1
|
Rüttermann M, Koci M, Lill P, Geladas ED, Kaschani F, Klink BU, Erdmann R, Gatsogiannis C. Structure of the peroxisomal Pex1/Pex6 ATPase complex bound to a substrate. Nat Commun 2023; 14:5942. [PMID: 37741838 PMCID: PMC10518020 DOI: 10.1038/s41467-023-41640-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 09/12/2023] [Indexed: 09/25/2023] Open
Abstract
The double-ring AAA+ ATPase Pex1/Pex6 is required for peroxisomal receptor recycling and is essential for peroxisome formation. Pex1/Pex6 mutations cause severe peroxisome associated developmental disorders. Despite its pathophysiological importance, mechanistic details of the heterohexamer are not yet available. Here, we report cryoEM structures of Pex1/Pex6 from Saccharomyces cerevisiae, with an endogenous protein substrate trapped in the central pore of the catalytically active second ring (D2). Pairs of Pex1/Pex6(D2) subdomains engage the substrate via a staircase of pore-1 loops with distinct properties. The first ring (D1) is catalytically inactive but undergoes significant conformational changes resulting in alternate widening and narrowing of its pore. These events are fueled by ATP hydrolysis in the D2 ring and disengagement of a "twin-seam" Pex1/Pex6(D2) heterodimer from the staircase. Mechanical forces are propagated in a unique manner along Pex1/Pex6 interfaces that are not available in homo-oligomeric AAA-ATPases. Our structural analysis reveals the mechanisms of how Pex1 and Pex6 coordinate to achieve substrate translocation.
Collapse
Affiliation(s)
- Maximilian Rüttermann
- Institute for Medical Physics and Biophysics, University Münster, Münster, Germany
- Center for Soft Nanoscience (SoN), University Münster, Münster, Germany
| | - Michelle Koci
- Department of Structural Biochemistry, Max Planck Institute of Molecular Physiology, Dortmund, Germany
| | - Pascal Lill
- Institute for Medical Physics and Biophysics, University Münster, Münster, Germany
- Center for Soft Nanoscience (SoN), University Münster, Münster, Germany
- Department of Structural Biochemistry, Max Planck Institute of Molecular Physiology, Dortmund, Germany
| | - Ermis Dionysios Geladas
- Institute for Medical Physics and Biophysics, University Münster, Münster, Germany
- Center for Soft Nanoscience (SoN), University Münster, Münster, Germany
| | - Farnusch Kaschani
- Analytics Core Facility Essen, Center of Medical Biotechnology (ZMB), Faculty of Biology, University of Duisburg-Essen, Essen, Germany
| | - Björn Udo Klink
- Institute for Medical Physics and Biophysics, University Münster, Münster, Germany
- Center for Soft Nanoscience (SoN), University Münster, Münster, Germany
| | - Ralf Erdmann
- Institute for Biochemistry and Pathobiochemistry, Department of Systems Biochemistry, Ruhr-University Bochum, Bochum, Germany
| | - Christos Gatsogiannis
- Institute for Medical Physics and Biophysics, University Münster, Münster, Germany.
- Center for Soft Nanoscience (SoN), University Münster, Münster, Germany.
- Department of Structural Biochemistry, Max Planck Institute of Molecular Physiology, Dortmund, Germany.
| |
Collapse
|
2
|
Abstract
Peroxisomes are involved in a multitude of metabolic and catabolic pathways, as well as the innate immune system. Their dysfunction is linked to severe peroxisome-specific diseases, as well as cancer and neurodegenerative diseases. To ensure the ability of peroxisomes to fulfill their many roles in the organism, more than 100 different proteins are post-translationally imported into the peroxisomal membrane and matrix, and their functionality must be closely monitored. In this Review, we briefly discuss the import of peroxisomal membrane proteins, and we emphasize an updated view of both classical and alternative peroxisomal matrix protein import pathways. We highlight different quality control pathways that ensure the degradation of dysfunctional peroxisomal proteins. Finally, we compare peroxisomal matrix protein import with other systems that transport folded proteins across membranes, in particular the twin-arginine translocation (Tat) system and the nuclear pore.
Collapse
Affiliation(s)
- Markus Rudowitz
- Systems Biochemistry , Institute of Biochemistry and Pathobiochemistry, Faculty of Medicine, Ruhr University Bochum, Universitätsstr. 150, 44801 Bochum, Germany
| | - Ralf Erdmann
- Systems Biochemistry , Institute of Biochemistry and Pathobiochemistry, Faculty of Medicine, Ruhr University Bochum, Universitätsstr. 150, 44801 Bochum, Germany
| |
Collapse
|
3
|
Rüttermann M, Gatsogiannis C. Good things come to those who bait: the peroxisomal docking complex. Biol Chem 2023; 404:107-119. [PMID: 36117327 DOI: 10.1515/hsz-2022-0161] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 08/25/2022] [Indexed: 11/15/2022]
Abstract
Peroxisomal integrity and function are highly dependent on its membrane and soluble (matrix) components. Matrix enzymes are imported post-translationally in a folded or even oligomeric state, via a still mysterious protein translocation mechanism. They are guided to peroxisomes via the Peroxisomal Targeting Signal (PTS) sequences which are recognized by specific cytosolic receptors, Pex5, Pex7 and Pex9. Subsequently, cargo-loaded receptors bind to the docking complex in an initial step, followed by channel formation, cargo-release, receptor-recycling and -quality control. The docking complexes of different species share Pex14 as their core component but differ in composition and oligomeric state of Pex14. Here we review and highlight the latest insights on the structure and function of the peroxisomal docking complex. We summarize differences between yeast and mammals and then we integrate this knowledge into our current understanding of the import machinery.
Collapse
Affiliation(s)
- Maximilian Rüttermann
- Institute for Medical Physics and Biophysics and Center for Soft Nanoscience, Westfälische Wilhelms Universität Münster, D-48149 Münster, Germany
| | - Christos Gatsogiannis
- Institute for Medical Physics and Biophysics and Center for Soft Nanoscience, Westfälische Wilhelms Universität Münster, D-48149 Münster, Germany
| |
Collapse
|
4
|
Argyriou C, Polosa A, Song JY, Omri S, Steele B, Cécyre B, McDougald DS, Di Pietro E, Bouchard JF, Bennett J, Hacia JG, Lachapelle P, Braverman NE. AAV-mediated PEX1 gene augmentation improves visual function in the PEX1-Gly844Asp mouse model for mild Zellweger spectrum disorder. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2021; 23:225-240. [PMID: 34703844 PMCID: PMC8516995 DOI: 10.1016/j.omtm.2021.09.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 09/01/2021] [Indexed: 12/01/2022]
Abstract
Patients with Zellweger spectrum disorder (ZSD) commonly present with vision loss due to mutations in PEX genes required for peroxisome assembly and function. Here, we evaluate PEX1 retinal gene augmentation therapy in a mouse model of mild ZSD bearing the murine equivalent (PEX1-p[Gly844Asp]) of the most common human mutation. Experimental adeno-associated virus 8.cytomegalovirus.human PEX1.hemagglutinin (AAV8.CMV.HsPEX1.HA) and control AAV8.CMV.EGFP vectors were administered by subretinal injection in contralateral eyes of early (5-week-old)- or later (9-week-old)-stage retinopathy cohorts. HsPEX1.HA protein was expressed in the retina with no gross histologic side effects. Peroxisomal metabolic functions, assessed by retinal C26:0 lysophosphatidylcholine (lyso-PC) levels, were partially normalized after therapeutic vector treatment. Full-field flash electroretinogram (ffERG) analyses at 8 weeks post-injection showed a 2-fold improved retinal response in the therapeutic relative to control vector-injected eyes. ffERG improved by 1.6- to 2.5-fold in the therapeutic vector-injected eyes when each cohort reached 25 weeks of age. At 32 weeks of age, the average ffERG response was double in the therapeutic relative to control vector-injected eyes in both cohorts. Optomotor reflex analyses trended toward improvement. These proof-of-concept studies represent the first application of gene augmentation therapy to treat peroxisome biogenesis disorders and support the potential for retinal gene delivery to improve vision in these patients.
Collapse
Affiliation(s)
- Catherine Argyriou
- Department of Human Genetics, McGill University, Montreal, QC, Canada.,Research Institute of the McGill University Health Centre, Montreal, QC, Canada
| | - Anna Polosa
- Department of Ophthalmology & Visual Sciences, McGill University, Montreal, QC, Canada.,Research Institute of the McGill University Health Centre, Montreal, QC, Canada
| | - Ji Yun Song
- Center for Advanced Retinal and Ocular Therapeutics, F.M. Kirby Center for Molecular Ophthalmology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Samy Omri
- Research Institute of the McGill University Health Centre, Montreal, QC, Canada
| | - Bradford Steele
- Department of Biochemistry and Molecular Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Bruno Cécyre
- School of Optometry, Université de Montréal, Montreal, QC, Canada
| | - Devin S McDougald
- Center for Advanced Retinal and Ocular Therapeutics, F.M. Kirby Center for Molecular Ophthalmology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Erminia Di Pietro
- Research Institute of the McGill University Health Centre, Montreal, QC, Canada
| | | | - Jean Bennett
- Center for Advanced Retinal and Ocular Therapeutics, F.M. Kirby Center for Molecular Ophthalmology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Joseph G Hacia
- Department of Biochemistry and Molecular Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Pierre Lachapelle
- Department of Ophthalmology & Visual Sciences, McGill University, Montreal, QC, Canada.,Research Institute of the McGill University Health Centre, Montreal, QC, Canada
| | - Nancy E Braverman
- Department of Human Genetics, McGill University, Montreal, QC, Canada.,Research Institute of the McGill University Health Centre, Montreal, QC, Canada
| |
Collapse
|
5
|
Lucaccioni L, Righi B, Cingolani GM, Lugli L, Della Casa E, Torcetta F, Iughetti L, Berardi A. Overwhelming sepsis in a neonate affected by Zellweger syndrome due to a compound heterozygosis in PEX 6 gene: a case report. BMC MEDICAL GENETICS 2020; 21:229. [PMID: 33213396 PMCID: PMC7678176 DOI: 10.1186/s12881-020-01175-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Accepted: 11/12/2020] [Indexed: 12/21/2022]
Abstract
Background Peroxisome biogenesis disorders (PBDs) are a group of metabolic diseases caused by dysfunction of peroxisomes. Different forms of PBDs are described; the most severe one is the Zellweger syndrome (ZS). We report on an unusual presentation of Zellweger syndrome manifesting in a newborn with severe and fulminant sepsis, causing death during the neonatal period. Case presentation A term male Caucasian neonate presented at birth with hypotonia and poor feeding associated with dysmorphic craniofacial features and skeletal abnormalities. Blood tests showed progressive leukopenia; ultrasounds revealed cerebral and renal abnormalities. He died on the fourth day of life because of an irreversible Gram-negative sepsis. Post-mortem tests on blood and urine samples showed biochemical alterations suggestive of ZS confirmed by genetic test. Conclusions ZS is an early and severe forms of PBDs. Peroxisomes are known to be involved in lipid metabolism, but recent studies suggest their fundamental role in modulating immune response and inflammation. In case of clinical suspicion of ZS it is important to focus the attention on the prevention and management of infections that can rapidly progress to death.
Collapse
Affiliation(s)
- Laura Lucaccioni
- Neonatal Intensive Care Unit, Department of Medical and Surgical Sciences of the Mothers, Children and Adults, University of Modena and Reggio Emilia, via del Pozzo 71, 41124, Modena, Italy
| | - Beatrice Righi
- Post Graduate School of Paediatrics, Department of Medical and Surgical Sciences of the Mothers, Children and Adults, University of Modena and Reggio Emilia, via del Pozzo 71, 41124, Modena, Italy
| | - Greta Miriam Cingolani
- Post Graduate School of Paediatrics, Department of Medical and Surgical Sciences of the Mothers, Children and Adults, University of Modena and Reggio Emilia, via del Pozzo 71, 41124, Modena, Italy
| | - Licia Lugli
- Neonatal Intensive Care Unit, Department of Medical and Surgical Sciences of the Mothers, Children and Adults, University of Modena and Reggio Emilia, via del Pozzo 71, 41124, Modena, Italy
| | - Elisa Della Casa
- Neonatal Intensive Care Unit, Department of Medical and Surgical Sciences of the Mothers, Children and Adults, University of Modena and Reggio Emilia, via del Pozzo 71, 41124, Modena, Italy
| | - Francesco Torcetta
- Neonatal Intensive Care Unit, Department of Medical and Surgical Sciences of the Mothers, Children and Adults, University of Modena and Reggio Emilia, via del Pozzo 71, 41124, Modena, Italy
| | - Lorenzo Iughetti
- Pediatric Unit, Department of Medical and Surgical Sciences of the Mothers, Children and Adults, University of Modena and Reggio Emilia, via del Pozzo 71, 41124, Modena, Italy.
| | - Alberto Berardi
- Neonatal Intensive Care Unit, Department of Medical and Surgical Sciences of the Mothers, Children and Adults, University of Modena and Reggio Emilia, via del Pozzo 71, 41124, Modena, Italy
| |
Collapse
|
6
|
van Roermund CWT, IJlst L, Baker A, Wanders RJA, Theodoulou FL, Waterham HR. The Saccharomyces cerevisiae ABC subfamily D transporter Pxa1/Pxa2p co-imports CoASH into the peroxisome. FEBS Lett 2020; 595:763-772. [PMID: 33112423 DOI: 10.1002/1873-3468.13974] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Revised: 09/16/2020] [Accepted: 10/15/2020] [Indexed: 12/11/2022]
Abstract
ATP-binding cassette (ABC) subfamily D transporters are important for the uptake of fatty acids and other beta-oxidation substrates into peroxisomes. Genetic and biochemical evidence indicates that the transporters accept fatty acyl-coenzyme A that is cleaved during the transport cycle and then re-esterified in the peroxisomal lumen. However, it is not known whether free coenzyme A (CoA) is released inside or outside the peroxisome. Here we have used Saccharomyces cerevisiae and isolated peroxisomes to demonstrate that free CoA is released in the peroxisomal lumen. Thus, ABC subfamily D transporter provide an import pathway for free CoA that controls peroxisomal CoA homeostasis and tunes metabolism according to the cell's demands.
Collapse
Affiliation(s)
- Carlo W T van Roermund
- Laboratory Genetic Metabolic Diseases, Amsterdam Gastroenterology & Metabolism, Amsterdam UMC, University of Amsterdam, the Netherlands
| | - Lodewijk IJlst
- Laboratory Genetic Metabolic Diseases, Amsterdam Gastroenterology & Metabolism, Amsterdam UMC, University of Amsterdam, the Netherlands
| | - Alison Baker
- Centre for Plant Sciences, School of Molecular and Cellular Biology, University of Leeds, UK
| | - Ronald J A Wanders
- Laboratory Genetic Metabolic Diseases, Amsterdam Gastroenterology & Metabolism, Amsterdam UMC, University of Amsterdam, the Netherlands
| | | | - Hans R Waterham
- Laboratory Genetic Metabolic Diseases, Amsterdam Gastroenterology & Metabolism, Amsterdam UMC, University of Amsterdam, the Netherlands
| |
Collapse
|
7
|
Abstract
The past several decades have witnessed tremendous growth in the protein targeting, transport and translocation field. Major advances were made during this time period. Now the molecular details of the targeting factors, receptors and the membrane channels that were envisioned in Blobel's Signal Hypothesis in the 1970s have been revealed by powerful structural methods. It is evident that there is a myriad of cytosolic and membrane associated systems that accurately sort and target newly synthesized proteins to their correct membrane translocases for membrane insertion or protein translocation. Here we will describe the common principles for protein transport in prokaryotes and eukaryotes.
Collapse
|
8
|
Argyriou C, Polosa A, Cecyre B, Hsieh M, Di Pietro E, Cui W, Bouchard JF, Lachapelle P, Braverman N. A longitudinal study of retinopathy in the PEX1-Gly844Asp mouse model for mild Zellweger Spectrum Disorder. Exp Eye Res 2019; 186:107713. [PMID: 31254513 DOI: 10.1016/j.exer.2019.107713] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Revised: 05/17/2019] [Accepted: 06/25/2019] [Indexed: 02/03/2023]
Abstract
Zellweger Spectrum Disorder (ZSD) is an autosomal recessive disease caused by mutations in any one of 13 PEX genes whose protein products are required for peroxisome assembly. Retinopathy leading to blindness is one of the major untreatable handicaps faced by patients with ZSD but is not well characterized, and the requirement for peroxisomes in retinal health is unknown. To address this, we examined the progression of retinopathy from 2 to 32 weeks of age in our murine model for the common human PEX1-p.Gly843Asp allele (PEX1-p.Gly844Asp) using electrophysiology, histology, immunohistochemistry, electron microscopy, biochemistry, and visual function tests. We found that retinopathy in male and female PEX1-G844D mice was marked by an attenuated cone function and abnormal cone morphology early in life, with gradually decreasing rod function. Structural defects at the inner retina occurred later in the form of bipolar cell degradation (between 13 and 32 weeks). Inner segment disorganization and enlarged mitochondria were seen at 32 weeks, while other inner retinal cells appeared preserved. Visual acuity was diminished by 11 weeks of age, while signal transmission from the retina to the brain was relatively intact from 7 to 32 weeks of age. Molecular analyses showed that PEX1-G844D is a subfunctional but stable protein, contrary to human PEX1-G843D. Finally, C26:0 lysophosphatidylcholine was elevated in the PEX1-G844D retina, while phopshoethanolamine plasmalogen lipids were present at normal levels. These characterization studies identify therapeutic endpoints for future preclinical trials, including improving or preserving the electroretinogram response, improving visual acuity, and/or preventing loss of bipolar cells.
Collapse
Affiliation(s)
- Catherine Argyriou
- Department of Human Genetics, McGill University, Research Institute of the McGill University Health Centre, 1001 Decarie Boulevard, Montreal, Quebec, H4A 3J1, Canada.
| | - Anna Polosa
- Department of Ophthalmology, McGill University, 1001 Decarie Boulevard, Montreal, Quebec, H4A 3J1, Canada.
| | - Bruno Cecyre
- School of Optometry, Université de Montréal, Pavillon 3744 Jean-Brillant, Bureau 260-39, Montréal, Québec, H3T 1P1, Canada.
| | - Monica Hsieh
- Child Health and Human Development Program, Research Institute of the McGill University Health Centre, 1001 Decarie Boulevard, Montreal, Quebec, H4A 3J1, Canada.
| | - Erminia Di Pietro
- Child Health and Human Development Program, Research Institute of the McGill University Health Centre, 1001 Decarie Boulevard, Montreal, Quebec, H4A 3J1, Canada.
| | - Wei Cui
- Child Health and Human Development Program, Research Institute of the McGill University Health Centre, 1001 Decarie Boulevard, Montreal, Quebec, H4A 3J1, Canada.
| | - Jean-François Bouchard
- School of Optometry, Université de Montréal, Pavillon 3744 Jean-Brillant, Bureau 260-39, Montréal, Québec, H3T 1P1, Canada.
| | - Pierre Lachapelle
- Department of Ophthalmology, McGill University, 1001 Decarie Boulevard, Montreal, Quebec, H4A 3J1, Canada; Child Health and Human Development Program, Research Institute of the McGill University Health Centre, 1001 Decarie Boulevard, Montreal, Quebec, H4A 3J1, Canada.
| | - Nancy Braverman
- Department of Human Genetics, McGill University, Research Institute of the McGill University Health Centre, 1001 Decarie Boulevard, Montreal, Quebec, H4A 3J1, Canada; Child Health and Human Development Program, Research Institute of the McGill University Health Centre, 1001 Decarie Boulevard, Montreal, Quebec, H4A 3J1, Canada; Department of Pediatrics, 1001 Decarie Boulevard, Montreal, Quebec, H4A 3J1, Canada.
| |
Collapse
|
9
|
Wiesemann K, Simm S, Mirus O, Ladig R, Schleiff E. Regulation of two GTPases Toc159 and Toc34 in the translocon of the outer envelope of chloroplasts. BIOCHIMICA ET BIOPHYSICA ACTA. PROTEINS AND PROTEOMICS 2019; 1867:627-636. [PMID: 30611779 DOI: 10.1016/j.bbapap.2019.01.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 12/20/2018] [Accepted: 01/02/2019] [Indexed: 01/03/2023]
Abstract
The GTPases Toc159 and Toc34 of the translocon of the outer envelope of chloroplasts (TOC) are involved in recognition and transfer of precursor proteins at the cytosolic face of the organelle. Both proteins engage multiple interactions within the translocon during the translocation process, including dimeric states of their G-domains. The units of the Toc34 homodimer are involved in the recognition of the transit peptide representing the translocation signal of precursor proteins. This substrate recognition is part of the regulation of the GTPase cycle of Toc34. The Toc159 monomer and the Toc34 homodimer recognize the transit peptide of the small subunit of Rubisco at the N- and at the C-terminal region, respectively. Analysis of the transit peptide interaction by crosslinking shows that the heterodimer between both G-domains binds pSSU most efficiently. While substrate recognition by Toc34 homodimer was shown to regulate nucleotide exchange, we provide evidence that the high activation energy of the GTPase Toc159 is lowered by substrate recognition. The nucleotide affinity of Toc34G homodimer and Toc159G monomer are distinct, Toc34G homodimer recognizes GDP and Toc159G GTP with highest affinity. Moreover, the analysis of the nucleotide association rates of the monomeric and dimeric receptor units suggests that the heterodimer has an arrangement distinct from the homodimer of Toc34. Based on the biochemical parameters determined we propose a model for the order of events at the cytosolic side of TOC. The molecular processes described by this hypothesis range from transit peptide recognition to perception of the substrate by the translocation channel.
Collapse
Affiliation(s)
- Katharina Wiesemann
- Department of Molecular Cell Biology of Plants, Goethe University, Max-von-Laue Str. 9, D-60438 Frankfurt, Germany
| | - Stefan Simm
- Department of Molecular Cell Biology of Plants, Goethe University, Max-von-Laue Str. 9, D-60438 Frankfurt, Germany; Frankfurt Institute for Advanced Studies, Ruth-Moufang-Straße 1, D-60438 Frankfurt, Germany
| | - Oliver Mirus
- Department of Molecular Cell Biology of Plants, Goethe University, Max-von-Laue Str. 9, D-60438 Frankfurt, Germany
| | - Roman Ladig
- Department of Molecular Cell Biology of Plants, Goethe University, Max-von-Laue Str. 9, D-60438 Frankfurt, Germany; Cluster of Excellence Frankfurt, Goethe University, D-60438 Frankfurt, Germany
| | - Enrico Schleiff
- Department of Molecular Cell Biology of Plants, Goethe University, Max-von-Laue Str. 9, D-60438 Frankfurt, Germany; Frankfurt Institute for Advanced Studies, Ruth-Moufang-Straße 1, D-60438 Frankfurt, Germany; Cluster of Excellence Frankfurt, Goethe University, D-60438 Frankfurt, Germany; Buchmann Institute for Molecular Life Sciences, Goethe University, Max-von-Laue Str. 15, D-60438 Frankfurt, Germany.
| |
Collapse
|
10
|
Abstract
Peroxisomes are key metabolic organelles, which contribute to cellular lipid metabolism, e.g. the β-oxidation of fatty acids and the synthesis of myelin sheath lipids, as well as cellular redox balance. Peroxisomal dysfunction has been linked to severe metabolic disorders in man, but peroxisomes are now also recognized as protective organelles with a wider significance in human health and potential impact on a large number of globally important human diseases such as neurodegeneration, obesity, cancer, and age-related disorders. Therefore, the interest in peroxisomes and their physiological functions has significantly increased in recent years. In this review, we intend to highlight recent discoveries, advancements and trends in peroxisome research, and present an update as well as a continuation of two former review articles addressing the unsolved mysteries of this astonishing organelle. We summarize novel findings on the biological functions of peroxisomes, their biogenesis, formation, membrane dynamics and division, as well as on peroxisome-organelle contacts and cooperation. Furthermore, novel peroxisomal proteins and machineries at the peroxisomal membrane are discussed. Finally, we address recent findings on the role of peroxisomes in the brain, in neurological disorders, and in the development of cancer.
Collapse
Affiliation(s)
- Markus Islinger
- Institute of Neuroanatomy, Center for Biomedicine and Medical Technology Mannheim, Medical Faculty Manheim, University of Heidelberg, 68167, Mannheim, Germany
| | - Alfred Voelkl
- Institute for Anatomy and Cell Biology, University of Heidelberg, 69120, Heidelberg, Germany
| | - H Dariush Fahimi
- Institute for Anatomy and Cell Biology, University of Heidelberg, 69120, Heidelberg, Germany
| | | |
Collapse
|
11
|
MacLean GE, Argyriou C, Di Pietro E, Sun X, Birjandian S, Saberian P, Hacia JG, Braverman NE. Zellweger spectrum disorder patient-derived fibroblasts with the PEX1-Gly843Asp allele recover peroxisome functions in response to flavonoids. J Cell Biochem 2018; 120:3243-3258. [PMID: 30362618 DOI: 10.1002/jcb.27591] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Accepted: 08/08/2018] [Indexed: 01/03/2023]
Abstract
Zellweger spectrum disorder (ZSD) results from biallelic mutations in PEX genes required for peroxisome biogenesis. PEX1-G843D is a common hypomorphic allele in the patient population that is associated with milder disease. In prior work using a PEX1-G843D/null patient fibroblast line expressing a green fluorescent protein (GFP) reporter with a peroxisome-targeting signal (GFP-PTS1), we demonstrated that treatments with the chemical chaperone betaine and flavonoid acacetin diacetate recovered peroxisome functions. To identify more effective compounds for preclinical investigation, we evaluated 54 flavonoids using this cell-based phenotype assay. Diosmetin showed the most promising combination of potency and efficacy (EC50 2.5 µM). All active 5',7'-dihydroxyflavones showed greater average efficacy than their corresponding flavonols, whereas the corresponding flavanones, isoflavones, and chalcones tested were inactive. Additional treatment with the proteostasis regulator bortezomib increased the percentage of import-rescued cells over treatment with flavonoids alone. Cotreatments of diosmetin and betaine showed the most robust additive effects, as confirmed by three independent functional assays in primary PEX1-G843D patient cells, but neither agent was active alone or in combination in patient cells homozygous for the PEX1 c.2097_2098insT null allele. Moreover, diosmetin treatment increased PEX1, PEX6, and PEX5 protein levels in PEX1-G843D patient cells, but none of these proteins increased in PEX1 null cells. We propose that diosmetin acts as a pharmacological chaperone that improves the stability, conformation, and functions of PEX1/PEX6 exportomer complexes required for peroxisome assembly. We suggest that diosmetin, in clinical use for chronic venous disease, and related flavonoids warrant further preclinical investigation for the treatment of PEX1-G843D-associated ZSD.
Collapse
Affiliation(s)
- Gillian E MacLean
- Department of Human Genetics, McGill University, Montreal, Quebec, Canada
| | - Catherine Argyriou
- Department of Human Genetics, McGill University, Montreal, Quebec, Canada
| | - Erminia Di Pietro
- Department of Pediatrics, Research Institute of the McGill University Health Center, Montreal, Quebec, Canada
| | - Xuting Sun
- Department of Biotechnology, McGill University, Montreal, Quebec, Canada
| | - Sara Birjandian
- Department of Biotechnology, McGill University, Montreal, Quebec, Canada
| | - Panteha Saberian
- Department of Biotechnology, McGill University, Montreal, Quebec, Canada
| | - Joseph G Hacia
- Department of Biochemistry and Molecular Medicine, Keck School of Medicine, Los Angeles, California
| | - Nancy E Braverman
- Department of Human Genetics, McGill University, Montreal, Quebec, Canada.,Department of Pediatrics, Research Institute of the McGill University Health Center, Montreal, Quebec, Canada
| |
Collapse
|
12
|
Schwerter D, Grimm I, Girzalsky W, Erdmann R. Receptor recognition by the peroxisomal AAA complex depends on the presence of the ubiquitin moiety and is mediated by Pex1p. J Biol Chem 2018; 293:15458-15470. [PMID: 30097517 DOI: 10.1074/jbc.ra118.003936] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Revised: 07/23/2018] [Indexed: 01/14/2023] Open
Abstract
The receptor cycle of type I peroxisomal matrix protein import is completed by ubiquitination of the membrane-bound peroxisome biogenesis factor 5 (Pex5p) and its subsequent export back to the cytosol. The receptor export is the only ATP-dependent step of the whole process and is facilitated by two members of the AAA family of proteins (ATPases associated with various cellular activities), namely Pex1p and Pex6p. To gain further insight into substrate recognition by the AAA complex, we generated an N-terminally linked ubiquitin-Pex5p fusion protein. This fusion protein displayed biological activity because it is able to functionally complement a PEX5-deletion in Saccharomyces cerevisiae. In vitro assays revealed its interaction at WT level with the native cargo protein Pcs60p and Pex14p, a constituent of the receptor docking complex. We also demonstrate in vitro deubiquitination by the deubiquitinating enzyme Ubp15p. In vitro pulldown assays and cross-linking studies demonstrate that Pex5p recognition by the AAA complex depends on the presence of the ubiquitin moiety and is mediated by Pex1p.
Collapse
Affiliation(s)
- Daniel Schwerter
- From the Institute of Biochemistry and Pathobiochemistry, Faculty of Medicine, Systems Biochemistry, Ruhr-University Bochum, D-44780 Bochum, Germany
| | - Immanuel Grimm
- From the Institute of Biochemistry and Pathobiochemistry, Faculty of Medicine, Systems Biochemistry, Ruhr-University Bochum, D-44780 Bochum, Germany
| | - Wolfgang Girzalsky
- From the Institute of Biochemistry and Pathobiochemistry, Faculty of Medicine, Systems Biochemistry, Ruhr-University Bochum, D-44780 Bochum, Germany
| | - Ralf Erdmann
- From the Institute of Biochemistry and Pathobiochemistry, Faculty of Medicine, Systems Biochemistry, Ruhr-University Bochum, D-44780 Bochum, Germany
| |
Collapse
|
13
|
Costello JL, Schrader M. Unloosing the Gordian knot of peroxisome formation. Curr Opin Cell Biol 2018; 50:50-56. [PMID: 29475136 PMCID: PMC6525147 DOI: 10.1016/j.ceb.2018.02.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Revised: 01/24/2018] [Accepted: 02/02/2018] [Indexed: 12/31/2022]
Abstract
Peroxisome biogenesis is governed by molecular machineries, which are either unique to peroxisomes or are partially shared with mitochondria. As peroxisomes have important protective functions in the cell, modulation of their number is important for human health and disease. Significant progress has been made towards our understanding of the mechanisms of peroxisome formation, revealing a remarkable plasticity of the peroxisome biogenesis pathway. Here we discuss most recent findings with particular focus on peroxisome formation in mammalian cells.
Collapse
Affiliation(s)
- Joseph L Costello
- Biosciences, College of Life and Environmental Sciences, University of Exeter, Exeter EX4 4QD, United Kingdom
| | - Michael Schrader
- Biosciences, College of Life and Environmental Sciences, University of Exeter, Exeter EX4 4QD, United Kingdom.
| |
Collapse
|
14
|
Gerwert K. Highlight: GTP- and ATP- dependent membrane processes. Biol Chem 2017; 398:/j/bchm.just-accepted/hsz-2017-0132/hsz-2017-0132.xml. [PMID: 28328522 DOI: 10.1515/hsz-2017-0132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Accepted: 03/17/2017] [Indexed: 02/28/2024]
Abstract
Abstract.
Collapse
|