)
- Agnieszka Bartmańska
- Department of Chemistry, Wrocław University of Environmental and Life Sciences, Norwida 25, 50-375 Wrocław, Poland.
| | - Ewa Wałecka-Zacharska
- Department of Food Hygiene and Consumer Health Protection, Wrocław University of Environmental and Life Sciences, Norwida 25, 50-375 Wrocław, Poland.
| | - Tomasz Tronina
- Department of Chemistry, Wrocław University of Environmental and Life Sciences, Norwida 25, 50-375 Wrocław, Poland.
| | - Jarosław Popłoński
- Department of Chemistry, Wrocław University of Environmental and Life Sciences, Norwida 25, 50-375 Wrocław, Poland.
| | - Sandra Sordon
- Department of Chemistry, Wrocław University of Environmental and Life Sciences, Norwida 25, 50-375 Wrocław, Poland.
| | - Ewa Brzezowska
- Department of Chemistry, Wrocław University of Environmental and Life Sciences, Norwida 25, 50-375 Wrocław, Poland.
| | - Jacek Bania
- Department of Food Hygiene and Consumer Health Protection, Wrocław University of Environmental and Life Sciences, Norwida 25, 50-375 Wrocław, Poland.
| | - Ewa Huszcza
- Department of Chemistry, Wrocław University of Environmental and Life Sciences, Norwida 25, 50-375 Wrocław, Poland.
| |
Collapse
|
25
|
Hoshino Y, Ota M, Sato Y, Smith RL, Inomata H. Fractionation of hops-extract–ethanol solutions using dense CO2 with a counter-current extraction column. J Supercrit Fluids 2018. [DOI: 10.1016/j.supflu.2018.02.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
26
|
Duarte LM, Adriano LHC, de Oliveira MAL. Capillary electrophoresis in association with chemometrics approach for bitterness hop (Humulus lupulus L
.) classification. Electrophoresis 2018; 39:1399-1409. [DOI: 10.1002/elps.201700420] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2017] [Revised: 02/09/2018] [Accepted: 02/10/2018] [Indexed: 01/16/2023]
Affiliation(s)
- Lucas Mattos Duarte
- Grupo de Química Analítica e Quimiometria - GQAQ, Department of Chemistry, Institute of Exact Sciences, Federal University of Juiz de Fora; University city; Juiz de Fora MG Brazil
| | - Luiz Henrique Cantarino Adriano
- Grupo de Química Analítica e Quimiometria - GQAQ, Department of Chemistry, Institute of Exact Sciences, Federal University of Juiz de Fora; University city; Juiz de Fora MG Brazil
| | - Marcone Augusto Leal de Oliveira
- Grupo de Química Analítica e Quimiometria - GQAQ, Department of Chemistry, Institute of Exact Sciences, Federal University of Juiz de Fora; University city; Juiz de Fora MG Brazil
| |
Collapse
|
27
|
Wasilewski T, Czerwonka D, Piotrowska U. Effect of the Concentration of Hop Cone Extract on the Antibacterial, Physico-Chemical and Functional Properties of Adhesive Toilet Cleaners. TENSIDE SURFACT DET 2016. [DOI: 10.3139/113.110450] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Abstract
The study discusses the technology of preparation, and antibacterial, physicochemical and functional properties of advanced eco-friendly products for maintaining hygiene in toilets. The active substance with antibacterial properties which was added to the formulations for the purpose of the study was Humulus lupulus (hop cone) extract obtained under supercritical carbon dioxide conditions. The assumption was that the extract would improve the antibacterial activity of the products without adversely affecting their functional properties. The addition of hop cone extract at the concentration of 0.1% to the tested formulations was found to produce an antibacterial effect against S. aureus bacteria, however, no such activity was demonstrated against E. coli bacteria. Moreover, an increase in the content of the extract was shown to enhance product viscosity, at the same time extending the time of dissolution in water and improving the adhesive power to solid surfaces. The properties are highly desirable for the functionality of products of this type.
Collapse
Affiliation(s)
- Thomasz Wasilewski
- Department of Chemistry , University of Technology and Humanities in Radom, Chrobrego 27, Radom 26-600 , Poland
| | - Dominik Czerwonka
- Department of Chemistry , University of Technology and Humanities in Radom, Chrobrego 27, Radom 26-600 , Poland
- Department of Commodity Science and Quality Sciences , University of Technology and Humanities in Radom, Chrobrego 27, Radom 26-600 , Poland
| | - Urszula Piotrowska
- Department of Inorganic and Analytical Chemistry , Faculty of Pharmacy and Division of Laboratory Medicine, Medical University of Warsaw, Banacha 1, Warsaw 02-097 , Poland
| |
Collapse
|