1
|
Li X, Sabbatini D, Pegoraro E, Bello L, Clemens P, Guglieri M, van den Anker J, Damsker J, McCall J, Dang UJ, Hoffman EP, Jusko WJ. Assessing Pharmacogenomic loci Associated with the Pharmacokinetics of Vamorolone in Boys with Duchenne Muscular Dystrophy. J Clin Pharmacol 2024; 64:1130-1140. [PMID: 38682893 PMCID: PMC11357888 DOI: 10.1002/jcph.2446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 03/27/2024] [Indexed: 05/01/2024]
Abstract
Human genetic variation (polymorphisms) in genes coding proteins involved in the absorption, distribution, metabolism, and elimination (ADME) of drugs can have a strong effect on drug exposure and downstream efficacy and safety outcomes. Vamorolone, a dissociative steroidal anti-inflammatory drug for treating Duchenne muscular dystrophy (DMD), primarily undergoes oxidation by CYP3A4 and CYP3A5 and glucuronidation by UDP-glucuronosyltransferases. This work assesses the pharmacokinetics (PKs) of vamorolone and sources of interindividual variability (IIV) in 81 steroid-naïve boys with DMD aged 4 to <7 years old considering the genetic polymorphisms of CYPS3A4 (CYP3A4*22, CYP3A4*1B), CYP3A5 (CYP3A5*3), and UGT1A1 (UGT1A1*60) utilizing population PK modeling. A one-compartment model with zero-order absorption (Tk0, duration of absorption), linear clearance (CL/F), and volume (V/F) describes the plasma PK data for boys with DMD receiving a wide range of vamorolone doses (0.25-6 mg/kg/day). The typical CL/F and V/F values of vamorolone were 35.8 L/h and 119 L, with modest IIV. The population Tk0 was 3.14 h yielding an average zero-order absorption rate (k0) of 1.16 mg/kg/h with similar absorption kinetics across subjects at the same vamorolone dose (i.e., no IIV on Tk0). The covariate analysis showed that none of the genetic covariates had any significant impact on the PKs of vamorolone in boys with DMD. Thus, the PKs of vamorolone is very consistent in these young boys with DMD.
Collapse
Affiliation(s)
- Xiaonan Li
- Department of Pharmaceutical Sciences, University at Buffalo, State University of New York, Buffalo, NY, USA
| | | | - Elena Pegoraro
- Department of Neurosciences, University of Padova, Padua, Italy
| | - Luca Bello
- Department of Neurosciences, University of Padova, Padua, Italy
| | - Paula Clemens
- Department of Neurology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Michela Guglieri
- John Walton Centre for Neuromuscular Disease, Newcastle University and Newcastle Hospitals NHS Foundation Trust, Newcastle-upon-Tyne, UK
| | - John van den Anker
- Division of Clinical Pharmacology, Children’s National Hospital, Washington, DC, USA
- ReveraGen BioPharma, Rockville, MD, USA
| | | | | | - Utkarsh J. Dang
- Department of Health Sciences, Carleton University, Ottawa, Canada
| | - Eric P. Hoffman
- ReveraGen BioPharma, Rockville, MD, USA
- Department of Pharmaceutical Sciences, Binghamton University, State University of New York, Binghamton, NY, USA
| | - William J. Jusko
- Department of Pharmaceutical Sciences, University at Buffalo, State University of New York, Buffalo, NY, USA
| |
Collapse
|
2
|
Hoste E, Haufroid V, Deldicque L, Balligand JL, Elens L. Atorvastatin-associated myotoxicity: A toxicokinetic review of pharmacogenetic associations to evaluate the feasibility of precision pharmacotherapy. Clin Biochem 2024; 124:110707. [PMID: 38182100 DOI: 10.1016/j.clinbiochem.2024.110707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 01/02/2024] [Accepted: 01/02/2024] [Indexed: 01/07/2024]
Abstract
Atorvastatin (ATV) and other statins are highly effective in reducing cholesterol levels. However, in some patients, the development of drug-associated muscle side effects remains an issue as it compromises the adherence to treatment. Since the toxicity is dose-dependent, exploring factors modulating pharmacokinetics (PK) appears fundamental. The purpose of this review aims at reporting the current state of knowledge about the singular genetic susceptibilities influencing the risk of developing ATV muscle adverse events through PK modulations. Multiple single nucleotide polymorphisms (SNP) in efflux (ABCB1, ABCC1, ABCC2, ABCC4 and ABCG2) and influx (SLCO1B1, SLCO1B3 and SLCO2B1) transporters have been explored for their association with ATV PK modulation or with statin-related myotoxicities (SRM) development. The most convincing pharmacogenetic association with ATV remains the influence of the rs4149056 (c.521 T > C) in SLCO1B1 on ATV PK and pharmacodynamics. This SNP has been robustly associated with increased ATV systemic exposure and consequently, an increased risk of SRM. Additionally, the SNP rs2231142 (c.421C > A) in ABCG2 has also been associated with increased drug exposure and higher risk of SRM occurrence. SLCO1B1 and ABCG2 pharmacogenetic associations highlight that modulation of ATV systemic exposure is important to explain the risk of developing SRM. However, some novel observations credit the hypothesis that additional genes (e.g. SLCO2B1 or ABCC1) might be important for explaining local PK modulations within the muscle tissue, indicating that studying the local PK directly at the skeletal muscle level might pave the way for additional understanding.
Collapse
Affiliation(s)
- Emilia Hoste
- Integrated PharmacoMetrics, pharmacoGenomics and Pharmacokinetics, Louvain Drug Research Institute (LDRI), Université Catholique de Louvain (UCLouvain), Brussels 1200, Belgium; Louvain Center for Toxicology and Applied Pharmacology, Institut de recherche expérimentale et clinique (IREC), Université Catholique de Louvain (UCLouvain), Brussels, Belgium
| | - Vincent Haufroid
- Louvain Center for Toxicology and Applied Pharmacology, Institut de recherche expérimentale et clinique (IREC), Université Catholique de Louvain (UCLouvain), Brussels, Belgium; Department of Clinical Chemistry, Cliniques Universitaires Saint-Luc, Brussels, Belgium
| | - Louise Deldicque
- Institute of Neuroscience (IoNS), Université Catholique de Louvain (UCLouvain), Louvain-la-Neuve 1348, Belgium
| | - Jean-Luc Balligand
- Pole of Pharmacology and Therapeutics (FATH), Institute of Experimental and Clinical Research (IREC), Université Catholique de Louvain (UCLouvain), Brussels, Belgium
| | - Laure Elens
- Integrated PharmacoMetrics, pharmacoGenomics and Pharmacokinetics, Louvain Drug Research Institute (LDRI), Université Catholique de Louvain (UCLouvain), Brussels 1200, Belgium; Louvain Center for Toxicology and Applied Pharmacology, Institut de recherche expérimentale et clinique (IREC), Université Catholique de Louvain (UCLouvain), Brussels, Belgium.
| |
Collapse
|
3
|
Wanas H, Kamel MH, William EA, Fayad T, Abdelfattah ME, Elbadawy HM, Mikhael ES. The impact of CYP3A4 and CYP3A5 genetic variations on tacrolimus treatment of living-donor Egyptian kidney transplanted patients. J Clin Lab Anal 2023; 37:e24969. [PMID: 37789683 PMCID: PMC10681408 DOI: 10.1002/jcla.24969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 08/21/2023] [Accepted: 09/20/2023] [Indexed: 10/05/2023] Open
Abstract
BACKGROUND Tacrolimus (TAC) is the mainstay of immunosuppressive regimen for kidney transplantations. Its clinical use is complex due to high inter-individual variations which can be partially attributed to genetic variations at the metabolizing enzymes CYP3A4 and CYP3A5. Two single nucleotide polymorphisms (SNPs), CYP3A4*22 and CYP3A5*3, have been reported as important causes of differences in pharmacokinetics that can affect efficacy and/or toxicity of TAC. OBJECTIVE Investigating the effect of CYP3A4*22 and CYP3A5*3 SNPs individually and in combination on the TAC concentration in Egyptian renal recipients. METHODS Overall, 72 Egyptian kidney transplant recipients were genotyped for CYP3A4*22 G>A and CYP3A5*3 T>C. According to the functional defect associated with CYP3A variants, patients were clustered into: poor (PM) and non-poor metabolizers (Non-PM). The impact on dose adjusted through TAC concentrations (C0) and daily doses at different time points after transplantation was evaluated. RESULTS Cyp3A4*1/*22 and PM groups require significantly lower dose of TAC (mg/kg) at different time points with significantly higher concentration/dose (C0/D) ratio at day 10 in comparison to Cyp3A4*1/*1 and Non-PM groups respectively. However, CyP3A5*3 heterozygous individuals did not show any significant difference in comparison to CyP3A5*1/*3 individuals. By comparing between PM and Non-PM, the PM group had a significantly lower rate of recipients not reaching target C0 at day 14. CONCLUSION This is the first study on Egyptian population to investigate the impact of CYP3A4*22 and CYP3A5*3 SNPs individually and in combination on the TAC concentration. This study and future multicenter studies can contribute to the individualization of TAC dosing in Egyptian patients.
Collapse
Affiliation(s)
- Hanaa Wanas
- Medical Pharmacology DepartmentFaculty of Medicine Cairo UniversityCairoEgypt
- Pharmacology and Toxicology Department, Faculty of PharmacyTaibah UniversityMadinahSaudi Arabia
| | - Mai Hamed Kamel
- Clinical and Chemical Pathology DepartmentFaculty of Medicine Cairo UniversityCairoEgypt
| | - Emad Adel William
- National Research Centre, Medical Research and Clinical Studies InstituteCairoEgypt
| | - Tarek Fayad
- Internal Medicine DepartmentFaculty of Medicine Cairo UniversityCairoEgypt
| | | | | | - Emily Samir Mikhael
- Clinical and Chemical Pathology DepartmentFaculty of Medicine Cairo UniversityCairoEgypt
| |
Collapse
|
4
|
Simvastatin Inhibits Endometrial Cancer Malignant Behaviors by Suppressing RAS/Mitogen-Activated Protein Kinase (MAPK) Pathway-Mediated Reactive Oxygen Species (ROS) and Ferroptosis. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:6177477. [PMID: 36276874 PMCID: PMC9586725 DOI: 10.1155/2022/6177477] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 09/09/2022] [Accepted: 09/29/2022] [Indexed: 12/03/2022]
Abstract
This paper was designed to explore the function of simvastatin as a chemotherapeutic drug on the endometrial cancer (EC) cell proliferation, invasion, and ferroptosis. Firstly, a number of in vitro experiments were conducted to determine the impact of different treatments of simvastatin on the Ishikawa cell invasion, proliferation, and colony formation. The concentration of DCFH-DA-labeled reactive oxygen species (ROS) in cells was assessed by flow cytometry. Enzyme-linked immunosorbent assay (ELISA) was performed to examine the intracellular contents of Fe2+, malondialdehyde (MDA), and glutathione (GSH). Additionally, Western blot was utilized to measure the expression level of RAS/mitogen-activated protein kinase (MAPK)-related proteins and ferroptosis-related proteins in cells. The results showed that simvastatin at 10 μM and 15 μM apparently suppressed the proliferation of Ishikawa cells, colony formation, and invasion ability of Ishikawa cells, and upregulated the level of MDA and ROS, but downregulated the level of GSH. Besides, 10 μM and 15 μM of simvastatin promoted cell ferroptosis (up-regulation of Fe2+ and TRF 1 protein level; down-regulation of SLC7A11 and FPN protein level) and lowered the RAS, p-MEK, and ERK protein level. Furthermore, experiments also revealed that the inhibitory effects of simvastatin on Ishikawa cell proliferation, colony formation, and invasion, as well as the promoting effects on oxidation and ferroptosis were reversed. All in all, simvastatin reduces the RAS/MAPK signaling pathway to inhibit Ishikawa cell proliferation, colony formation, and invasion, and promote cell oxidation and ferroptosis. This paper demonstrates the potential of simvastatin as a new anticancer drug for EC.
Collapse
|
5
|
Elalem EG, Jelani M, Khedr A, Ahmad A, Alaama TY, Alaama MN, Al-Kreathy HM, Damanhouri ZA. Association of cytochromes P450 3A4*22 and 3A5*3 genotypes and polymorphism with response to simvastatin in hypercholesterolemia patients. PLoS One 2022; 17:e0260824. [PMID: 35839255 PMCID: PMC9286239 DOI: 10.1371/journal.pone.0260824] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Accepted: 11/17/2021] [Indexed: 11/18/2022] Open
Abstract
BACKGROUNDS Inter-individual variability in response to statin was mainly due to genetic differences. This study aimed to investigate the association of CYP3A4*22 (rs35599367), CYP3A5*3 (rs776746) single nucleotide polymorphism (SNP) with response to simvastatin in hypercholesterolemia patients conducted at King Abdulaziz University hospital (KAUH) in Jeddah, Saudi Arabia. PATIENTS AND METHODS A total of 274 participants were registered in the current study. Hypercholesterolemic patients taking simvastatin 20 mg (n = 148) and control subjects (n = 126) were tested for rs35599367 and rs776746 genotypes using Custom Taqman ® Assay Probes. Response to simvastatin in these patients was assessed by determination of low density lipoprotein (LDL-C), total cholesterol (TC) and by measuring statin plasma levels using Liquid Chromatography-Mass Spectrometry (LC-MS). RESULTS None of the participants carried a homozygous CYP3A4*22 mutant genotype, while 12 (4.4%) individuals had a heterozygous genotype and 262 (95.6%) had a wild homozygous genotype. The CYP3A5*3 allele was detected in the homozygous mutant form in 16 (5.8%) individuals, while 74 (27.0%) individuals carried the heterozygous genotype and 184 (67.2%) carried the wildtype homozygous genotype. Of the patient group, 15 (11%) were classified as intermediate metabolizers (IMs) and 133 (89%) as extensive metabolizers (EMs). Plasma simvastatin concentrations for the combined CYP3A4/5 genotypes were significantly (P<0.05) higher in the IMs group than in the EMs group. TC and plasma LDL-C levels were also significantly (P<0.05) higher in IMs than in EMs. CONCLUSION The present study showed associations between CYP3A4*22 (rs35599367) and CYP3A5*3 (rs776746) SNP combination genotypes with response to statins in hypercholesterolemia. Patients who had either a mutant homozygous allele for CYP3A5*3 or mutant homozygous and heterozygous alleles for CYP3A4*22 showed increased response to lower TC and LDL-C levels.
Collapse
Affiliation(s)
- Elbatool G. Elalem
- Department of Pharmacology, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Musharraf Jelani
- Department of Genetic Medicine, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
- Princess Al-Jawhara Center of Excellence in Research of Hereditary Disorders, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Alaa Khedr
- Department of Analytical Chemistry, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Aftab Ahmad
- Health Information Technology Department, Jeddah Community College, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Tareef Y. Alaama
- Department of Medicine, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Mohamed Nabeel Alaama
- Department of Medicine, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Huda M. Al-Kreathy
- Department of Pharmacology, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Zoheir A. Damanhouri
- Department of Pharmacology, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
6
|
Abstract
The choice of lipid-modifying treatment is largely based on the absolute level of cardiovascular risk and baseline lipid profile. Statins are the first-line treatment for most patients requiring reduction of low-density-lipoprotein cholesterol (LDL-C) and ezetimibe and proprotein convertase subtilisin/kexin type 9 inhibitors can be added to reach LDL-C targets. Statins have some adverse effects that are somewhat predictable based on phenotypic and genetic factors. Fibrates or omega-3 fatty acids can be added if triglyceride levels remain elevated. The RNA-targeted therapeutics in development offer the possibility of selective liver targeting for specific lipoproteins such as lipoprotein(a) and long-term reduction of LDL-C with infrequent administration of a small-interfering RNA may help to overcome the problem of adherence to therapy.
Collapse
Affiliation(s)
- Brian Tomlinson
- Faculty of Medicine, Macau University of Science & Technology, Macau 999078, PR China
| | - Chen-Hsiu Lin
- Division of Cardiovascular Medicine, Department of Internal Medicine, Wan Fang Hospital, Taipei Medical University, Taipei City, Taiwan
| | - Paul Chan
- Division of Cardiovascular Medicine, Department of Internal Medicine, Wan Fang Hospital, Taipei Medical University, Taipei City, Taiwan
| | - Christopher Wk Lam
- Faculty of Medicine, Macau University of Science & Technology, Macau 999078, PR China
| |
Collapse
|
7
|
Gao S, Bell EC, Zhang Y, Liang D. Racial Disparity in Drug Disposition in the Digestive Tract. Int J Mol Sci 2021; 22:1038. [PMID: 33494365 PMCID: PMC7865938 DOI: 10.3390/ijms22031038] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 01/17/2021] [Accepted: 01/18/2021] [Indexed: 12/13/2022] Open
Abstract
The major determinants of drug or, al bioavailability are absorption and metabolism in the digestive tract. Genetic variations can cause significant differences in transporter and enzyme protein expression and function. The racial distribution of selected efflux transporter (i.e., Pgp, BCRP, MRP2) and metabolism enzyme (i.e., UGT1A1, UGT1A8) single nucleotide polymorphisms (SNPs) that are highly expressed in the digestive tract are reviewed in this paper with emphasis on the allele frequency and the impact on drug absorption, metabolism, and in vivo drug exposure. Additionally, preclinical and clinical models used to study the impact of transporter/enzyme SNPs on protein expression and function are also reviewed. The results showed that allele frequency of the major drug efflux transporters and the major intestinal metabolic enzymes are highly different in different races, leading to different drug disposition and exposure. The conclusion is that genetic polymorphism is frequently observed in different races and the related protein expression and drug absorption/metabolism function and drug in vivo exposure can be significantly affected, resulting in variations in drug response. Basic research on race-dependent drug absorption/metabolism is expected, and FDA regulations of drug dosing adjustment based on racial disparity are suggested.
Collapse
Affiliation(s)
- Song Gao
- Department of Pharmaceutical Science, College of Pharmacy and Health Sciences, Texas Southern University, 3100 Cleburne Street, Houston, TX 77004, USA; (E.C.B.); (Y.Z.); (D.L.)
| | | | | | | |
Collapse
|
8
|
Ahern TP, Damkier P, Feddersen S, Kjærsgaard A, Lash TL, Hamilton-Dutoit S, Lythjohan CB, Ejlertsen B, Christiansen PM, Cronin-Fenton DP. Predictive pharmacogenetic biomarkers for breast cancer recurrence prevention by simvastatin. Acta Oncol 2020; 59:1009-1015. [PMID: 32351149 DOI: 10.1080/0284186x.2020.1759820] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Background: Statins treat hyperlipidemia and prevent cardiovascular morbidity and mortality. Evidence suggests that they also have anti-neoplastic activity. Several studies show a reduced rate of breast cancer recurrence among lipophilic statin users (e.g., simvastatin), motivating calls for clinical trials of statins in breast cancer patients. We measured the impact of genetic variation in statin-metabolizing enzymes and drug transporters on the recurrence rate in simvastatin-treated breast cancer patients.Methods: We conducted a nested case-control study among Danish women diagnosed with non-metastatic, invasive breast cancer between 2004-2010 who had filled ≥1 prescription for simvastatin after diagnosis. Cases were all breast cancer recurrences from the source population; one control was matched to each case on cancer stage, estrogen receptor and hormone therapy status, calendar period of diagnosis, and duration of simvastatin exposure. We genotyped variants in simvastatin-metabolizing enzymes (CYP3A4/rs35599367 and CYP3A5/rs776746) and drug transporters (ABCB1/rs2032582 and SLCO1B1/rs4149056), and estimated their association with recurrence with logistic regression models.Results: We observed protective (though imprecisely-measured) associations between variants in genes encoding drug transporters (ABCB1 and SLCO1B1) and simvastatin-metabolizing enzymes (CYP3A4 and CYP3A5) and breast cancer recurrence in simvastatin-treated women. For example, carrying two variant alleles in ABCB1 was associated with a 31% lower rate of recurrence (multivariable OR = 0.69, 95% CI: 0.31, 1.5).Conclusion: Our study provides weak evidence to support the use of genetic variation in ABCB1, SLCO1B1, CYP3A4, and CYP3A5 as biomarkers of breast tumor response to simvastatin. Validation of these findings within adjuvant clinical trials is encouraged.
Collapse
Affiliation(s)
- Thomas P. Ahern
- Departments of Surgery and Biochemistry, Larner College of Medicine, University of Vermont, Burlington, VT, USA
| | - Per Damkier
- Department of Clinical Biochemistry and Pharmacology, Odense University Hospital, Odense, Denmark
- Department of Clinical Research, University of Southern Denmark, Odense, Denmark
| | - Søren Feddersen
- Department of Clinical Biochemistry and Pharmacology, Odense University Hospital, Odense, Denmark
- Department of Clinical Research, University of Southern Denmark, Odense, Denmark
| | - Anders Kjærsgaard
- Department of Clinical Epidemiology, Aarhus University Hospital/Randers Regional Hospital, Aarhus, Denmark
| | - Timothy L. Lash
- Department of Epidemiology, Rollins School of Public Health and Winship Cancer Institute, Emory University, Atlanta, GA, USA
| | | | | | - Bent Ejlertsen
- Danish Breast Cancer Group, Rigshospitalet, Copenhagen, Denmark
- Department of Oncology, Rigshospitalet, Copenhagen, Denmark
| | - Peer M. Christiansen
- Danish Breast Cancer Group, Rigshospitalet, Copenhagen, Denmark
- Department of Plastic and Breast Surgery, Aarhus University Hospital, Aarhus, Denmark
| | - Deirdre P. Cronin-Fenton
- Department of Clinical Epidemiology, Aarhus University Hospital/Randers Regional Hospital, Aarhus, Denmark
| |
Collapse
|
9
|
Effect of the Most Relevant CYP3A4 and CYP3A5 Polymorphisms on the Pharmacokinetic Parameters of 10 CYP3A Substrates. Biomedicines 2020; 8:biomedicines8040094. [PMID: 32331352 PMCID: PMC7235792 DOI: 10.3390/biomedicines8040094] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 04/16/2020] [Accepted: 04/20/2020] [Indexed: 12/14/2022] Open
Abstract
Several cytochrome P450 (CYP) CYP3A polymorphisms were associated with reduced enzyme function. We aimed to evaluate the influence of these alleles on the pharmacokinetic parameters (PK) of several CYP3A substrates. We included 251 healthy volunteers who received a single dose of ambrisentan, atorvastatin, imatinib, aripiprazole, fentanyl, amlodipine, donepezil, olanzapine, fesoterodine, or quetiapine. The volunteers were genotyped for CYP3A4 and CYP3A5 polymorphisms by qPCR. To compare the PK across studies, measurements were corrected by the mean of each parameter for every drug and were logarithmically transformed. Neither CYP3A phenotype nor individual CYP3A4 or CYP3A5 polymorphisms were significantly associated with differences in PK. However, regarding the substrates that are exclusively metabolized by CYP3A, we observed a higher normalized AUC (p = 0.099) and a tendency of lower normalized Cl (p = 0.069) in CYP3A4 mutated allele carriers what was associated with diminished drug metabolism capacity. CYP3A4 polymorphisms did not show a pronounced influence on PK of the analysed drugs. If so, their impact could be detectable in a very small percentage of subjects. Although there are few subjects carrying CYP3A4 double mutations, the effect in those might be relevant, especially due to the majority of subjects lacking the CYP3A5 enzyme. In heterozygous subjects, the consequence might be less noticeable due to the high inducible potential of the CYP3A4 enzyme.
Collapse
|
10
|
Hosseinnejad K, Yin T, Gaskins JT, Stauble ME, Wu Y, Jannetto P, Langman LL, Jortani SA. Lack of Influence by CYP3A4 and CYP3A5 Genotypes on Pain Relief by Hydrocodone in Postoperative Cesarean Section Pain Management. J Appl Lab Med 2019; 3:954-964. [DOI: 10.1373/jalm.2018.026070] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Accepted: 07/13/2018] [Indexed: 12/22/2022]
Abstract
Abstract
Background
Genetic polymorphisms of cytochrome P450 are contributors to variability in individual response to drugs. Within the P450 family, CYP2D6 is responsible for metabolizing hydrocodone, a widely prescribed opioid for pain management. Alternatively, CYP3A4 and CYP3A5 can form norhydrocodone and dihydrocodeine. We have previously found that in a postcesarean section cohort, the rate of hydromorphone formation was dependent on the genotype of CYP2D6 and that plasma hydromorphone, not hydrocodone, was predictive of pain relief.
Method
Blood was obtained from a postcesarean cohort that were surveyed for pain response and common side effects. Plasma samples were genotyped for CYP3A4/5, and their hydrocodone concentrations were measured by LC-MS. R statistical software was used to check for differences in the outcomes due to CYP3A4/5 and CYP2D6, and a multivariate regression model was fit to determine factors associated with pain score.
Results
Two-way ANOVA between CYP3A4/A5 and CYP2D6 phenotypes revealed that the former variants did not have a statistical significance on the outcomes, and only CYP2D6 phenotypes had a significant effect on total dosage (P = 0.041). Furthermore, a 3-way ANOVA analysis showed that CYP2D6 (P = 0.036) had a predictive effect on plasma hydromorphone concentrations, and CYP3A4/A5 did not have any effect on the measured outcomes.
Conclusions
With respect to total dosages in a cesarean section population, these results confirm that CYP2D6 phenotypes are predictors for plasma hydromorphone concentration and pain relief, but CYP3A4/A5 phenotypes have no influence on pain relief or on side effects.
Collapse
Affiliation(s)
| | - Tyler Yin
- Department of Pathology, University of Louisville, Louisville, KY
| | - Jeremy T Gaskins
- Department of Bioinformatics and Biostatistics, University of Louisville, Louisville, KY
| | - M Elaine Stauble
- Department of General Obstetrics, Gynecology, and Women's Health, University of Louisville, Louisville, KY
| | - Yanhong Wu
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN
| | - Paul Jannetto
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN
| | - Loralie L Langman
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN
| | - Saeed A Jortani
- Department of Pathology, University of Louisville, Louisville, KY
| |
Collapse
|
11
|
Giacomelli A, Riva A, Falvella FS, Oreni ML, Cattaneo D, Cheli S, Renisi G, Di Cristo V, Lupo A, Clementi E, Rusconi S, Galli M, Ridolfo AL. Clinical and genetic factors associated with increased risk of severe liver toxicity in a monocentric cohort of HIV positive patients receiving nevirapine-based antiretroviral therapy. BMC Infect Dis 2018; 18:556. [PMID: 30419834 PMCID: PMC6233541 DOI: 10.1186/s12879-018-3462-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Accepted: 10/31/2018] [Indexed: 01/05/2023] Open
Abstract
Background Nevirapine has been used as antiretroviral agent since early ‘90. Although nevirapine is not currently recommended in initial anti-HIV regimens, its use remains consistent in a certain number of HIV-1-positive subjects. Thus, our aim was to determine clinical and genetic factors involved in the development of severe nevirapine induced liver toxicity. Methods We retrospectively analyzed all HIV positive patients who were followed at the Infectious Diseases Unit, DIBIC Luigi Sacco, University of Milan from May 2011 to December 2015. All patients treated with nevirapine who underwent a genotyping for the functional variants mapping into ABCB1, CYP2B6, CYP3A4 and CYP3A5 genes were included in the analysis. Severe hepatotoxicity was defined as ACTG grade 3–4 AST/ALT increase during the first three months of nevirapine treatment. The causality assessment between NVP exposure and drug-induced liver injury was performed by using the updated Roussel Uclaf Causality Assessment Methods. Hardy Weinberg equilibrium was tested by χ2 test. A multivariable logistic regression model was constructed using a backward elimination method. Results Three hundred and sixty-two patients were included in the analysis, of which 8 (2.2%) experienced a severe liver toxicity. We observed no differences between patients with and without liver toxicity as regards gender, ethnicity, age and immune-virological status. A higher prevalence of HCV coinfection (75.0% vs 30.2%; p = .0013) and higher baseline AST (58 IU/L vs 26 IU/L; p = 0.041) and ALT (82 IU/L vs 27 IU/L; p = 0.047) median levels were observed in patients with liver toxicity vs those without toxicity. The genotypes CT/TT at ABCB1 rs1045642 single nucleotide polymorphism (SNP), showed a protective effect for liver toxicity when compared with genotype CC (OR = 0.18, 95%CI 0.04–0.76; p = 0.020) in univariate analysis. In the multivariate model, HCV coinfection was independently associated with higher risk of developing liver toxicity (aOR = 8.00, 95%CI 1.27–50.29; p = 0.027), whereas ABCB1 rs1045642 CT/TT genotypes (aOR = 0.10, 95%CI 0.02–0.47; p = 0.004) was associated with a lower risk. Conclusions According to our findings HCV coinfection and ABCB1 rs1045642 SNP represent independent determinants of severe liver toxicity related to nevirapine. This genetic evaluation could be included as toxicity assessment in HIV-1-positive subjects treated with nevirapine.
Collapse
Affiliation(s)
- Andrea Giacomelli
- Infectious Diseases Unit, DIBIC Luigi Sacco - University of Milan, Via G.B. Grassi, 74, 20157, Milan, Italy.
| | - Agostino Riva
- Infectious Diseases Unit, DIBIC Luigi Sacco - University of Milan, Via G.B. Grassi, 74, 20157, Milan, Italy
| | | | - Maria Letizia Oreni
- Infectious Diseases Unit, DIBIC Luigi Sacco - University of Milan, Via G.B. Grassi, 74, 20157, Milan, Italy
| | - Dario Cattaneo
- ASST Fatebenefratelli-Sacco, Clinical Pharmacology Unit, Milan, Italy
| | - Stefania Cheli
- ASST Fatebenefratelli-Sacco, Clinical Pharmacology Unit, Milan, Italy
| | - Giulia Renisi
- Infectious Diseases Unit, DIBIC Luigi Sacco - University of Milan, Via G.B. Grassi, 74, 20157, Milan, Italy
| | - Valentina Di Cristo
- Infectious Diseases Unit, DIBIC Luigi Sacco - University of Milan, Via G.B. Grassi, 74, 20157, Milan, Italy
| | - Angelica Lupo
- Infectious Diseases Unit, DIBIC Luigi Sacco - University of Milan, Via G.B. Grassi, 74, 20157, Milan, Italy
| | - Emilio Clementi
- ASST Fatebenefratelli-Sacco, Clinical Pharmacology Unit, Milan, Italy.,E. Medea Scientific Institute, Bosisio Parini, Italy
| | - Stefano Rusconi
- Infectious Diseases Unit, DIBIC Luigi Sacco - University of Milan, Via G.B. Grassi, 74, 20157, Milan, Italy
| | - Massimo Galli
- Infectious Diseases Unit, DIBIC Luigi Sacco - University of Milan, Via G.B. Grassi, 74, 20157, Milan, Italy
| | - Anna Lisa Ridolfo
- Infectious Diseases Unit, DIBIC Luigi Sacco - University of Milan, Via G.B. Grassi, 74, 20157, Milan, Italy
| |
Collapse
|
12
|
Giacomelli A, Rusconi S, Falvella FS, Oreni ML, Cattaneo D, Cozzi V, Renisi G, Monge E, Cheli S, Clementi E, Riva A, Galli M, Ridolfo AL. Clinical and genetic determinants of nevirapine plasma trough concentration. SAGE Open Med 2018; 6:2050312118780861. [PMID: 29899984 PMCID: PMC5992792 DOI: 10.1177/2050312118780861] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Accepted: 05/14/2018] [Indexed: 01/11/2023] Open
Abstract
Background: Only few data are available on the influence of CYP2B6 and CYP3A4/A5 polymorphisms on nevirapine plasma concentrations in the Caucasian population. Our aim was to assess the impact of CYP2B6 and CYP3A4/A5 polymorphisms on nevirapine plasma concentrations consecutively collected. Methods: We retrospectively analyzed clinical data of all HIV-positive patients who were followed at the Infectious Diseases Unit, DIBIC Luigi Sacco, University of Milan between January 2000 and December 2015. All patients with at least one nevirapine plasma trough concentration (NVP Cmin) determination were tested for CYP2B6 c.516 G>T, CYP3A4*22C>T and CYP3A5*3 A>G polymorphisms. Univariate and multivariate regression analyses were carried out considering NVP Cmin as the dependent variable and genetic polymorphisms and clinical characteristics as independent variables. Results: A total of 143 patients were evaluated. Most of them were males (61.5%) and Caucasian (92.3%). Overall, NVP Cmin varied from 1571 to 14,189 ng/mL (median = 5063 ng/mL, interquartile range = 3915–6854). The median NVP Cmin significantly differed in patients with different CYP2B6 genotypes, but did not vary in those with different CYP3A phenotypes. In the final general linear model, factors significantly associated with a higher NVP Cmin were each extra unit of T alleles of CYP2B6 rs3745274 (β = 0.328, 95% confidence interval = 0.172–0.484; p < 0.0001), older age (β = 0.362, 95% confidence interval = 0.193–0.532; p < 0.0001) and hepatitis C virus coinfection (β = 0.161, 95% confidence interval = 0.006–0.315; p < 0.041). Conclusion: Our study, conducted in a prevalent Caucasian population, highlighted the importance of CYP2B6 genetic variants in influencing nevirapine plasma trough concentration. Furthermore, older age and hepatitis C virus coinfection significantly increase exposure to nevirapine.
Collapse
Affiliation(s)
- Andrea Giacomelli
- Infectious Diseases Unit, Department of Biomedical and Clinical Sciences "Luigi Sacco," University of Milan, Milan, Italy
| | - Stefano Rusconi
- Infectious Diseases Unit, Department of Biomedical and Clinical Sciences "Luigi Sacco," University of Milan, Milan, Italy
| | | | - Maria Letizia Oreni
- Infectious Diseases Unit, Department of Biomedical and Clinical Sciences "Luigi Sacco," University of Milan, Milan, Italy
| | - Dario Cattaneo
- Clinical Pharmacology Unit, ASST Fatebenefratelli Sacco, Milan, Italy
| | - Valeria Cozzi
- Clinical Pharmacology Unit, ASST Fatebenefratelli Sacco, Milan, Italy
| | - Giulia Renisi
- Infectious Diseases Unit, Department of Biomedical and Clinical Sciences "Luigi Sacco," University of Milan, Milan, Italy
| | - Elisa Monge
- Infectious Diseases Unit, Department of Biomedical and Clinical Sciences "Luigi Sacco," University of Milan, Milan, Italy
| | - Stefania Cheli
- Clinical Pharmacology Unit, ASST Fatebenefratelli Sacco, Milan, Italy
| | - Emilio Clementi
- Clinical Pharmacology Unit, ASST Fatebenefratelli Sacco, Milan, Italy.,Eugenio Medea Scientific Institute, Bosisio Parini, Italy
| | - Agostino Riva
- Infectious Diseases Unit, Department of Biomedical and Clinical Sciences "Luigi Sacco," University of Milan, Milan, Italy
| | - Massimo Galli
- Infectious Diseases Unit, Department of Biomedical and Clinical Sciences "Luigi Sacco," University of Milan, Milan, Italy
| | - Anna Lisa Ridolfo
- Infectious Diseases Unit, Department of Biomedical and Clinical Sciences "Luigi Sacco," University of Milan, Milan, Italy
| |
Collapse
|
13
|
Reynolds KK, Pierce DL, Weitendorf F, Linder MW. Avoidable drug-gene conflicts and polypharmacy interactions in patients participating in a personalized medicine program. Per Med 2017; 14:221-233. [PMID: 29767587 DOI: 10.2217/pme-2016-0095] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
AIM Determine the ability of a pharmacogenetic service, PRIMER, to identify drug-gene (DGI) and drug-drug interactions (DDI) in patients across multiple conditions. PRIMER consists of patient selection criteria, a gene panel and actionable guidance for DGIs and DDIs. RESULTS The average patient was prescribed 12 medications. PRIMER identified significant DGIs in 73% of patients tested, with 43% having more than one DGI. DDIs were found in 87% of patients. The most common actionable DGIs were for opioid, psychotropic and cardiovascular medications. CONCLUSION The pairing of patient selection criteria, a multigene panel with evidence-based interpretation and review of DDIs maximizes the patients tested who have actionable benefit and alerts physicians to potentially critical adjustments needed for the patient's medication regimen.
Collapse
Affiliation(s)
- Kristen K Reynolds
- PGXL Laboratories, Louisville, KY 40202, USA.,University of Louisville School of Medicine, Department of Pathology & Laboratory Medicine, Louisville, KY USA 40292
| | | | - Frederick Weitendorf
- PGXL Laboratories, Louisville, KY 40202, USA.,Robley Rex VA Medical Center, Louisville, KY 40206, USA
| | - Mark W Linder
- PGXL Laboratories, Louisville, KY 40202, USA.,University of Louisville School of Medicine, Department of Pathology & Laboratory Medicine, Louisville, KY USA 40292
| |
Collapse
|
14
|
Zhao G, Liu M, Wu X, Li G, Qiu F, Gu J, Zhao L. Effect of polymorphisms in CYP3A4, PPARA, NR1I2, NFKB1, ABCG2 and SLCO1B1 on the pharmacokinetics of lovastatin in healthy Chinese volunteers. Pharmacogenomics 2016; 18:65-75. [PMID: 27967318 DOI: 10.2217/pgs.16.31] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
AIM This study examined whether gene polymorphisms (CYP3A4, ABCG2, SLCO1B1, NR1I2, PPARA and NFKB1) influenced the pharmacokinetics of lovastatin in Chinese healthy subjects. PATIENTS & METHOD Plasma concentrations of lovastatin and lovastatin acid were quantified using LC/MS/MS. RESULTS PPARA c.208+3819 G allele carriers had approximately twofold higher AUC0-∞ and Cmax of lovastatin than wild-type (PPARA c.208+3819 AA) subjects. After adjustment for the PPARA variants, subjects with the SLCO1B1 521TT genotype had approximately 50% lower AUC0-∞ of lovastatin acid than those with 521TC/CC genotypes, while the AUC0-∞ of lovastatin lactone in NFKB1-94 DD wild-type carriers was twofold higher than in mutant homozygotes carriers. CONCLUSION Gene polymorphisms of PPARA, SLCO1B1 and NFKB1 affected the pharmacokinetics of lovastatin.
Collapse
Affiliation(s)
- Guilian Zhao
- Department of Pharmacy, Shengjing Hospital of China Medical University, No. 36 Sanhao Street Heping District, Shenyang 110004, China.,Department of Pharmacology, Shenyang Pharmaceutical University, No. 103 Wenhua Road Shenhe District, Shenyang 110016, China
| | - Mei Liu
- Department of Pharmacy, Shengjing Hospital of China Medical University, No. 36 Sanhao Street Heping District, Shenyang 110004, China.,Department of Clinical Pharmacy, Shenyang Pharmaceutical University, No. 103 Wenhua Road Shenhe District, Shenyang 110016, China
| | - Xiujun Wu
- Laboratory of Clinical Pharmacokinetics of TCM, Affiliated Hospital of Liaoning University of Traditional Chinese Medicine, No. 33 Beiling Street Huanggu District, Shenyang 110032, China
| | - Guofei Li
- Department of Pharmacy, Shengjing Hospital of China Medical University, No. 36 Sanhao Street Heping District, Shenyang 110004, China
| | - Feng Qiu
- Department of Pharmacy, Shengjing Hospital of China Medical University, No. 36 Sanhao Street Heping District, Shenyang 110004, China
| | - Jingkai Gu
- Research Center for Drug Metabolism, College of Life Science, Jilin University, No. 2699 Qianjin Street Chaoyang District, Changchun 130021, China
| | - Limei Zhao
- Department of Pharmacy, Shengjing Hospital of China Medical University, No. 36 Sanhao Street Heping District, Shenyang 110004, China
| |
Collapse
|
15
|
Kitzmiller JP, Luzum JA, Dauki A, Krauss RM, Medina MW. Candidate-Gene Study of Functional Polymorphisms in SLCO1B1 and CYP3A4/5 and the Cholesterol-Lowering Response to Simvastatin. Clin Transl Sci 2016; 10:172-177. [PMID: 28482130 PMCID: PMC5421731 DOI: 10.1111/cts.12432] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Accepted: 10/18/2016] [Indexed: 01/23/2023] Open
Abstract
Cholesterol‐lowering response to 40 mg simvastatin daily for 6 weeks was examined for associations with common genetic polymorphisms in key genes affecting simvastatin metabolism (CYP3A4 and CYP3A5) and transport (SLCO1B1). In white people (n = 608), SLCO1B1 521C was associated with lesser reductions of total and low‐density lipoprotein cholesterol. Associations between SLCO1B1 521C and cholesterol response were not detected in African Americans (n = 333). Associations between CYP3A4*22 or CYP3A5*3 and cholesterol response were not detected in either race, and no significant race‐gene or gene‐gene interactions were detected. As several of the analyses may have been underpowered (especially the analyses in the African American cohort), the findings not suggesting an association should not be considered conclusive and warrant further investigation. The finding regarding SLCO1B1 521C in whites was consistent with several previous reports. SLCO1B1 521C resulted in a diminished cholesterol‐lowering response, but a marginal effect size limits utility for predicting simvastatin response.
Collapse
Affiliation(s)
- J P Kitzmiller
- Center for Pharmacogenomics, College of Medicine, The Ohio State University, Columbus, Ohio, USA
| | - J A Luzum
- College of Pharmacy, University of Michigan, Ann Arbor, Michigan, USA
| | - A Dauki
- Center for Pharmacogenomics, College of Medicine, The Ohio State University, Columbus, Ohio, USA.,College of Pharmacy, The Ohio State University, Columbus, Ohio, USA
| | - R M Krauss
- Children's Hospital Oakland Research Institute, Oakland, California, USA
| | - M W Medina
- Children's Hospital Oakland Research Institute, Oakland, California, USA
| |
Collapse
|
16
|
CYP3A4*22 and CYP3A5*3 are associated with increased levels of plasma simvastatin concentrations in the cholesterol and pharmacogenetics study cohort. Pharmacogenet Genomics 2015; 24:486-91. [PMID: 25051018 PMCID: PMC4160394 DOI: 10.1097/fpc.0000000000000079] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Objective Simvastatin is primarily metabolized by CYP3A4. A combined CYP3A4/5 genotype classification, combining the decrease-of-function CYP3A4*22 and the loss-of-function CYP3A5*3, has recently been reported. We aim to determine whether CYP3A4*22 and CYP3A5*3 alleles are associated with increased plasma concentrations of simvastatin lactone (SV) and simvastatin acid (SVA). This is the first report evaluating associations between in-vivo simvastatin concentrations and CYP3A4*22, alone or in a combined CYP3A4/5 genotype-defined classification. Participants and methods Genotypes and simvastatin concentrations were determined for 830 participants (555 Whites and 275 African-Americans) in the Cholesterol and Pharmacogenomics clinical trial with 40 mg/day simvastatin for 6 weeks. Concentrations were determined in 12-h postdose samples. Associations between simvastatin concentrations and CYP3A4*22 and CYP3A5*3 alleles were tested separately and in a combined CYP3A4/5 genotype-defined classification system. Results In Whites, CYP3A4*22 carriers (n=42) had 14% higher SVA (P=0.04) and 20% higher SV (P=0.06) compared with noncarriers (n=513). CYP3A5*3 allele status was not significantly associated with SV or SVA in Whites. In African-Americans, CYP3A4*22 carriers (n=8) had 170% higher SV (P<0.01) than noncarriers (n=267), but no significant difference was detected for SVA. African-American CYP3A5 nonexpressors (n=28) had 33% higher SV (P=0.02) than CYP3A5 expressors (n=247), but no significant difference was detected for SVA. For both races, SV appeared to decrease across the rank-ordered combined CYP3A4/5 genotype-defined groups (poor, intermediate, and extensive metabolizers); however, similar trends were not observed for SVA. Conclusion Genetic variation in CYP3A4 was associated with plasma simvastatin concentrations in self-reported Whites. Genetic variations in CYP3A4 and CYP3A5 were associated with plasma simvastatin concentrations in self-reported African-Americans.
Collapse
|
17
|
Werk AN, Cascorbi I. Functional gene variants of CYP3A4. Clin Pharmacol Ther 2014; 96:340-8. [PMID: 24926778 DOI: 10.1038/clpt.2014.129] [Citation(s) in RCA: 179] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2014] [Accepted: 06/09/2014] [Indexed: 02/08/2023]
Abstract
Cytochrome P450 3A4 (CYP3A4) is involved in the metabolism of more drugs in clinical use than any other foreign compound-metabolizing enzyme in humans. Recently, increasing evidence has been found showing that variants in the CYP3A4 gene have functional significance and--in rare cases--lead to loss of activity, implying tremendous consequences for patients. This review article highlights the functional consequences of all CYP3A4 variants recognized by the Human Cytochrome P450 (CYP) Allele Nomenclature Database.
Collapse
Affiliation(s)
- A N Werk
- Institute for Experimental and Clinical Pharmacology, University Hospital Schleswig-Holstein Campus Kiel, Kiel, Germany
| | - I Cascorbi
- Institute for Experimental and Clinical Pharmacology, University Hospital Schleswig-Holstein Campus Kiel, Kiel, Germany
| |
Collapse
|
18
|
Lack of Association of the P450 Oxidoreductase *28 Single Nucleotide Polymorphism with the Lipid-Lowering Effect of Statins in Hypercholesterolemic Patients. Mol Diagn Ther 2014; 18:323-31. [DOI: 10.1007/s40291-013-0082-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
19
|
Roberts JK, Moore CD, Ward RM, Yost GS, Reilly CA. Metabolism of beclomethasone dipropionate by cytochrome P450 3A enzymes. J Pharmacol Exp Ther 2013; 345:308-16. [PMID: 23512537 DOI: 10.1124/jpet.112.202556] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Inhaled glucocorticoids, such as beclomethasone dipropionate (BDP), are the mainstay treatment of asthma. However, ≈ 30% of patients exhibit little to no benefit from treatment. It has been postulated that glucocorticoid resistance, or insensitivity, is attributable to individual differences in glucocorticoid receptor-mediated processes. It is possible that variations in cytochrome P450 3A enzyme-mediated metabolism of BDP may contribute to this phenomenon. This hypothesis was explored by evaluating the contributions of CYP3A4, 3A5, 3A7, and esterase enzymes in the metabolism of BDP in vitro and relating metabolism to changes in CYP3A enzyme mRNA expression via the glucocorticoid receptor in lung and liver cells. CYP3A4 and CYP3A5 metabolized BDP via hydroxylation ([M4] and [M6]) and dehydrogenation ([M5]) at similar rates; CYP3A7 did not metabolize BDP. A new metabolite [M6], formed by the combined action of esterases and CYP3A4 hydroxylation, was also characterized. To validate the results observed using microsomes and recombinant enzymes, studies were also conducted using A549 lung and DPX2 liver cells. Both liver and lung cells produced esterase-dependent metabolites [M1-M3], with [M1] correlating with CYP3A5 mRNA induction in A549 cells. Liver cells produced both hydroxylated and dehydrogenated metabolites [M4, M5, and M6], but lung cells produced only the dehydrogenated metabolite [M5]. These studies show that CYP3A4 and CYP3A5 metabolize BDP to inactive metabolites and suggest that differences in the expression or function of these enzymes in the lung and/or liver could influence BDP disposition in humans.
Collapse
Affiliation(s)
- Jessica K Roberts
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Utah, Salt Lake City, Utah, USA
| | | | | | | | | |
Collapse
|