1
|
Thomas G, Rusman Q, Morrison WR, Magalhães DM, Dowell JA, Ngumbi E, Osei-Owusu J, Kansman J, Gaffke A, Pagadala Damodaram KJ, Kim SJ, Tabanca N. Deciphering Plant-Insect-Microorganism Signals for Sustainable Crop Production. Biomolecules 2023; 13:997. [PMID: 37371577 PMCID: PMC10295935 DOI: 10.3390/biom13060997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 06/12/2023] [Accepted: 06/13/2023] [Indexed: 06/29/2023] Open
Abstract
Agricultural crop productivity relies on the application of chemical pesticides to reduce pest and pathogen damage. However, chemical pesticides also pose a range of ecological, environmental and economic penalties. This includes the development of pesticide resistance by insect pests and pathogens, rendering pesticides less effective. Alternative sustainable crop protection tools should therefore be considered. Semiochemicals are signalling molecules produced by organisms, including plants, microbes, and animals, which cause behavioural or developmental changes in receiving organisms. Manipulating semiochemicals could provide a more sustainable approach to the management of insect pests and pathogens across crops. Here, we review the role of semiochemicals in the interaction between plants, insects and microbes, including examples of how they have been applied to agricultural systems. We highlight future research priorities to be considered for semiochemicals to be credible alternatives to the application of chemical pesticides.
Collapse
Affiliation(s)
- Gareth Thomas
- Protecting Crops and the Environment, Rothamsted Research, Harpenden, AL5 2JQ, UK
| | - Quint Rusman
- Department of Systematic and Evolutionary Botany, University of Zürich, Zollikerstrasse 107, 8008 Zürich, Switzerland;
| | - William R. Morrison
- United States Department of Agriculture-Agricultural Research Service (USDA-ARS), Center for Grain and Animal Health Research, 1515 College Ave., Manhattan, KS 66502, USA;
| | - Diego M. Magalhães
- Luiz de Queiroz College of Agriculture, University of São Paulo, Piracicaba 13418-900, SP, Brazil;
| | - Jordan A. Dowell
- Department of Plant Sciences, University of California, Davis, One Shields Ave., Davis, CA 95616, USA;
| | - Esther Ngumbi
- Department of Entomology, University of Illinois at Urbana Champaign, Urbana, IL 61801, USA;
| | - Jonathan Osei-Owusu
- Department of Biological, Physical and Mathematical Sciences, University of Environment and Sustainable Development, Somanya EY0329-2478, Ghana;
| | - Jessica Kansman
- Center for Chemical Ecology, Department of Entomology, The Pennsylvania State University, University Park, PA 16802, USA;
| | - Alexander Gaffke
- United States Department of Agriculture-Agricultural Research Service (USDA-ARS), Center for Medical, Agricultural, and Veterinary Entomology, 6383 Mahan Dr., Tallahassee, FL 32308, USA;
| | | | - Seong Jong Kim
- United States Department of Agriculture-Agricultural Research Service (USDA-ARS), Natural Products Utilization Research Unit, University, MS 38677, USA;
| | - Nurhayat Tabanca
- United States Department of Agriculture-Agricultural Research Service (USDA-ARS), Subtropical Horticulture Research Station, 13601 Old Cutler Rd., Miami, FL 33158, USA
| |
Collapse
|
2
|
Vázquez A, Tabanca N, Kendra PE. HPTLC Analysis and Chemical Composition of Selected Melaleuca Essential Oils. Molecules 2023; 28:molecules28093925. [PMID: 37175338 PMCID: PMC10180325 DOI: 10.3390/molecules28093925] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 04/28/2023] [Accepted: 05/05/2023] [Indexed: 05/15/2023] Open
Abstract
Tea tree oil (TTO) is a volatile essential oil obtained by distillation, mainly from the Australian native plant Melaleuca alternifolia (Maiden & Betche) Cheel (Myrtaceae). In this study, a comparative analysis of the chemical constituents of seven tea tree oils (M. alternifolia) and four other Melaleuca spp. oils (M. cajuputi, (MCa), two chemotypes of M. quinquenervia, (MNe and MNi), and M. ericifolia (MRo)) was carried out using gas chromatography-mass spectrometry (GC-MS) and high-performance thin-layer chromatography (HPTLC). Among the seven TTOs, terpinen-4-ol (37.66-44.28%), γ-terpinene (16.42-20.75%), α-terpinene (3.47-12.62%), α-terpineol (3.11-4.66%), and terpinolene (2.75-4.19%) were the most abundant compounds. On the other hand, the most abundant compounds of the other Melaleuca oils varied, such as 1,8-cineole (64.63%) in MCa oil, (E)-nerolidol (48.40%) and linalool (33.30%) in MNe oil, 1,8-cineole (52.20%) in MNi oil, and linalool (38.19%) and 1,8-cineole (27.57%) in MRo oil. HPTLC fingerprinting of Melaleuca oils enabled the discrimination of TTO oils from other Melaleuca spp. oils. Variation was observed in the profile of the Rf values among EOs. The present study shows that HPTLC is one of the best ways to identify and evaluate the quality control in authenticating TTOs, other Melaleuca EOs, or EOs from other species within the Myrtaceae.
Collapse
Affiliation(s)
- Aimé Vázquez
- United States Department of Agriculture-Agricultural Research Service (USDA-ARS), Subtropical Horticulture Research Station (SHRS), Miami, FL 33158, USA
| | - Nurhayat Tabanca
- United States Department of Agriculture-Agricultural Research Service (USDA-ARS), Subtropical Horticulture Research Station (SHRS), Miami, FL 33158, USA
| | - Paul E Kendra
- United States Department of Agriculture-Agricultural Research Service (USDA-ARS), Subtropical Horticulture Research Station (SHRS), Miami, FL 33158, USA
| |
Collapse
|
3
|
Kännaste A, Jürisoo L, Runno-Paurson E, Kask K, Talts E, Pärlist P, Drenkhan R, Niinemets Ü. Impacts of Dutch elm disease-causing fungi on foliage photosynthetic characteristics and volatiles in Ulmus species with different pathogen resistance. TREE PHYSIOLOGY 2023; 43:57-74. [PMID: 36106799 DOI: 10.1093/treephys/tpac108] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 09/01/2022] [Indexed: 06/15/2023]
Abstract
Global warming affects the abiotic and biotic growth environment of plants, including the spread of fungal diseases such as Dutch elm disease (DED). Dutch elm disease-resistance of different Ulmus species varies, but how this is reflected in leaf-level physiological pathogen responses has not been investigated. We studied the impacts of mechanical injury alone and mechanical injury plus inoculation with the DED-causing pathogens Ophiostoma novo-ulmi subsp. novo-ulmi and O. novo-ulmi subsp. americana on Ulmus glabra, a more vulnerable species, and U. laevis, a more resistant species. Plant stress responses were evaluated for 12 days after stress application by monitoring leaf net CO2 assimilation rate (A), stomatal conductance (gs), ratio of ambient to intercellular CO2 concentration (Ca/Ci) and intrinsic water-use efficiency (A/gs), and by measuring biogenic volatile (VOC) release by plant leaves. In U. glabra and U. laevis, A was not affected by time, stressors or their interaction. Only in U. glabra, gs and Ca/Ci decreased in time, yet recovered by the end of the experiment. Although the emission compositions were affected in both species, the stress treatments enhanced VOC emission rates only in U. laevis. In this species, mechanical injury especially when combined with the pathogens increased the emission of lipoxygenase pathway volatiles and dimethylallyl diphosphate and geranyl diphosphate pathway volatiles. In conclusion, the more resistant species U. laevis had a more stable photosynthesis, but stronger pathogen-elicited volatile response, especially after inoculation by O. novo-ulmi subsp. novo-ulmi. Thus, stronger activation of defenses might underlay higher DED-resistance in this species.
Collapse
Affiliation(s)
- Astrid Kännaste
- Chair of Crop Science and Plant Biology, Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Kreutzwaldi 1, Tartu 51006, Estonia
| | - Liina Jürisoo
- Chair of Silviculture and Forest Ecology, Institute of Forestry and Engineering, Estonian University of Life Sciences, Kreutzwaldi 1, Tartu 51006, Estonia
| | - Eve Runno-Paurson
- Chair of Crop Science and Plant Biology, Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Kreutzwaldi 1, Tartu 51006, Estonia
| | - Kaia Kask
- Chair of Crop Science and Plant Biology, Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Kreutzwaldi 1, Tartu 51006, Estonia
| | - Eero Talts
- Chair of Crop Science and Plant Biology, Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Kreutzwaldi 1, Tartu 51006, Estonia
| | - Piret Pärlist
- Chair of Crop Science and Plant Biology, Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Kreutzwaldi 1, Tartu 51006, Estonia
| | - Rein Drenkhan
- Chair of Silviculture and Forest Ecology, Institute of Forestry and Engineering, Estonian University of Life Sciences, Kreutzwaldi 1, Tartu 51006, Estonia
| | - Ülo Niinemets
- Chair of Crop Science and Plant Biology, Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Kreutzwaldi 1, Tartu 51006, Estonia
- Estonian Academy of Sciences, Kohtu 6, Tallinn 10130, Estonia
| |
Collapse
|
4
|
Electroantennographic Responses of Wild and Laboratory-Reared Females of Xyleborus affinis Eichhoff and Xyleborus ferrugineus (Fabricius) (Coleoptera: Curculionidae: Scolytinae) to Ethanol and Bark Volatiles of Three Host-Plant Species. INSECTS 2022; 13:insects13070655. [PMID: 35886831 PMCID: PMC9320532 DOI: 10.3390/insects13070655] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 07/12/2022] [Accepted: 07/14/2022] [Indexed: 02/04/2023]
Abstract
Simple Summary The ambrosia beetles Xyleborus affinis and Xyleborus ferrugineus are wood borers reported as secondary vectors of pathogenic fungi that cause lethal vascular diseases in mango, cacao, and trees within the laurel family. The use of specific attractants or repellants is one potential method for monitoring or controlling these pests. Chemical ecology studies to develop such tools often use wild or laboratory-reared beetles without first determining whether there are differences in their responses. We compared the antennal olfactory responses of wild and laboratory-reared X. affinis and X. ferrugineus to bark odors of gumbo-limbo (Bursera simaruba), mango (Mangifera indica) and chinini (Persea schiedeana) with different aging times and used GC–MS to analyze the chemical composition of these bark odors. The antennal responses of laboratory-reared and wild females differed in X. affinis and X. ferrugineus when interacting with odors. In addition, both beetle species displayed stronger antennal responses to aged bark odors of gumbo-limbo and chinini, apparently due to changes in volatile emissions over time. Abstract Chemical ecology studies on ambrosia beetles are typically conducted with either wild or laboratory-reared specimens. Unlike laboratory-reared insects, important aspects that potentially influence behavioral responses, such as age, physiological state, and prior experience are unknown in wild specimens. In this study, we compared the electroantennographic (EAG) responses of laboratory-reared and wild X. affinis and X. ferrugineus to 70% ethanol and bark odors (host kairomones) of Bursera simaruba, Mangifera indica, and Persea schiedeana aged for 2, 24, and 48 h. Chemical analyses of each odor treatment (bark species x length of aging) were performed to determine their volatilome composition. EAG responses were different between laboratory-reared and wild X. ferrugineus when exposed to ethanol, whereas wild X. affinis exhibited similar EAG responses to the laboratory-reared insects. Ethanol elicited the strongest olfactory responses in both species. Among the bark-odors, the highest responses were triggered by B. simaruba at 48 h in X. affinis, and P. schiedeana at 24 and 48 h in X. ferrugineus. Volatile profiles varied among aged bark samples; 3-carene and limonene were predominant in B. simaruba, whereas α-copaene and α-cubebene were abundant in P. schiedeana. Further studies are needed to determine the biological function of B. simaruba and P. schiedeana terpenes on X. affinis and X. ferrugineus, and their potential application for the development of effective lures.
Collapse
|
5
|
Martini X, Hughes MA, Conover D, Smith J. Use of Semiochemicals for the Management of the Redbay Ambrosia Beetle. INSECTS 2020; 11:insects11110796. [PMID: 33202748 PMCID: PMC7698309 DOI: 10.3390/insects11110796] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 11/06/2020] [Accepted: 11/07/2020] [Indexed: 11/29/2022]
Abstract
Simple Summary Laurel wilt is a devastating exotic fungal disease that threatens avocado and related members of the laurel family in North America. This disease has killed over 300 million redbay trees and has caused cascading ecological impacts across the landscape. Management strategies, especially in natural forests, are limited. The ambrosia beetles that vector this disease respond strongly to odors produced by the trees, and our research indicates that it is possible to repel the beetles away from trees in a forest setting with the use of verbenone. Other compounds have been identified that can be used to trap the beetles. If used together, these strategies can be used to develop a single “push-pull” system to manage this disease in natural systems where other management strategies are not feasible. Abstract This review highlights current advances in the management of the redbay ambrosia beetle, Xyleborus glabratus, a primary vector of the pathogenic fungus, Raffaelea lauricola, that causes laurel wilt. Laurel wilt has a detrimental effect on forest ecosystems of southeastern USA, with hundreds of millions of Lauraceae deaths. Currently, preventive measures mostly focus on infected-tree removal to potentially reduce local beetle populations and/or use of preventative fungicide applications in urban trees. Use of semiochemicals may offer an opportunity for the management of X. glabratus. Research on attractants has led to the development of α-copaene lures that are now the accepted standards for X. glabratus sampling. Research conducted on repellents first included methyl salicylate and verbenone and attained significant reduction in the number of X. glabratus captured on redbay and swamp bay trees treated with verbenone. However, the death rate of trees protected with verbenone, while lower compared to untreated trees, is still high. This work underscores the necessity of developing new control methods, including the integration of repellents and attractants into a single push-pull system.
Collapse
Affiliation(s)
- Xavier Martini
- North Florida Research and Education Center, Department of Entomology and Nematology, University of Florida, Quincy, FL 32351, USA;
- Correspondence:
| | - Marc A. Hughes
- Pacific Cooperative Studies Unit, University of Hawai`i at Mānoa, Hilo, HI 96720, USA;
- Institute of Pacific Islands Forestry, USDA Forest Service, Hilo, HI 96720, USA
| | - Derrick Conover
- North Florida Research and Education Center, Department of Entomology and Nematology, University of Florida, Quincy, FL 32351, USA;
| | - Jason Smith
- School of Forest and Resources and Conservation, University of Florida, Gainesville, FL 32611, USA;
| |
Collapse
|
6
|
Kendra PE, Montgomery WS, Narvaez TI, Carrillo D. Comparison of Trap Designs for Detection of Euwallacea nr. fornicatus and Other Scolytinae (Coleoptera: Curculionidae) That Vector Fungal Pathogens of Avocado Trees in Florida. JOURNAL OF ECONOMIC ENTOMOLOGY 2020; 113:980-987. [PMID: 31742602 DOI: 10.1093/jee/toz311] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Indexed: 06/10/2023]
Abstract
Laurel wilt and Fusarium dieback are vascular diseases caused by fungal symbionts of invasive ambrosia beetles (Coleoptera: Curculionidae: Scolytinae). Both diseases threaten avocado trees in Florida. Redbay ambrosia beetle, Xyleborus glabratus, is the primary vector of the laurel wilt pathogen, Raffaelea lauricola, but in recent years this symbiont has been transferred laterally to at least nine other species of ambrosia beetle, which now comprise a community of secondary vectors. Dieback disease, caused by Fusarium spp. fungi, is spread by shot hole borers in the Euwallacea fornicatus species complex. In this study, we conducted field tests in Florida avocado groves to compare efficacy of four trap designs for detection of Scolytinae. Treatments included an 8-funnel Lindgren trap, black 3-vane flight interception trap, green 3-vane interception trap, white sticky panel trap, and an unbaited sticky panel (control). In two tests targeting E. nr. fornicatus and X. glabratus, traps were baited with a two-component lure (α-copaene and quercivorol). In a test targeting other species, traps were baited with a low-release ethanol lure. For E. nr. fornicatus, sticky panels and black interception traps captured significantly more beetles than Lindgren traps; captures with green traps were intermediate. With ethanol-baited traps, 20 species of bark/ambrosia beetle were detected. Trap efficacy varied by species, but in general, sticky traps captured the highest number of beetles. Results indicate that sticky panel traps are more effective for monitoring ambrosia beetles than Lindgren funnel traps, the current standard, and may provide an economical alternative for pest detection in avocado groves.
Collapse
Affiliation(s)
- Paul E Kendra
- USDA-ARS, Subtropical Horticulture Research Station, Miami, FL
| | | | | | - Daniel Carrillo
- Tropical Research and Education Center, University of Florida, Homestead, FL
| |
Collapse
|
7
|
Intelligent Supply Chain Information System Based on Internet of Things Technology under Asymmetric Information. Symmetry (Basel) 2019. [DOI: 10.3390/sym11050656] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The hardware and software designed in the traditional supply chain system lack cooperation in the transmission process, have low efficiency, and lead to a large amount of information distortion.In response to this problem, this paper proposes an intelligent supply chain information system based on the Internet of Things technology. The research focuses on the hardware and software of the system. The hardware part consists of the embedded processor CS89712, Flash7861 memory, Ethernet, touch screen, and LCD (Liquid Crystal Display). The software system is based on asymmetric information theory design and is divided into signal acquisition, input signal detection, interference signal processing, and power signal output. The experimental results show that it is compared with the traditional supply chain information system. The designed system seamlessly integrates the hardware and software components to achieve maximum information supply in the shortest amount of time. The power supply capacity is four times that of the traditional system, and the node coverage is high. When the number of data nodes is 120, the traditional supply chain system is basically unable to supply, but the supply accuracy of the intelligent supply chain is still as high as 48%. The research in this paper has certain guiding significance for intelligent technology development, supply chain system design, and enterprise information exchange.
Collapse
|