1
|
Marrano N, Biondi G, Borrelli A, Cignarelli A, Perrini S, Laviola L, Giorgino F, Natalicchio A. Irisin and Incretin Hormones: Similarities, Differences, and Implications in Type 2 Diabetes and Obesity. Biomolecules 2021; 11:286. [PMID: 33671882 PMCID: PMC7918991 DOI: 10.3390/biom11020286] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2021] [Revised: 02/09/2021] [Accepted: 02/12/2021] [Indexed: 12/11/2022] Open
Abstract
Incretins are gut hormones that potentiate glucose-stimulated insulin secretion (GSIS) after meals. Glucagon-like peptide-1 (GLP-1) is the most investigated incretin hormone, synthesized mainly by L cells in the lower gut tract. GLP-1 promotes β-cell function and survival and exerts beneficial effects in different organs and tissues. Irisin, a myokine released in response to a high-fat diet and exercise, enhances GSIS. Similar to GLP-1, irisin augments insulin biosynthesis and promotes accrual of β-cell functional mass. In addition, irisin and GLP-1 share comparable pleiotropic effects and activate similar intracellular pathways. The insulinotropic and extra-pancreatic effects of GLP-1 are reduced in type 2 diabetes (T2D) patients but preserved at pharmacological doses. GLP-1 receptor agonists (GLP-1RAs) are therefore among the most widely used antidiabetes drugs, also considered for their cardiovascular benefits and ability to promote weight loss. Irisin levels are lower in T2D patients, and in diabetic and/or obese animal models irisin administration improves glycemic control and promotes weight loss. Interestingly, recent evidence suggests that both GLP-1 and irisin are also synthesized within the pancreatic islets, in α- and β-cells, respectively. This review aims to describe the similarities between GLP-1 and irisin and to propose a new potential axis-involving the gut, muscle, and endocrine pancreas that controls energy homeostasis.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Francesco Giorgino
- Department of Emergency and Organ Transplantation, Section of Internal Medicine, Endocrinology, Andrology and Metabolic Diseases, University of Bari Aldo Moro, I-70124 Bari, Italy; (N.M.); (G.B.); (A.B.); (A.C.); (S.P.); (L.L.); (A.N.)
| | | |
Collapse
|
2
|
Myokines and Heart Failure: Challenging Role in Adverse Cardiac Remodeling, Myopathy, and Clinical Outcomes. DISEASE MARKERS 2021; 2021:6644631. [PMID: 33520013 PMCID: PMC7819753 DOI: 10.1155/2021/6644631] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 12/08/2020] [Accepted: 01/06/2021] [Indexed: 12/13/2022]
Abstract
Heart failure (HF) is a global medical problem that characterizes poor prognosis and high economic burden for the health system and family of the HF patients. Although modern treatment approaches have significantly decreased a risk of the occurrence of HF among patients having predominant coronary artery disease, hypertension, and myocarditis, the mortality of known HF continues to be unacceptably high. One of the most important symptoms of HF that negatively influences tolerance to physical exercise, well-being, social adaptation, and quality of life is deep fatigue due to HF-related myopathy. Myopathy in HF is associated with weakness of the skeletal muscles, loss of myofibers, and the development of fibrosis due to microvascular inflammation, metabolic disorders, and mitochondrial dysfunction. The pivotal role in the regulation of myocardial and skeletal muscle rejuvenation, attenuation of muscle metabolic homeostasis, and protection against ischemia injury and apoptosis belongs to myokines. Myokines are defined as a wide spectrum of active molecules that are directly synthesized and released by both cardiac and skeletal muscle myocytes and regulate energy homeostasis in autocrine/paracrine manner. In addition, myokines have a large spectrum of pleiotropic capabilities that are involved in the pathogenesis of HF including cardiac remodeling, muscle atrophy, and cardiac cachexia. The aim of the narrative review is to summarize the knowledge with respect to the role of myokines in adverse cardiac remodeling, myopathy, and clinical outcomes among HF patients. Some myokines, such as myostatin, irisin, brain-derived neurotrophic factor, interleukin-15, fibroblast growth factor-21, and growth differential factor-11, being engaged in the regulation of the pathogenesis of HF-related myopathy, can be detected in peripheral blood, and the evaluation of their circulating levels can provide new insights to the course of HF and stratify patients at higher risk of poor outcomes prior to sarcopenic stage.
Collapse
|
3
|
Huerta-Delgado AS, Roffe-Vazquez DN, Gonzalez-Gil AM, Villarreal-Calderón JR, Tamez-Rivera O, Rodriguez-Gutierrez NA, Castillo EC, Silva-Platas C, Garcia-Rivas G, Elizondo-Montemayor L. Serum Irisin Levels, Endothelial Dysfunction, and Inflammation in Pediatric Patients with Type 2 Diabetes Mellitus and Metabolic Syndrome. J Diabetes Res 2020; 2020:1949415. [PMID: 32964051 PMCID: PMC7492943 DOI: 10.1155/2020/1949415] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 08/12/2020] [Accepted: 08/18/2020] [Indexed: 12/21/2022] Open
Abstract
The prevalence of type 2 diabetes mellitus (T2DM) and metabolic syndrome (MetS) has increased in the pediatric population. Irisin, an adipomyokine, is involved in white adipose tissue browning, energy expenditure, insulin sensitivity, and anti-inflammatory pathways. Data on the associations among circulating irisin levels, soluble cell adhesion molecules (sCAMs), and inflammatory cytokines is scarce in children and adolescents with MetS and T2DM. Subjects aged 6-16 years were grouped into T2DM, MetS, and healthy controls. Serum irisin levels were significantly lower in the MetS (6.6 [2.8-18.0] ng/mL) and T2DM (6.8 [2.2-23.2] ng/mL) groups compared with controls (30.3 [24.6-57.1] ng/mL). Negative correlations between irisin and the BMI percentile (R = -0.358), WC percentile (R = -0.308), and triglycerides (R = -0.284) were identified, while positive associations with TC (R = 0.287), HDL-c (R = 0.488), and LDL-c (R = 0.414) were observed. Significant negative correlations were found between irisin and sNCAM (R = -0.382), sICAM-2 (R = -0.300), sVCAM-1 (R = -0.292), MCP-1 (R = -0.308), and IFN-α2 (R = -0.406). Of note, lower concentrations of most sCAMs (sICAM-1, sPSGL-1, sP-selectin, sEpCAM, sICAM-2, sALCAM, sPECAM-1, sCD44, sVCAM-1, sICAM-3, sL-selectin, and sNCAM) were shown in T2DM subjects compared with MetS patients. Lower irisin levels induce a lack of inhibition of oxidative stress and inflammation. In T2DM, higher ROS, AGEs, glucotoxicity, and inflammation trigger endothelial cell apoptosis, which downregulates the sCAM expression as a compensatory mechanism to prevent further vascular damage. In opposition, in subjects with MetS that have not yet developed T2DM and its accompanying stressors, the upregulation of the sCAM expression is ensued.
Collapse
Affiliation(s)
- Anna S. Huerta-Delgado
- Center for Research in Obesity and Clinical Nutrition, Tecnologico de Monterrey-Escuela de Medicina, Monterrey 64710, Mexico
| | - Daniel N. Roffe-Vazquez
- Center for Research in Obesity and Clinical Nutrition, Tecnologico de Monterrey-Escuela de Medicina, Monterrey 64710, Mexico
| | - Adrian M. Gonzalez-Gil
- Center for Research in Obesity and Clinical Nutrition, Tecnologico de Monterrey-Escuela de Medicina, Monterrey 64710, Mexico
| | - José R. Villarreal-Calderón
- Center for Research in Obesity and Clinical Nutrition, Tecnologico de Monterrey-Escuela de Medicina, Monterrey 64710, Mexico
| | - Oscar Tamez-Rivera
- Department of Pediatrics, Tecnologico de Monterrey-Hospital Zambrano Hellion, San Pedro Garza-Garcia 66278, Mexico
| | | | - Elena C. Castillo
- Center for Biomedical Research, Tecnologico de Monterrey-Hospital Zambrano Hellion, San Pedro Garza-Garcia 66278, Mexico
| | - Christian Silva-Platas
- Center for Biomedical Research, Tecnologico de Monterrey-Hospital Zambrano Hellion, San Pedro Garza-Garcia 66278, Mexico
| | - Gerardo Garcia-Rivas
- Center for Biomedical Research, Tecnologico de Monterrey-Hospital Zambrano Hellion, San Pedro Garza-Garcia 66278, Mexico
- Cardiovascular Medicine and Metabolomics Research Group, Tecnologico de Monterrey-Hospital Zambrano Hellion, San Pedro Garza-Garcia 66278, Mexico
| | - Leticia Elizondo-Montemayor
- Center for Research in Obesity and Clinical Nutrition, Tecnologico de Monterrey-Escuela de Medicina, Monterrey 64710, Mexico
- Cardiovascular Medicine and Metabolomics Research Group, Tecnologico de Monterrey-Hospital Zambrano Hellion, San Pedro Garza-Garcia 66278, Mexico
| |
Collapse
|
4
|
Dozio E, Vianello E, Sitzia C, Ambrogi F, Benedini S, Gorini S, Rampoldi B, Rigolini R, Tacchini L, Corsi Romanelli MM. Circulating Irisin and esRAGE as Early Biomarkers of Decline of Metabolic Health. J Clin Med 2020; 9:jcm9020454. [PMID: 32041319 PMCID: PMC7074501 DOI: 10.3390/jcm9020454] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 02/03/2020] [Accepted: 02/04/2020] [Indexed: 12/16/2022] Open
Abstract
A decline in metabolic health may take place before observing any alteration in the levels of the traditional metabolic markers. New indicators of metabolic derangement are therefore compelling. Irisin is a myokine with important metabolic functions. The role of irisin as a metabolic biomarker in humans has not been fully established yet. We quantified plasma irisin and esRAGE in 106 apparently healthy individuals and we performed a cluster analysis to evaluate their associations with metabolic profile. Plasma levels of various traditional markers of metabolic risk (i.e., glucose and lipid levels) were all within the ranges of normality. We identified two clusters of individuals. Compared to cluster 2, individuals in cluster 1 had higher irisin levels, a metabolic profile shifted toward the limits of the reference ranges and lower esRAGE levels. The traditional metabolic blood tests seem not to be enough to identify a metabolic decline early. Irisin increase and esRAGE decrease may reflect a metabolic derangement at the beginning of its development. The role of these molecules as early biomarkers of decline of metabolic health seems an interesting topic to be further explored.
Collapse
Affiliation(s)
- Elena Dozio
- Department of Biomedical Sciences for Health, Università degli Studi di Milano, Via Mangiagalli 31, 20133 Milan, Italy; (E.V.); (S.B.); (L.T.); (M.M.C.R.)
- Correspondence: ; Tel.: +39–02-5031–5342
| | - Elena Vianello
- Department of Biomedical Sciences for Health, Università degli Studi di Milano, Via Mangiagalli 31, 20133 Milan, Italy; (E.V.); (S.B.); (L.T.); (M.M.C.R.)
| | - Clementina Sitzia
- Residency Program in Clinical Pathology and Clinical Biochemistry, Università degli Studi di Milano, 20133 Milan, Italy;
| | - Federico Ambrogi
- Department of Clinical Sciences and Community Health, Laboratory of Medical Statistics, Biometry and Epidemiology “G.A. Maccaro”, Università degli Studi di Milano, Via Vanzetti 5, 20133 Milan, Italy;
| | - Stefano Benedini
- Department of Biomedical Sciences for Health, Università degli Studi di Milano, Via Mangiagalli 31, 20133 Milan, Italy; (E.V.); (S.B.); (L.T.); (M.M.C.R.)
| | - Silvia Gorini
- Instrumentation Laboratory—A Werfen Company, R&D Department, Viale Monza 338, 20128 Milan, Italy;
| | - Benedetta Rampoldi
- Service of Laboratory Medicine1-Clinical Pathology, IRCCS Policlinico San Donato, Piazza E. Malan, San Donato Milanese, 20097 Milan, Italy; (B.R.); (R.R.)
| | - Roberta Rigolini
- Service of Laboratory Medicine1-Clinical Pathology, IRCCS Policlinico San Donato, Piazza E. Malan, San Donato Milanese, 20097 Milan, Italy; (B.R.); (R.R.)
| | - Lorenza Tacchini
- Department of Biomedical Sciences for Health, Università degli Studi di Milano, Via Mangiagalli 31, 20133 Milan, Italy; (E.V.); (S.B.); (L.T.); (M.M.C.R.)
| | - Massimiliano Marco Corsi Romanelli
- Department of Biomedical Sciences for Health, Università degli Studi di Milano, Via Mangiagalli 31, 20133 Milan, Italy; (E.V.); (S.B.); (L.T.); (M.M.C.R.)
- Service of Laboratory Medicine1-Clinical Pathology, IRCCS Policlinico San Donato, Piazza E. Malan, San Donato Milanese, 20097 Milan, Italy; (B.R.); (R.R.)
| |
Collapse
|
5
|
Tennant KG, Lindsley SR, Kirigiti MA, True C, Kievit P. Central and Peripheral Administration of Fibroblast Growth Factor 1 Improves Pancreatic Islet Insulin Secretion in Diabetic Mouse Models. Diabetes 2019; 68:1462-1472. [PMID: 31048370 PMCID: PMC6609981 DOI: 10.2337/db18-1175] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Accepted: 04/15/2019] [Indexed: 12/19/2022]
Abstract
Fibroblast growth factor 1 (FGF1) has been shown to reverse hyperglycemia in diabetic rodent models through peripheral and central administration routes. Previous studies demonstrated that insulin is required for central and peripheral FGF1 metabolic improvements; however, it is unknown if FGF1 targets insulin secretion at the islet level. Here we show for the first time that FGF1 increases islet insulin secretion in diabetic mouse models. FGF1 was administered via a single intracerebroventricular or multiple subcutaneous injections to leptin receptor-deficient (db/db), diet-induced obese, and control mice; pancreatic islets were isolated 7 days later for analysis of insulin secretion. Central and peripheral FGF1 significantly lowered blood glucose in vivo and increased ex vivo islet insulin secretion from diabetic, but not control, mice. FGF1 injections to the cisterna magna mimicked intracerebroventricular outcomes, pointing to a novel therapeutic potential. Central effects of FGF1 appeared dependent on reductions in food intake, whereas peripheral FGF1 had acute actions on islet function prior to significant changes in food intake or blood glucose. Additionally, peripheral, but not central, FGF1 increased islet β-cell density, suggesting that peripheral FGF1 may induce long-term changes in islet structure and function that are not present with central treatment.
Collapse
Affiliation(s)
- Katherine G Tennant
- Division of Cardiometabolic Health, Oregon National Primate Research Center, Beaverton, OR
| | - Sarah R Lindsley
- Division of Cardiometabolic Health, Oregon National Primate Research Center, Beaverton, OR
| | - Melissa A Kirigiti
- Division of Cardiometabolic Health, Oregon National Primate Research Center, Beaverton, OR
| | - Cadence True
- Division of Cardiometabolic Health, Oregon National Primate Research Center, Beaverton, OR
| | - Paul Kievit
- Division of Cardiometabolic Health, Oregon National Primate Research Center, Beaverton, OR
| |
Collapse
|