1
|
Atanase LI. Micellar Drug Delivery Systems Based on Natural Biopolymers. Polymers (Basel) 2021; 13:477. [PMID: 33540922 PMCID: PMC7867356 DOI: 10.3390/polym13030477] [Citation(s) in RCA: 97] [Impact Index Per Article: 32.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 01/27/2021] [Accepted: 01/28/2021] [Indexed: 12/30/2022] Open
Abstract
The broad diversity of structures and the presence of numerous functional groups available for chemical modifications represent an enormous advantage for the development of safe, non-toxic, and cost-effective micellar drug delivery systems (DDS) based on natural biopolymers, such as polysaccharides, proteins, and peptides. Different drug-loading methods are used for the preparation of these micellar systems, but it appeared that dialysis is generally recommended, as it avoids the formation of large micellar aggregates. Moreover, the preparation method has an important influence on micellar size, morphology, and drug loading efficiency. The small size allows the passive accumulation of these micellar systems via the permeability and retention effect. Natural biopolymer-based micellar DDS are high-value biomaterials characterized by good compatibility, biodegradability, long blood circulation time, non-toxicity, non-immunogenicity, and high drug loading, and they are biodegraded to non-toxic products that are easily assimilated by the human body. Even if some recent studies reported better antitumoral effects for the micellar DDS based on polysaccharides than for commercial formulations, their clinical use is not yet generalized. This review is focused on the studies from the last decade concerning the preparation as well as the colloidal and biological characterization of micellar DDS based on natural biopolymers.
Collapse
Affiliation(s)
- Leonard Ionut Atanase
- Department of Biomaterials, Faculty of Medical Dentistry, "Apollonia" University of Iasi, Pacurari Street, No. 11, 700511 Iasi, Romania
| |
Collapse
|
2
|
Singh Chauhan P, Abutbul Ionita I, Moshe Halamish H, Sosnik A, Danino D. Multidomain drug delivery systems of β-casein micelles for the local oral co-administration of antiretroviral combinations. J Colloid Interface Sci 2021; 592:156-166. [PMID: 33652169 DOI: 10.1016/j.jcis.2020.12.021] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 11/20/2020] [Accepted: 12/08/2020] [Indexed: 12/18/2022]
Abstract
The antiretroviral (ARV) cocktailrevolved the treatment of the human immunodeficiency virus (HIV) infection. Drug combinations have been also tested to treat other infectious diseases, including the recentcoronavirus disease 2019 (COVID-19) outbreak. To simplify administration fixed-dose combinationshave been introduced, however, oral anti-HIV therapy still struggles with low oral bioavailability of many ARVs.This work investigated the co-encapsulation of two clinically relevant ARV combinations,tipranavir (TPV):efavirenz (EFV) anddarunavir (DRV):efavirenz (EFV):ritonavir (RTV),within the core of β-casein (bCN) micelles. Encapsulation efficiency in both systems was ~100%. Cryo-transmission electron microscopy and dynamic light scattering of the ARV-loaded colloidaldispersions indicatefull preservation of the spherical morphology, and x-ray diffraction confirm that the encapsulated drugs are amorphous. To prolong the physicochemical stabilitythe formulations were freeze-driedwithout cryo/lyoprotectant, and successfully redispersed, with minor changes in morphology.Then, theARV-loaded micelles were encapsulated within microparticles of Eudragit® L100, which prevented enzymatic degradation and minimized drug release under gastric-like pH conditionsin vitro. At intestinal pH, the coating polymer dissolved and released the nanocarriers and content. Overall, our results confirm the promise of this flexible and modular technology platform for oral delivery of fixed dose combinations.
Collapse
Affiliation(s)
- Prakram Singh Chauhan
- CryoEM Laboratory of Soft Matter, Faculty of Biotechnology and Food Engineering, Technion-Israel Institute of Technology, Haifa 3200003, Israel
| | - Inbal Abutbul Ionita
- CryoEM Laboratory of Soft Matter, Faculty of Biotechnology and Food Engineering, Technion-Israel Institute of Technology, Haifa 3200003, Israel
| | - Hen Moshe Halamish
- Laboratory of Pharmaceutical Nanomaterials Science, Department of Materials Science and Engineering, Technion-Israel Institute of Technology, Haifa 3200003, Israel
| | - Alejandro Sosnik
- Laboratory of Pharmaceutical Nanomaterials Science, Department of Materials Science and Engineering, Technion-Israel Institute of Technology, Haifa 3200003, Israel
| | - Dganit Danino
- CryoEM Laboratory of Soft Matter, Faculty of Biotechnology and Food Engineering, Technion-Israel Institute of Technology, Haifa 3200003, Israel; Guangdong Technion - Israel Institute of Technology, Shantou, Guangdong Province 515063, China.
| |
Collapse
|
3
|
Madan JR, Ansari IN, Dua K, Awasthi R. Formulation and In Vitro Evaluation of Casein Nanoparticles as Carrier for Celecoxib. Adv Pharm Bull 2020; 10:408-417. [PMID: 32665899 PMCID: PMC7335978 DOI: 10.34172/apb.2020.049] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2019] [Revised: 01/28/2020] [Accepted: 02/03/2020] [Indexed: 01/21/2023] Open
Abstract
Purpose: The objective of this work was to formulate casein (CAS) nanocarriers for the dissolution enhancement of poorly water soluble drug celecoxib (CLXB). Methods: The CLXB loaded CAS nanocarriers viz., nanoparticles, reassembled CAS micelles and nanocapsules were prepared using sodium caseinate (SOD-CAS) as a carrier to enhance the solubility of CLXB. The prepared formulations were characterized for particle size, polydispersity index, zeta potential, percentage entrapment efficiency, and surface morphology for the selection of best formulation. Fourier transform infrared spectroscopy, differential scanning calorimetry and X-ray powder diffraction study was used to for the confirmation of encapsulation of CLXB. Further,in vitro drug dissolution, ex-vivo permeation studies on chicken ileum and stability studies were carried out. Results: The CLXB loaded casein nanoparticles (CNP) (batch A2) showed a particle size diameter 216.1 nm, polydispersity index 0.422 with percentage entrapment efficiency of 90.71% and zeta potential of -24.6 mV. Scanning electron microscopy of suspension confirmed globular shape of CNP. Thein vitro release data of optimized batch followed non Fickian diffusion mechanism. The ex vivo permeation studies on chicken ileum of CLXB loaded CNP showed permeation through mucous membrane as compared to pure CLXB. The apparent permeability of best selected freeze dried CLXB loaded CNP (batch A2) was higher and gradually increased from 0.90 mg/cm2 after 10 min to a maximum of 1.95 mg/cm2 over the subsequent 90 min. A higher permeation was recorded at each time point than that of the pure CLXB. Conclusion: The study explored the potential of CAS as a carrier for solubility enhancement of poorly water soluble drugs.
Collapse
Affiliation(s)
- Jyotsana R Madan
- Department of Pharmaceutics, Smt. Kashibai Navale College of Pharmacy, Savitribai Phule Pune University, Pune 411048, Maharashtra, India
| | - Izharahemad N Ansari
- Department of Pharmaceutics, Smt. Kashibai Navale College of Pharmacy, Savitribai Phule Pune University, Pune 411048, Maharashtra, India
| | - Kamal Dua
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Ultimo NSW 2007, Australia
| | - Rajendra Awasthi
- Amity Institute of Pharmacy, Amity University Uttar Pradesh, Noida 201313, India
| |
Collapse
|
4
|
Xv L, Qian X, Wang Y, Yu C, Qin D, Zhang Y, Jin P, Du Q. Structural Modification of Nanomicelles through Phosphatidylcholine: The Enhanced Drug-Loading Capacity and Anticancer Activity of Celecoxib-Casein Nanoparticles for the Intravenous Delivery of Celecoxib. NANOMATERIALS 2020; 10:nano10030451. [PMID: 32131561 PMCID: PMC7153595 DOI: 10.3390/nano10030451] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 02/21/2020] [Accepted: 02/27/2020] [Indexed: 02/06/2023]
Abstract
This study aims to stabilize loaded celecoxib (CX) by modifying the structure of casein nanoparticles through phosphatidylcholine. The results show that Egg yolk phosphatidylcholine PC98T (PC) significantly increased the stability of CX-PC-casein nanoparticles (NPs) (192.6 nm) from 5 min (CX-β-casein-NPs) to 2.5 h at 37 °C. In addition, the resuspended freeze-dried NPs (202.4 nm) remained stable for 2.5 h. Scanning electron microscopy indicated that PC may block the micropore structures in nanoparticles by ultrasonic treatment and hence improve the physicochemical stability of CX-PC-casein-NPs. The stability of the NPs was positively correlated with their inhibiting ability for human malignant melanoma A375 cells. The structural modification of CX-PC-casein-NPs resulted in an increased intracellular uptake of CX by 2.4 times than that of the unmodified ones. The pharmacokinetic study showed that the Area Under Curve (AUC) of the CX-PC-casein-NPs was 2.9-fold higher in rats than that of the original casein nanoparticles. When CX-PC-casein-NPs were intravenously administrated to mice implanted with A375 tumors (CX dose = 16 mg/kg bodyweight), the tumor inhibition rate reached 56.2%, which was comparable to that of paclitaxel (57.3%) at a dose of 4 mg/kg bodyweight. Our results confirm that the structural modification of CX-PC-casein-NPs can effectively prolong the remaining time of specific drugs, and may provide a potential strategy for cancer treatment.
Collapse
Affiliation(s)
- Liuli Xv
- The Key Laboratory for Quality Improvement of Agricultural Products of Zhejiang Province, College of Agricultural and Food Sciences, Zhejiang A & F University, Hangzhou 311300, China; (L.X.); (X.Q.); (Y.W.); (D.Q.); (Y.Z.)
| | - Xinxin Qian
- The Key Laboratory for Quality Improvement of Agricultural Products of Zhejiang Province, College of Agricultural and Food Sciences, Zhejiang A & F University, Hangzhou 311300, China; (L.X.); (X.Q.); (Y.W.); (D.Q.); (Y.Z.)
| | - Yan Wang
- The Key Laboratory for Quality Improvement of Agricultural Products of Zhejiang Province, College of Agricultural and Food Sciences, Zhejiang A & F University, Hangzhou 311300, China; (L.X.); (X.Q.); (Y.W.); (D.Q.); (Y.Z.)
| | - Chenghuan Yu
- Experimental Animal Center of the Zhejiang Academy of Medical Sciences, Hangzhou 310013, China;
| | - Dingkui Qin
- The Key Laboratory for Quality Improvement of Agricultural Products of Zhejiang Province, College of Agricultural and Food Sciences, Zhejiang A & F University, Hangzhou 311300, China; (L.X.); (X.Q.); (Y.W.); (D.Q.); (Y.Z.)
| | - Yahui Zhang
- The Key Laboratory for Quality Improvement of Agricultural Products of Zhejiang Province, College of Agricultural and Food Sciences, Zhejiang A & F University, Hangzhou 311300, China; (L.X.); (X.Q.); (Y.W.); (D.Q.); (Y.Z.)
| | - Peng Jin
- The Key Laboratory for Quality Improvement of Agricultural Products of Zhejiang Province, College of Agricultural and Food Sciences, Zhejiang A & F University, Hangzhou 311300, China; (L.X.); (X.Q.); (Y.W.); (D.Q.); (Y.Z.)
- Correspondence: (P.J.); (Q.D.)
| | - Qizhen Du
- The Key Laboratory for Quality Improvement of Agricultural Products of Zhejiang Province, College of Agricultural and Food Sciences, Zhejiang A & F University, Hangzhou 311300, China; (L.X.); (X.Q.); (Y.W.); (D.Q.); (Y.Z.)
- Correspondence: (P.J.); (Q.D.)
| |
Collapse
|
5
|
Wei X, Patil Y, Ohana P, Amitay Y, Shmeeda H, Gabizon A, Barenholz Y. Characterization of Pegylated Liposomal Mitomycin C Lipid-Based Prodrug (Promitil) by High Sensitivity Differential Scanning Calorimetry and Cryogenic Transmission Electron Microscopy. Mol Pharm 2017; 14:4339-4345. [PMID: 28045540 DOI: 10.1021/acs.molpharmaceut.6b00865] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The effect of a lipidated prodrug of mitomycin C (MLP) on the membrane of a pegylated liposome formulation (PL-MLP), also known as Promitil, was characterized through high-sensitivity differential scanning calorimetry (DSC) and cryo-TEM. The thermodynamic analysis demonstrated that MLP led to the formation of heterogeneous domains in the membrane plane of PL-MLP. MLP concentrated in prodrug-rich domains, arranged in high-ordered crystal-like structures, as suggested by the sharp and high enthalpy endotherm in the first heating scanning. After thiolytic cleavage of mitomycin C from MLP by dithiothreitol (DTT) treatment, the crystal-like prodrug domain disappears and a homogeneous membrane with stronger lipid interactions and higher phase transition temperature compared with the blank (MLP-free) liposomes is observed by DSC. In parallel, the rod-like discoid liposomes and the "kissing liposomes" seen by cryo-TEM in the PL-MLP formulation disappear, and liposome mean size and polydispersity increase after DTT treatment. Both MLP and the residual postcleavage lipophilic moiety of the prodrug increased the rigidity of the liposome membrane as indicated by DSC. These results confirm that MLP is inserted in the PL-MLP liposome membrane via its lipophilic anchor, and its mitomycin C moiety located mainly at the region of the phospholipid glycerol backbone and polar headgroup. We hypothesize that π-π stacking between the planar aromatic rings of the mitomycin C moieties leads to the formation of prodrug-rich domains with highly ordered structure on the PL-MLP liposome membrane. This thermodynamically stable conformation may explain the high stability of the PL-MLP formulation. These results also provide us with an interesting example of the application of high sensitivity DSC in understanding the composition-structure-behavior dynamics of liposomal nanocarriers having a lipid-based drug as pharmaceutical ingredient.
Collapse
Affiliation(s)
- Xiaohui Wei
- Laboratory of Membrane and Liposome Research, The Hebrew University-Hadassah Medical School, IMRIC , Jerusalem, Israel.,School of Pharmacy, Shanghai Jiao Tong University , Shanghai, China
| | - Yogita Patil
- Oncology Institute, Shaare Zedek Medical Center , Jerusalem, Israel.,Hebrew University-School of Medicine , Jerusalem, Israel
| | | | | | - Hilary Shmeeda
- Oncology Institute, Shaare Zedek Medical Center , Jerusalem, Israel
| | - Alberto Gabizon
- Oncology Institute, Shaare Zedek Medical Center , Jerusalem, Israel.,Hebrew University-School of Medicine , Jerusalem, Israel.,Lipomedix Pharmaceuticals , Jerusalem, Israel
| | - Yechezkel Barenholz
- Laboratory of Membrane and Liposome Research, The Hebrew University-Hadassah Medical School, IMRIC , Jerusalem, Israel
| |
Collapse
|
6
|
Potential of Casein as a Carrier for Biologically Active Agents. Top Curr Chem (Cham) 2017; 375:71. [PMID: 28712055 PMCID: PMC5511616 DOI: 10.1007/s41061-017-0158-z] [Citation(s) in RCA: 100] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Accepted: 06/29/2017] [Indexed: 02/07/2023]
Abstract
Casein is the collective name for a family of milk proteins. In bovine milk, casein comprises four peptides: αS1, αS2, β, and κ, differing in their amino acid, phosphorus and carbohydrate content but similar in their amphiphilic character. Hydrophilic and hydrophobic regions of casein show block distribution in the protein chain. Casein peptides carry negative charge on their surface as a result of phosphorylation and tend to bind nanoclusters of amorphous calcium phosphate. Due to these properties, in suitable conditions, casein molecules agglomerate into spherical micelles. The high content of casein in milk (2.75 %) has made it one of the most popular proteins. Novel research techniques have improved understanding of its properties, opening up new applications. However, casein is not just a dietary protein. Its properties promise new and unexpected applications in science and the pharmaceutical and functional food industries. One example is an encapsulation of health-related substances in casein matrices. This review discusses gelation, coacervation, self-assembly and reassembly of casein peptides as means of encapsulation. We highlight information on encapsulation of health-related substances such as drugs and dietary supplements inside casein micro- and nanoparticles.
Collapse
|
7
|
Ranadheera C, Liyanaarachchi W, Chandrapala J, Dissanayake M, Vasiljevic T. Utilizing unique properties of caseins and the casein micelle for delivery of sensitive food ingredients and bioactives. Trends Food Sci Technol 2016. [DOI: 10.1016/j.tifs.2016.10.005] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
8
|
Wei X, Cohen R, Barenholz Y. Insights into composition/structure/function relationships of Doxil® gained from "high-sensitivity" differential scanning calorimetry. Eur J Pharm Biopharm 2016; 104:260-70. [PMID: 27106607 DOI: 10.1016/j.ejpb.2016.04.011] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Accepted: 04/18/2016] [Indexed: 12/11/2022]
Abstract
Thermotropic behavior of Doxil® and its generic, Lipodox®, was characterized using "high-sensitivity" differential scanning calorimetry (DSC). This is the first report that two distinct endotherms were observed in Doxil and Lipodox upon heating. The first (Tm at 51±2°C) is broad and of low enthalpy, representing the membrane lipid phase transition, which occurs despite having high (38mole%) cholesterol. The second (Tm at ∼70°C) is narrow, representing melting of the intraliposomal doxorubicin-sulfate nanocrystals. The thermograms of Doxil and Lipodox are practically identical. The membrane phase transition is similar to that of drug-free nanoliposomes of the same size and lipid composition as Doxil, suggesting lack of significant drug-membrane interaction. The melting endotherm of the intraliposomal nanocrystals is 2.0-2.5-fold narrower than that of the crystals formed in a solution of 250mM ammonium sulfate and >60mg/ml doxorubicin. This suggests that nanovolume of liposomes improves doxorubicin-sulfate crystallinity. Moreover, both phase transitions are reversible in cycled DSC scanning (15-90-15°C). This indicates an unexpected "non-leaky" phospholipid phase transition and excellent physical and chemical stabilities of Doxil after short exposure to high temperature. Reducing mole% of cholesterol results in a "leaky" membrane phase transition of higher enthalpy. Namely, high mole% cholesterol is essential for the resistance to drug leakage during phase transition. Pegylated liposomal doxorubicin in which HSPC was replaced by DPPC shows the same non-leaky phase transition but at a lower temperature, indicating this type of phase transition is not unique to Doxil. The presence of DSPE-PEG2k increases the cooperativity of the phase transition. High-sensitivity DSC helps illuminate composition/structure/function relationships of Doxil, and is useful for the equivalence/similarity studies.
Collapse
Affiliation(s)
- Xiaohui Wei
- Laboratory of Membrane and Liposome Research, The Hebrew University-Hadassah Medical School, IMRIC, Jerusalem, Israel; School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China
| | - Rivka Cohen
- Laboratory of Membrane and Liposome Research, The Hebrew University-Hadassah Medical School, IMRIC, Jerusalem, Israel
| | - Yechezkel Barenholz
- Laboratory of Membrane and Liposome Research, The Hebrew University-Hadassah Medical School, IMRIC, Jerusalem, Israel.
| |
Collapse
|