1
|
Mehri A, Mahnam K, Sirous H, Aghaei M, Rafiei L, Rostami M. Dihydropyrimidine derivatives as MDM2 inhibitors. Chem Biol Drug Des 2024; 103:e14399. [PMID: 38011915 DOI: 10.1111/cbdd.14399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 08/22/2023] [Accepted: 11/07/2023] [Indexed: 11/29/2023]
Abstract
One of the chief pathways to regulate p53 levels is MDM2 protein, which negatively controls p53 by direct inhibition. Many cancers overproduce MDM2 protein to interrupt p53 functions. Therefore, impeding MDM2's binding to p53 can reactivate p53 in tumor cells may suggest an effective approach for tumor therapy. Here, some Monastrol derivatives were designed in silico as MDM2 inhibitors, and their initial cytotoxicity was evaluated in vitro on MFC-7 and MDA-MB-231 cells. A small library of Monastrol derivatives was created, and virtual screening (VS) was performed on them. The first-ranked compound, which was extracted from VS, and the other six compounds 5a-5f were selected to carry out the single-docking and docking with explicit waters. The compound with the best average results was then subjected to molecular dynamic (MD) simulation. Compounds 5a-5f were chemically synthesized and evaluated in vitro for their initial cytotoxicity on MFC-7 and MDA-MB-231 cells by MTT assay. The best compound was compound 5d with ΔGave = -10.35 kcal/mol. MD simulation revealed a median potency in comparison with Nutlin-3a. The MTT assay confirmed the docking and MD experiments. 5d has an IC50 of 60.09 μM on MCF-7 cells. We attempted to use Monastrol scaffold as a potent inhibitor of MDM2 rather than an Eg5 inhibitor using in silico modification. The results obtained from the in silico and in vitro evaluations were noteworthy and warranted much more effort in the future.
Collapse
Affiliation(s)
- Ali Mehri
- Department of Medicinal Chemistry, School of Pharmacy and Pharmaceutical Science, Isfahan University of Medical Science, Isfahan, Iran
| | - Karim Mahnam
- Biology Department, Faculty of Sciences, Shahrekord University, Shahrekord, Iran
| | - Hajar Sirous
- Bioinformatics Research Center, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Science, Isfahan, Iran
| | - Mahmoud Aghaei
- Department of Clinical Biochemistry, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Science, Isfahan, Iran
| | - Leila Rafiei
- Department of Medicinal Chemistry, School of Pharmacy and Pharmaceutical Science, Isfahan University of Medical Science, Isfahan, Iran
| | - Mahboubeh Rostami
- Department of Medicinal Chemistry, School of Pharmacy and Pharmaceutical Science, Isfahan University of Medical Science, Isfahan, Iran
| |
Collapse
|
2
|
Molecular Docking Analysis of Cinnamomum zeylanicum Phytochemicals against Secreted Aspartyl proteinase 4-6 of Candida albicans as Anti-Candidiasis Oral. RESULTS IN CHEMISTRY 2022. [DOI: 10.1016/j.rechem.2022.100721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
|
3
|
Vachhani M, Lalpara J, Hadiyal S, Dubal G. Microwave-assisted synthesis of bioactive tetrahydropyrimidine derivatives as antidiabetic agents. Folia Med (Plovdiv) 2022; 64:478-487. [PMID: 35856110 DOI: 10.3897/folmed.64.e62476] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2020] [Accepted: 02/19/2021] [Indexed: 11/12/2022] Open
Abstract
Abstract.
Collapse
|
4
|
Marinescu M. Biginelli Reaction Mediated Synthesis of Antimicrobial Pyrimidine Derivatives and Their Therapeutic Properties. Molecules 2021; 26:6022. [PMID: 34641566 PMCID: PMC8512088 DOI: 10.3390/molecules26196022] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 09/25/2021] [Accepted: 09/30/2021] [Indexed: 11/16/2022] Open
Abstract
Antimicrobial resistance was one of the top priorities for global public health before the start of the 2019 coronavirus pandemic (COVID-19). Moreover, in this changing medical landscape due to COVID-19, finding new organic structures with antimicrobial and antiviral properties is a priority in current research. The Biginelli synthesis that mediates the production of pyrimidine compounds has been intensively studied in recent decades, especially due to the therapeutic properties of the resulting compounds, such as calcium channel blockers, anticancer, antiviral, antimicrobial, anti-inflammatory or antioxidant compounds. In this review we aim to review the Biginelli syntheses reported recently in the literature that mediates the synthesis of antimicrobial compounds, the spectrum of their medicinal properties, and the structure-activity relationship in the studied compounds.
Collapse
Affiliation(s)
- Maria Marinescu
- Department of Organic Chemistry, Biochemistry and Catalysis, Faculty of Chemistry, University of Bucharest, Soseaua Panduri, 030018 Bucharest, Romania
| |
Collapse
|
5
|
Makarova ES, Kabanova MV, Danilova AS, Filimonov SI, Smirnova EA, Shetnev AA. Synthesis and properties of substituted 2-thioxohexahydropyrimidine-5-carbohydrazides. Russ Chem Bull 2021. [DOI: 10.1007/s11172-021-3226-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
6
|
Ahmed NM, Youns MM, Soltan MK, Said AM. Design, Synthesis, Molecular Modeling and Antitumor Evaluation of Novel Indolyl-Pyrimidine Derivatives with EGFR Inhibitory Activity. Molecules 2021; 26:molecules26071838. [PMID: 33805918 PMCID: PMC8037142 DOI: 10.3390/molecules26071838] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 03/19/2021] [Accepted: 03/20/2021] [Indexed: 01/15/2023] Open
Abstract
Scaffolds hybridization is a well-known drug design strategy for antitumor agents. Herein, series of novel indolyl-pyrimidine hybrids were synthesized and evaluated in vitro and in vivo for their antitumor activity. The in vitro antiproliferative activity of all compounds was obtained against MCF-7, HepG2, and HCT-116 cancer cell lines, as well as against WI38 normal cells using the resazurin assay. Compounds 1-4 showed broad spectrum cytotoxic activity against all these cancer cell lines compared to normal cells. Compound 4g showed potent antiproliferative activity against these cell lines (IC50 = 5.1, 5.02, and 6.6 μM, respectively) comparable to the standard treatment (5-FU and erlotinib). In addition, the most promising group of compounds was further evaluated for their in vivo antitumor efficacy against EAC tumor bearing mice. Notably, compound 4g showed the most potent in vivo antitumor activity. The most active compounds were evaluated for their EGFR inhibitory (range 53-79%) activity. Compound 4g was found to be the most active compound against EGFR (IC50 = 0.25 µM) showing equipotency as the reference treatment (erlotinib). Molecular modeling study was performed on compound 4g revealed a proper binding of this compound inside the EGFR active site comparable to erlotinib. The data suggest that compound 4g could be used as a potential anticancer agent.
Collapse
Affiliation(s)
- Naglaa M. Ahmed
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Helwan University, Ein-Helwan, Helwan, Cairo 11795, Egypt;
| | - Mahmoud M. Youns
- Biochemistry Department, Faculty of Pharmacy, Helwan University, Ein-Helwan, Helwan, Cairo 11795, Egypt;
- Oman College of Health Sciences, Muscat 123, Oman;
| | - Moustafa K. Soltan
- Oman College of Health Sciences, Muscat 123, Oman;
- Medicinal Chemistry Department, Faculty of Pharmacy, Zagazig University, Zagazig 44519, Egypt
| | - Ahmed M. Said
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Helwan University, Ein-Helwan, Helwan, Cairo 11795, Egypt;
- Department of Chemistry, University at Buffalo, The State University of New York, Buffalo, NY 14260, USA
- Correspondence: ; Tel.: +1-716-907-5016
| |
Collapse
|
7
|
Song F, Li Z, Bian Y, Huo X, Fang J, Shao L, Zhou M. Indole/isatin-containing hybrids as potential antibacterial agents. Arch Pharm (Weinheim) 2020; 353:e2000143. [PMID: 32667714 DOI: 10.1002/ardp.202000143] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 06/18/2020] [Accepted: 06/22/2020] [Indexed: 12/11/2022]
Abstract
The emergence and worldwide spread of drug-resistant bacteria have already posed a serious threat to human life, creating the urgent need to develop potent and novel antibacterial drug candidates with high efficacy. Indole and isatin (indole-2,3-dione) present a wide structural and mechanistic diversity, so their derivatives possess various pharmacological properties and occupy a salient place in the development of new drugs. Indole/isatin-containing hybrids, which demonstrate a promising activity against a panel of clinically important Gram-positive and Gram-negative bacteria, are privileged scaffolds for the discovery of novel antibacterial candidates. This review, covering articles published between January 2015 and May 2020, focuses on the development and structure-activity relationship (SAR) of indole/isatin-containing hybrids with potential application for fighting bacterial infections, to facilitate further rational design of novel drug candidates.
Collapse
Affiliation(s)
- Feng Song
- Shandong Key Laboratory of Biophysics, Institute of Biophysics, Dezhou University, Dezhou, Shandong, China.,School of Life Sciences, Dezhou University, Dezhou, Shandong, China
| | - Zhenghua Li
- Shandong Key Laboratory of Biophysics, Institute of Biophysics, Dezhou University, Dezhou, Shandong, China
| | - Yunqiang Bian
- Shandong Key Laboratory of Biophysics, Institute of Biophysics, Dezhou University, Dezhou, Shandong, China
| | - Xiankai Huo
- Department of Medical Imaging, Dezhou People's Hospital, Dezhou, Shandong, China
| | - Junman Fang
- School of Life Sciences, Dezhou University, Dezhou, Shandong, China
| | - Linlin Shao
- School of Life Sciences, Dezhou University, Dezhou, Shandong, China
| | - Meng Zhou
- School of Life Sciences, Dezhou University, Dezhou, Shandong, China
| |
Collapse
|