1
|
Suarez-Kurtz G. Pharmacogenomic implications of the differential distribution of CYP2C9 metabolic phenotypes among Latin American populations. Front Pharmacol 2023; 14:1246765. [PMID: 37693910 PMCID: PMC10488705 DOI: 10.3389/fphar.2023.1246765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 08/01/2023] [Indexed: 09/12/2023] Open
Abstract
The CYP2C9 gene encodes the major drug metabolism enzyme CYP2C9. This gene is highly polymorphic, and no-function (CYP2C9*3) plus decreased function (CYP2C9*2, *5, *8 and *11) star alleles (haplotypes) are commonly used to predict CYP2C9 metabolic phenotypes. This study explores the pharmacogenomic implications of the differential distribution of genotype-predicted CYP2C9 phenotypes across Latin American populations. Data from 1,404 individuals from the South American countries Brazil, Colombia and Peru, from Puerto Rico in the Caribbean and from persons with Mexican ancestry living in North America were analysed. The results showed that the distribution of CYP2C9 alleles and diplotypes, and diplotype-predicted CYP2C9 phenotypes vary significantly across the distinct country cohorts, as well as among self-identified White, Brown and Black Brazilians. Differences in average proportions of biogeographical ancestry across the study groups, especially Native American and African ancestry, are the likely explanation for these results. The differential distribution of genotype-predicted CYP2C9 phenotypes has potentially clinically-relevant pharmacogenomic implications, through its influence on the proportion of individuals at high risk for adverse response to medications that are CYP2C9 substrates, the proportion on individuals with CPIC therapeutic recommendations for dosing and choice of nonsteroidal antinflammatory drugs (NSAIDs) and the number of individuals that need to be genotyped in order to prevent adverse effects of NSAIDs. Collectively, these findings are likely to impact the perceived benefits, cost-effectiveness and clinical adoption of pharmacogenomic screening for drugs that are predominantly metabolized by CYP2C9.
Collapse
|
2
|
Pharmacogenetic Variation and Its Clinical Relevance in a Latin American Rural Population. Int J Mol Sci 2022; 23:ijms231911758. [PMID: 36233078 PMCID: PMC9570141 DOI: 10.3390/ijms231911758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 09/21/2022] [Accepted: 09/27/2022] [Indexed: 11/17/2022] Open
Abstract
Latin-American populations have been largely underrepresented in genomic studies of drug response and disease susceptibility. In this paper, we present a genome-wide Chilean dataset from Talca based on the Illumina Global Screening Array. This let us to compare the frequency of gene variants involved in response to drugs among our population and others, taking data from the 1000 Genomes Project. We found four single-nucleotide polymorphisms with low prevalence in Chileans when compared with African, Amerindian, East and South Asian, and European populations: rs2819742 (RYR2), rs2631367 (SLC22A5), rs1063320 (HLA-G), and rs1042522 (TP53). Moreover, two markers showed significant differences between lower and higher proportion of Mapuche ancestry groups: rs1719247 (located in an intergenic region in chromosome 15; p-value = 6.17 × 10−5, Bonferroni corrected p-value = 0.02) and rs738409 (A nonsynonymous gene variant in the PNPLA3 gene; p-value = 9.02 × 10−5, Bonferroni corrected p-value = 0.04). All of these polymorphisms have been shown to be associated with diverse pathologies, such as asthma, cancer, or chronic hepatitis B, or to be involved in a different response to drugs, such as metformin, HMG-CoA reductase inhibitors, or simvastatin. The present work provides a pharmacogenetic landscape of an understudied Latin American rural population and supports the notion that pharmacogenetic studies in admixed populations should consider ancestry for a higher accuracy of the results. Our study stresses the relevance of the pharmacogenomic research to provide guidance for a better choice of the best treatment for each individual in a population with admixed ancestry.
Collapse
|
3
|
Fernandes MR, Rodrigues JCG, Maroñas O, Latorre-Pellicer A, Cruz R, Guerreiro JF, Burbano RMR, de Assumpção PP, Ribeiro-Dos-Santos A, Dos Santos SEB, Carracedo A, Dos Santos NPC. Genetic Diversity of Drug-Related Genes in Native Americans of the Brazilian Amazon. PHARMACOGENOMICS & PERSONALIZED MEDICINE 2021; 14:117-133. [PMID: 33519226 PMCID: PMC7837547 DOI: 10.2147/pgpm.s274741] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 10/23/2020] [Indexed: 12/25/2022]
Abstract
Introduction The genetic admixture of the Brazilian population has considerable relevance to the implementation of the principles of pharmacogenomics (PGx), as it may compromise the extrapolation of data obtained in more homogeneous world populations. Purpose This study aims to investigate a panel of 117 polymorphisms in 35 pharmacogenes, which contains label recommendations or clinical evidence by international drug regulatory agencies, in Amazonian Native American populations, and compare the results obtained with continental population data from the 1000 Genomes Project Consortium. Patients and Methods The study population is composed of 109 Native American individuals from three Brazilian Amazon groups. The genotyping of the PGx polymorphisms was performed by allelic discrimination using TaqMan® OpenArray Genotyping with a panel of 120 customized assays on the QuantStudio™ 12K Flex Real-Time PCR System. Results Statistical differences within the Native American populations were observed regarding both genotypes and phenotypes of some genes of the CYP family. The discriminant analysis of principal components (DAPCs) between the NAM group and the continental populations of the 1000 Genomes Project resulted in the clustering of the three Native American populations. Additionally, in general, the NAM group was determined to be closely situated between East Asia, America, and South Asia groups, which enabled us to infer a genetic similarity between these populations. The DAPC analysis further demonstrated that eight polymorphisms and six polymorphisms were more relevant in differentiating the NAM from the continental populations and the NAM populations among themselves, respectively. Conclusion Some investigated polymorphisms show differences among world populations, particularly with populations of European origin, for whom precision medicine protocols are primarily designed. The accumulated knowledge regarding these variations may assist in the design of specific protocols for Native American populations and populations admixed with them.
Collapse
Affiliation(s)
- Marianne Rodrigues Fernandes
- Núcleo de Pesquisas em Oncologia, Universidade Federal do Pará, Belém, Pará, Brazil.,Departamento de ensino e pesquisa, Hospital Ophir Loyola, Belém, Pará, Brazil
| | | | - Olalla Maroñas
- Grupo de Medicina Xenómica, Centro Nacional de Genotipado (CEGEN-PRB3), Universidade de Santiago de Compostela, Santiago de Compostela, España
| | - Ana Latorre-Pellicer
- Grupo de Medicina Xenómica, Centro Nacional de Genotipado (CEGEN-PRB3), Universidade de Santiago de Compostela, Santiago de Compostela, España.,Unidad de Genética Clínica y Genómica Funcional, Departamento de Farmacología-Fisiología, Escuela de Medicina, Universidad de Zaragoza, IIS-Aragón, E-50009 Zaragoza, España
| | - Raquel Cruz
- Centro de Investigación Biomédica en Enfermedades Raras (CIBERER), Grupo de Medicina Genómica, CIMUS, Universidad de Santiago de Compostela, Santiago de Compostela, España
| | - João Farias Guerreiro
- Laboratório de Genética Humana e Médica, Universidade Federal do Pará, Belém, Pará, Brazil
| | - Rommel Mario Rodriguez Burbano
- Núcleo de Pesquisas em Oncologia, Universidade Federal do Pará, Belém, Pará, Brazil.,Departamento de ensino e pesquisa, Hospital Ophir Loyola, Belém, Pará, Brazil
| | | | - Andrea Ribeiro-Dos-Santos
- Núcleo de Pesquisas em Oncologia, Universidade Federal do Pará, Belém, Pará, Brazil.,Laboratório de Genética Humana e Médica, Universidade Federal do Pará, Belém, Pará, Brazil
| | - Sidney Emanuel Batista Dos Santos
- Núcleo de Pesquisas em Oncologia, Universidade Federal do Pará, Belém, Pará, Brazil.,Laboratório de Genética Humana e Médica, Universidade Federal do Pará, Belém, Pará, Brazil
| | - Angel Carracedo
- Grupo de Medicina Xenómica, Centro Nacional de Genotipado (CEGEN-PRB3), Universidade de Santiago de Compostela, Santiago de Compostela, España.,Centro de Investigación Biomédica en Enfermedades Raras (CIBERER), Grupo de Medicina Genómica, CIMUS, Universidad de Santiago de Compostela, Santiago de Compostela, España.,Fundación Pública de Medicina Xenómica, Instituto de Investigación Sanitaria de Santiago de Compostela (FIDIS), Universidade de Santiago de Compostela, Santiago de Compostela, España
| | | |
Collapse
|
4
|
de Andrés F, Altamirano-Tinoco C, Ramírez-Roa R, Montes-Mondragón CF, Dorado P, Peñas-Lledó EM, LLerena A. Relationships between CYP1A2, CYP2C9, CYP2C19, CYP2D6 and CYP3A4 metabolic phenotypes and genotypes in a Nicaraguan Mestizo population. THE PHARMACOGENOMICS JOURNAL 2020; 21:140-151. [PMID: 33024249 DOI: 10.1038/s41397-020-00190-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 08/17/2020] [Accepted: 09/23/2020] [Indexed: 12/19/2022]
Abstract
Interethnic variability in the drug-metabolizing capacity of CYP450 enzymes may lead to discrepancies in the relationship between genotypes and phenotypes worldwide. The present study was aimed to analyze for the first time whether there is a relationship between clinically relevant CYP450 genetic polymorphisms and their drug oxidation capacity (metabolic phenotype) in a population of healthy Nicaraguan volunteers. Two hundred and twelve participants were genotyped for CYP1A2, CYP2C9, CYP2C19, CYP2D6, and CYP3A4, and their actual metabolic phenotype (evaluated by the Metabolic Ratio, MR) was analyzed by using the CEIBA cocktail approach. The results showed the wide interindividual variability in all the studied enzymes and a significant difference (p < 0.004) in the activity of CYP1A2 between male and female subjects. The number of CYP2C19 (p < 0.0001) and CYP2D6 (p < 0.0001) active alleles were shown inversely correlated with their corresponding MR, although there were marked genotype-phenotype discrepancies. There was an actual enzyme capacity overlapping (MR) between genotypically Poor (gPMs) and Extensive Metabolizers (gEMs) of 3.14% subjects for CYP2D6 and 0.94% for CYP2C9. Similarly, there was an overlapping for metabolic phenotypes of 11.48% of genotypically ultrarapid metabolizers (gUMs) for CYP2C19 and 2.09% for CYP2D6 and gEMs. Therefore, the current approach for metabolic phenotype prediction based just on genotype does not predict properly for all individuals within this Nicaraguan Mestizo population, thus representing a potential barrier for the clinical implementation of personalized medicine in this region. However, it is necessary to improve the prediction of phenotype from genotype in order to improve the pharmacogenetic implementation in populations with specific ethnic backgrounds.
Collapse
Affiliation(s)
- Fernando de Andrés
- INUBE Extremadura Biosanitary University Research Institute, CICAB Clinical Research Centre, Badajoz University Hospital; University of Extremadura, Badajoz, Spain.,RIBEF Ibero American Network of Pharmacogenetics and Pharmacogenomics, León, Nicaragua
| | - Catalina Altamirano-Tinoco
- RIBEF Ibero American Network of Pharmacogenetics and Pharmacogenomics, León, Nicaragua.,UNAN Universidad Nacional Autónoma de Nicaragua, Facultad de Ciencias Médicas, León, Nicaragua
| | - Ronald Ramírez-Roa
- RIBEF Ibero American Network of Pharmacogenetics and Pharmacogenomics, León, Nicaragua. .,UNAN Universidad Nacional Autónoma de Nicaragua, Facultad de Ciencias Médicas, León, Nicaragua.
| | | | - Pedro Dorado
- INUBE Extremadura Biosanitary University Research Institute, CICAB Clinical Research Centre, Badajoz University Hospital; University of Extremadura, Badajoz, Spain.,RIBEF Ibero American Network of Pharmacogenetics and Pharmacogenomics, León, Nicaragua.,Faculty of Medicine, University of Extremadura, Badajoz, Spain
| | - Eva M Peñas-Lledó
- INUBE Extremadura Biosanitary University Research Institute, CICAB Clinical Research Centre, Badajoz University Hospital; University of Extremadura, Badajoz, Spain.,RIBEF Ibero American Network of Pharmacogenetics and Pharmacogenomics, León, Nicaragua.,Faculty of Medicine, University of Extremadura, Badajoz, Spain
| | - Adrián LLerena
- INUBE Extremadura Biosanitary University Research Institute, CICAB Clinical Research Centre, Badajoz University Hospital; University of Extremadura, Badajoz, Spain. .,RIBEF Ibero American Network of Pharmacogenetics and Pharmacogenomics, León, Nicaragua. .,Faculty of Medicine, University of Extremadura, Badajoz, Spain. .,CIBERSAM, Instituto de Salud Carlos III, Madrid, Spain.
| |
Collapse
|
5
|
|
6
|
Sivadas A, Scaria V. Population-scale genomics-Enabling precision public health. ADVANCES IN GENETICS 2018; 103:119-161. [PMID: 30904093 DOI: 10.1016/bs.adgen.2018.09.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The current excitement for affordable genomics technologies and national precision medicine initiatives marks a turning point in worldwide healthcare practices. The last decade of global population sequencing efforts has defined the enormous extent of genetic variation in the human population resulting in insights into differential disease burden and response to therapy within and between populations. Population-scale pharmacogenomics helps to provide insights into the choice of optimal therapies and an opportunity to estimate, predict and minimize adverse events. Such an approach can potentially empower countries to formulate national selection and dosing policies for therapeutic agents thereby promoting public health with precision. We review the breadth and depth of worldwide population-scale sequencing efforts and its implications for the implementation of clinical pharmacogenetics toward making precision medicine a reality.
Collapse
Affiliation(s)
- Ambily Sivadas
- GN Ramachandran Knowledge Center for Genome Informatics, CSIR Institute of Genomics and Integrative Biology (CSIR-IGIB), New Delhi, India; Academy of Scientific and Innovative Research (AcSIR), New Delhi, India
| | - Vinod Scaria
- GN Ramachandran Knowledge Center for Genome Informatics, CSIR Institute of Genomics and Integrative Biology (CSIR-IGIB), New Delhi, India; Academy of Scientific and Innovative Research (AcSIR), New Delhi, India.
| |
Collapse
|
7
|
Céspedes-Garro C, Naranjo MEG, Rodrigues-Soares F, LLerena A, Duconge J, Montané-Jaime LK, Roblejo H, Fariñas H, Campos MDLA, Ramírez R, Serrano V, Villagrán CI, Peñas-LLedó EM. Pharmacogenetic research activity in Central America and the Caribbean: a systematic review. Pharmacogenomics 2016; 17:1707-1724. [PMID: 27633613 DOI: 10.2217/pgs-2016-0053] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
AIM The present review was aimed at analyzing the pharmacogenetic scientific activity in Central America and the Caribbean. MATERIALS & METHODS A literature search for pharmacogenetic studies in each country of the region was conducted on three databases using a list of the most relevant pharmacogenetic biomarkers including 'phenotyping probe drugs' for major drug metabolizing enzymes. The review included 132 papers involving 47 biomarkers and 35,079 subjects (11,129 healthy volunteers and 23,950 patients). RESULTS The country with the most intensive pharmacogenetic research was Costa Rica. The most studied medical therapeutic area was oncology, and the most investigated biomarkers were CYP2D6 and HLA-A/B. Conclusion: Research activity on pharmacogenetics in Central American and the Caribbean populations is limited or absent. Therefore, strategies to promote effective collaborations, and foster interregional initiatives and research efforts among countries from the region could help for the rational clinical implementation of pharmacogenetics and personalized medicine.
Collapse
Affiliation(s)
- Carolina Céspedes-Garro
- CICAB Clinical Research Centre, Extremadura University Hospital & Medical School, Badajoz, Spain.,RIBEF Ibero-American Network of Pharmacogenetics & Pharmacogenomics.,Teaching & Research Department, Genetics Section, School of Biology, University of Costa Rica, San José, Costa Rica
| | - María-Eugenia G Naranjo
- CICAB Clinical Research Centre, Extremadura University Hospital & Medical School, Badajoz, Spain.,RIBEF Ibero-American Network of Pharmacogenetics & Pharmacogenomics
| | - Fernanda Rodrigues-Soares
- RIBEF Ibero-American Network of Pharmacogenetics & Pharmacogenomics.,Departamento de Biologia Geral, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Adrián LLerena
- CICAB Clinical Research Centre, Extremadura University Hospital & Medical School, Badajoz, Spain.,RIBEF Ibero-American Network of Pharmacogenetics & Pharmacogenomics
| | - Jorge Duconge
- RIBEF Ibero-American Network of Pharmacogenetics & Pharmacogenomics.,Pharmaceutical Sciences Department, School of Pharmacy, Medical Sciences Campus, University of Puerto Rico, San Juan, Puerto Rico
| | - Lazara K Montané-Jaime
- Pharmacology Unit Department of Paraclinical Sciences, Faculty of Medical Sciences, The University of West Indies, St Augustine, Trinidad & Tobago
| | - Hilda Roblejo
- RIBEF Ibero-American Network of Pharmacogenetics & Pharmacogenomics.,Teaching & Research Department, National Center of Medical Genetics, Havana, Cuba
| | - Humberto Fariñas
- CICAB Clinical Research Centre, Extremadura University Hospital & Medical School, Badajoz, Spain
| | - María de Los A Campos
- Secretaría Ejecutiva del Consejo de Ministros de Salud de Centroamérica y República Dominicana, Ciudad Merliot, El Salvador
| | - Ronald Ramírez
- RIBEF Ibero-American Network of Pharmacogenetics & Pharmacogenomics.,Facultad de Medicina, UNAN Universidad Autónoma Nacional de Nicaragua, León, Nicaragua
| | - Víctor Serrano
- RIBEF Ibero-American Network of Pharmacogenetics & Pharmacogenomics.,CIIMET Centro de Investigación e Información de Medicamentos y Tóxicos, Facultad de Medicina, Universidad de Panamá, Panamá, Panamá
| | - Carmen I Villagrán
- RIBEF Ibero-American Network of Pharmacogenetics & Pharmacogenomics.,Facultad de Ciencias Médicas, Dirección de Investigación, Universidad de San Carlos de Guatemala, Guatemala
| | - Eva M Peñas-LLedó
- CICAB Clinical Research Centre, Extremadura University Hospital & Medical School, Badajoz, Spain.,RIBEF Ibero-American Network of Pharmacogenetics & Pharmacogenomics
| |
Collapse
|
8
|
Claudio-Campos K, Orengo-Mercado C, Renta JY, Peguero M, García R, Hernández G, Corey S, Cadilla CL, Duconge J. Pharmacogenetics of healthy volunteers in Puerto Rico. Drug Metab Pers Ther 2016; 30:239-49. [PMID: 26501165 DOI: 10.1515/dmpt-2015-0021] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Accepted: 09/24/2015] [Indexed: 12/23/2022]
Abstract
Puerto Ricans are a unique Hispanic population with European, Native American (Taino), and higher West African ancestral contributions than other non-Caribbean Hispanics. In admixed populations, such as Puerto Ricans, genetic variants can be found at different frequencies when compared to parental populations and uniquely combined and distributed. Therefore, in this review, we aimed to collect data from studies conducted in healthy Puerto Ricans and to report the frequencies of genetic polymorphisms with major relevance in drug response. Filtering for healthy volunteers or individuals, we performed a search of pharmacogenetic studies in academic literature databases without limiting the period of the results. The search was limited to Puerto Ricans living in the island, excluding those studies performed in mainland (United States). We found that the genetic markers impacting pharmacological therapy in the areas of cardiovascular, oncology, and neurology are the most frequently investigated. Coincidently, the top causes of mortality in the island are cardiovascular diseases, cancer, diabetes, Alzheimer's disease, and stroke. In addition, polymorphisms in genes that encode for members of the CYP450 family (CYP2C9, CYP2C19, and CYP2D6) are also available due to their relevance in the metabolism of drugs. The complex genetic background of Puerto Ricans is responsible for the divergence in the reported allele frequencies when compared to parental populations (Africans, East Asians, and Europeans). The importance of reporting the findings of pharmacogenetic studies conducted in Puerto Ricans is to identify genetic variants with potential utility among this genetically complex population and eventually move forward the adoption of personalized medicine in the island.
Collapse
|
9
|
Naranjo MEG, de Andrés F, Delgado A, Cobaleda J, Peñas-Lledó EM, LLerena A. High frequency of CYP2D6 ultrarapid metabolizers in Spain: controversy about their misclassification in worldwide population studies. THE PHARMACOGENOMICS JOURNAL 2016; 16:485-90. [PMID: 27272044 DOI: 10.1038/tpj.2016.47] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Revised: 03/14/2016] [Accepted: 05/02/2016] [Indexed: 02/06/2023]
Abstract
A high frequency (7-10%) of CYP2D6 ultrarapid metabolizers estimated from the genotype (gUMs) has been claimed to exist among Spaniards and Southern Europeans. However, methodological aspects such as the inclusion of individuals carrying non-active multiplied alleles as gUMs may have led to an overestimation. Thus, this study aimed to analyze the gUM frequency (considering only those carrying more than two active genes) in 805 Spanish healthy volunteers studied for CYP2D6*2, *3, *4, *5, *6, *10, *17, *35, *41, and multiplications. Second, all worldwide studies reporting gUM frequencies were reviewed in order to evaluate potential misclassifications. The gUM frequency in this Spanish population was 5.34%, but increased to 8.3% if all individuals with CYP2D6 multiplications were classified as gUMs without considering the activity of the multiplied alleles. Moreover, among all reviewed worldwide studies only 55.6% precisely determined whether the multiplied alleles were active. Present results suggest that the evaluation of CYP2D6 ultrarapid metabolism should be standarized, and that the frequency of gUMs should be reconsidered in Spaniards and globally.
Collapse
Affiliation(s)
- M E G Naranjo
- CICAB Clinical Research Center, Extremadura University and Medical School, Badajoz, Spain
| | - F de Andrés
- CICAB Clinical Research Center, Extremadura University and Medical School, Badajoz, Spain
| | - A Delgado
- CICAB Clinical Research Center, Extremadura University and Medical School, Badajoz, Spain
| | - J Cobaleda
- CICAB Clinical Research Center, Extremadura University and Medical School, Badajoz, Spain.,Primary Health Care Center 'Ciudad Jardín', Badajoz, Spain
| | - E M Peñas-Lledó
- CICAB Clinical Research Center, Extremadura University and Medical School, Badajoz, Spain
| | - A LLerena
- CICAB Clinical Research Center, Extremadura University and Medical School, Badajoz, Spain.,CIBERSAM, Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|