1
|
Debbarma M, Sarkar K, Sil SK. Dissecting the epigenetic orchestra of HDAC isoforms in breast cancer development: a review. Med Oncol 2024; 42:1. [PMID: 39532757 DOI: 10.1007/s12032-024-02553-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Accepted: 10/29/2024] [Indexed: 11/16/2024]
Abstract
Epigenetic modulators have recently emerged as potential targets in cancer therapy. Breast cancer, the second leading cause of cancer-related deaths among women globally and the most common cancer in India, continues to have a low survival rate despite available treatments. This underscores the urgent need for more effective therapeutic strategies. Histone deacetylases (HDACs), a prominent class of epigenetic modulators, are frequently overexpressed in various cancers, including breast cancer, making them and their downstream pathways, a focus of current research, aiming to develop more effective and less invasive treatments that could help overcome chemoresistance and enhance patient outcomes. Despite the growing body of evidences, a comprehensive and consolidated review on molecular intricacy behind the HDAC-mediated epigenetic regulation of breast cancer is conspicuously absent. Therefore, this review aims to open doors for future research by exploring the evolving role of HDACs, their molecular mechanisms, and their potential as therapeutic targets in breast cancer treatment.
Collapse
Affiliation(s)
- Maria Debbarma
- Molecular Genetics & Cancer Biology Laboratory, Department of Human Physiology, Tripura University, Suryamaninagar, Tripura, 799022, India
| | - Kakali Sarkar
- Molecular Genetics & Cancer Biology Laboratory, Department of Human Physiology, Tripura University, Suryamaninagar, Tripura, 799022, India
| | - Samir Kumar Sil
- Molecular Genetics & Cancer Biology Laboratory, Department of Human Physiology, Tripura University, Suryamaninagar, Tripura, 799022, India.
| |
Collapse
|
2
|
Thakur C, Qiu Y, Pawar A, Chen F. Epigenetic regulation of breast cancer metastasis. Cancer Metastasis Rev 2024; 43:597-619. [PMID: 37857941 DOI: 10.1007/s10555-023-10146-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Accepted: 10/02/2023] [Indexed: 10/21/2023]
Abstract
Breast cancer is the most frequently diagnosed malignancy and the second leading cause of cancer-related mortality among women worldwide. Recurrent metastasis is associated with poor patient outcomes and poses a significant challenge in breast cancer therapies. Cancer cells adapting to a new tissue microenvironment is the key event in distant metastasis development, where the disseminating tumor cells are likely to acquire genetic and epigenetic alterations during the process of metastatic colonization. Despite several decades of research in this field, the exact mechanisms governing metastasis are not fully understood. However, emerging body of evidence indicates that in addition to genetic changes, epigenetic reprogramming of cancer cells and the metastatic niche are paramount toward successful metastasis. Here, we review and discuss the latest knowledge about the salient attributes of metastasis and epigenetic regulation in breast cancer and crucial research domains that need further investigation.
Collapse
Affiliation(s)
- Chitra Thakur
- Stony Brook Cancer Center, Renaissance School of Medicine, Stony Brook University, Lauterbur Drive, Stony Brook, NY, 11794, USA.
| | - Yiran Qiu
- Stony Brook Cancer Center, Renaissance School of Medicine, Stony Brook University, Lauterbur Drive, Stony Brook, NY, 11794, USA
| | - Aashna Pawar
- Stony Brook Cancer Center, Renaissance School of Medicine, Stony Brook University, Lauterbur Drive, Stony Brook, NY, 11794, USA
| | - Fei Chen
- Stony Brook Cancer Center, Renaissance School of Medicine, Stony Brook University, Lauterbur Drive, Stony Brook, NY, 11794, USA.
| |
Collapse
|
3
|
Aleksandrova Y, Neganova M. Deciphering the Mysterious Relationship between the Cross-Pathogenetic Mechanisms of Neurodegenerative and Oncological Diseases. Int J Mol Sci 2023; 24:14766. [PMID: 37834214 PMCID: PMC10573395 DOI: 10.3390/ijms241914766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 09/22/2023] [Accepted: 09/28/2023] [Indexed: 10/15/2023] Open
Abstract
The relationship between oncological pathologies and neurodegenerative disorders is extremely complex and is a topic of concern among a growing number of researchers around the world. In recent years, convincing scientific evidence has accumulated that indicates the contribution of a number of etiological factors and pathophysiological processes to the pathogenesis of these two fundamentally different diseases, thus demonstrating an intriguing relationship between oncology and neurodegeneration. In this review, we establish the general links between three intersecting aspects of oncological pathologies and neurodegenerative disorders, i.e., oxidative stress, epigenetic dysregulation, and metabolic dysfunction, examining each process in detail to establish an unusual epidemiological relationship. We also focus on reviewing the current trends in the research and the clinical application of the most promising chemical structures and therapeutic platforms that have a modulating effect on the above processes. Thus, our comprehensive analysis of the set of molecular determinants that have obvious cross-functional pathways in the pathogenesis of oncological and neurodegenerative diseases can help in the creation of advanced diagnostic tools and in the development of innovative pharmacological strategies.
Collapse
Affiliation(s)
- Yulia Aleksandrova
- Institute of Physiologically Active Compounds at Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences, 142432 Chernogolovka, Russia;
| | - Margarita Neganova
- Institute of Physiologically Active Compounds at Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences, 142432 Chernogolovka, Russia;
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, 420088 Kazan, Russia
| |
Collapse
|
4
|
Genetics, Treatment, and New Technologies of Hormone Receptor-Positive Breast Cancer. Cancers (Basel) 2023; 15:cancers15041303. [PMID: 36831644 PMCID: PMC9954687 DOI: 10.3390/cancers15041303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 02/12/2023] [Accepted: 02/15/2023] [Indexed: 02/22/2023] Open
Abstract
The current molecular classification divides breast cancer into four major subtypes, including luminal A, luminal B, HER2-positive, and basal-like, based on receptor gene expression profiling. Luminal A and luminal B are hormone receptor (HR, estrogen, and/or progesterone receptor)-positive and are the most common subtypes, accounting for around 50-60% and 15-20% of the total breast cancer cases, respectively. The drug treatment for HR-positive breast cancer includes endocrine therapy, HER2-targeted therapy (depending on the HER2 status), and chemotherapy (depending on the risk of recurrence). In this review, in addition to classification, we focused on discussing the important aspects of HR-positive breast cancer, including HR structure and signaling, genetics, including epigenetics and gene mutations, gene expression-based assays, the traditional and new drugs for treatment, and novel or new uses of technology in diagnosis and treatment. Particularly, we have summarized the commonly mutated genes and abnormally methylated genes in HR-positive breast cancer and compared four common gene expression-based assays that are used in breast cancer as prognostic and/or predictive tools in detail, including their clinical use, the factors being evaluated, patient demographics, and the scoring systems. All these topic discussions have not been fully described and summarized within other research or review articles.
Collapse
|
5
|
Cetin MM, Peng W, Unruh D, Mayer MF, Mechref Y, Yelekci K. Design, synthesis, molecular modeling, and bioactivity evaluation of 1,10-phenanthroline and prodigiosin (Ps) derivatives and their Copper(I) complexes against mTOR and HDAC enzymes as highly potent and effective new anticancer therapeutic drugs. Front Pharmacol 2022; 13:980479. [PMID: 36267272 PMCID: PMC9578020 DOI: 10.3389/fphar.2022.980479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 08/15/2022] [Indexed: 11/13/2022] Open
Abstract
Breast cancer is the second type of cancer with a high probability of brain metastasis and has always been one of the main problems of breast cancer research due to the lack of effective treatment methods. Demand for developing an effective drug against breast cancer brain metastasis and finding molecular mechanisms that play a role in effective treatment are gradually increasing. However, there is no effective anticancer therapeutic drug or treatment method specific to breast cancer, in particular, for patients with a high risk of brain metastases. It is known that mTOR and HDAC enzymes play essential roles in the development of breast cancer brain metastasis. Therefore, it is vital to develop some new drugs and conduct studies toward the inhibition of these enzymes that might be a possible solution to treat breast cancer brain metastasis. In this study, a series of 1,10-phenanthroline and Prodigiosin derivatives consisting of their copper(I) complexes have been synthesized and characterized. Their biological activities were tested in vitro on six different cell lines (including the normal cell line). To obtain additional parallel validations of the experimental data, some in silico modeling studies were carried out with mTOR and HDAC1 enzymes, which are very crucial drug targets, to discover novel and potent drugs for breast cancer and related brain metastases disease.
Collapse
Affiliation(s)
- M. Mustafa Cetin
- Department of Molecular Biology and Genetics, Faculty of Engineering and Natural Sciences, Kadir Has University, Istanbul, Turkey
- *Correspondence: M. Mustafa Cetin, ; Kemal Yelekci, ; Yehia Mechref,
| | - Wenjing Peng
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX, United States
| | - Daniel Unruh
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX, United States
| | - Michael F. Mayer
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX, United States
| | - Yehia Mechref
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX, United States
- *Correspondence: M. Mustafa Cetin, ; Kemal Yelekci, ; Yehia Mechref,
| | - Kemal Yelekci
- Department of Molecular Biology and Genetics, Faculty of Engineering and Natural Sciences, Kadir Has University, Istanbul, Turkey
- *Correspondence: M. Mustafa Cetin, ; Kemal Yelekci, ; Yehia Mechref,
| |
Collapse
|
6
|
The Potential Mechanism of HDAC1-Catalyzed Histone Crotonylation of Caspase-1 in Nonsmall Cell Lung Cancer. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:5049116. [PMID: 35958929 PMCID: PMC9363190 DOI: 10.1155/2022/5049116] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 06/22/2022] [Accepted: 06/23/2022] [Indexed: 11/18/2022]
Abstract
Nonsmall cell lung cancer (NSCLC) is a predominant subtype of lung cancer and accounts for over 80% of all lung cancer cases. The resistance to pemetrexed (PEM) is frequently occurred and severely affects the NSCLC therapy. Proteomic analysis of histones indicated that the histone deacetylase 1 (HDAC1) complex could hydrolyze lysine crotonylation on histone3 (H3K18cr), affecting epigenetic regulation in cancers. However, the effect of HDAC1-mediated H3K18cr on the PEM resistance of NSCLC is still unclear. Here, we aimed to explore the function of HDAC1-mediated H3K18cr in NSCLC PEM resistance. The expression of HDAC1 was upregulated in clinical NSCLC tissues and cell lines and correlated with the poor prognosis of NSCLC samples. We constructed the PEM-resistant NSCLC cell lines, and the depletion of HDAC1 remarkably reduced the viability of the cells. The proliferation of PEM-resistant NSCLC cells was decreased by HDAC1 knockdown, and the IC50 of PEM was repressed by the silencing of HDAC1 in the cells. Mechanically, we identified the enrichment of HDAC1 on the promoter of caspase-1 in PEM-resistant NSCLC cells. The depletion of HDAC1 inhibited the enrichment of histone H3K18cr and RNA polymerase II (RNA pol II) on the caspase-1 promoter in the cells. The expression of caspase-1 was suppressed by HDAC1 knockdown. The knockdown of HDAC1 reduced proliferation of PEM-resistant NSCLC cells, in which caspase-1 or GSDMD depletion reversed the effect. Clinically, the HDAC1 expression was negatively associated with caspase-1 and GSDMD in clinical NSCLC tissues, while caspase-1 and GSDMD expression was positively correlated in the samples. Therefore, we concluded that HDAC1-catalyzed histone crotonylation of caspase-1 modulates PEM sensitivity of NSCLC by targeting GSDMD.
Collapse
|
7
|
Looi CK, Gan LL, Sim W, Hii LW, Chung FFL, Leong CO, Lim WM, Mai CW. Histone Deacetylase Inhibitors Restore Cancer Cell Sensitivity towards T Lymphocytes Mediated Cytotoxicity in Pancreatic Cancer. Cancers (Basel) 2022; 14:3709. [PMID: 35954379 PMCID: PMC9367398 DOI: 10.3390/cancers14153709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 07/27/2022] [Accepted: 07/28/2022] [Indexed: 02/04/2023] Open
Abstract
Despite medical advancements, the prognosis of pancreatic ductal adenocarcinoma (PDAC) has not improved significantly over the past 50 years. By utilising the large-scale genomic datasets available from the Australia Pancreatic Cancer Project (PACA-AU) and The Cancer Genomic Atlas Project (TCGA-PAAD), we studied the immunophenotype of PDAC in silico and identified that tumours with high cytotoxic T lymphocytes (CTL) killing activity were associated with favourable clinical outcomes. Using the STRING protein-protein interaction network analysis, the identified differentially expressed genes with low CTL killing activity were associated with TWIST/IL-6R, HDAC5, and EOMES signalling. Following Connectivity Map analysis, we identified 44 small molecules that could restore CTL sensitivity in the PDAC cells. Further high-throughput chemical library screening identified 133 inhibitors that effectively target both parental and CTL-resistant PDAC cells in vitro. Since CTL-resistant PDAC had a higher expression of histone proteins and its acetylated proteins compared to its parental cells, we further investigated the impact of histone deacetylase inhibitors (HDACi) on CTL-mediated cytotoxicity in PDAC cells in vitro, namely SW1990 and BxPC3. Further analyses revealed that givinostat and dacinostat were the two most potent HDAC inhibitors that restored CTL sensitivity in SW1990 and BxPC3 CTL-resistant cells. Through our in silico and in vitro studies, we demonstrate the novel role of HDAC inhibition in restoring CTL resistance and that combinations of HDACi with CTL may represent a promising therapeutic strategy, warranting its further detailed molecular mechanistic studies and animal studies before embarking on the clinical evaluation of these novel combined PDAC treatments.
Collapse
Affiliation(s)
- Chin-King Looi
- School of Postgraduate Studies, International Medical University, Kuala Lumpur 57000, Malaysia; (C.-K.L.); (L.-L.G.)
| | - Li-Lian Gan
- School of Postgraduate Studies, International Medical University, Kuala Lumpur 57000, Malaysia; (C.-K.L.); (L.-L.G.)
- Clinical Research Centre, Hospital Tuanku Ja’afar Seremban, Ministry of Health Malaysia, Seremban 70300, Malaysia
| | - Wynne Sim
- School of Medicine, International Medical University, Kuala Lumpur 57000, Malaysia;
| | - Ling-Wei Hii
- Center for Cancer and Stem Cell Research, Development and Innovation (IRDI), Institute for Research, International Medical University, Kuala Lumpur 57000, Malaysia; (L.-W.H.); (C.-O.L.); (W.-M.L.)
- School of Pharmacy, International Medical University, Kuala Lumpur 57000, Malaysia
| | - Felicia Fei-Lei Chung
- Department of Medical Sciences, School of Medical and Life Sciences, Sunway University, Subang Jaya 47500, Malaysia;
| | - Chee-Onn Leong
- Center for Cancer and Stem Cell Research, Development and Innovation (IRDI), Institute for Research, International Medical University, Kuala Lumpur 57000, Malaysia; (L.-W.H.); (C.-O.L.); (W.-M.L.)
- School of Pharmacy, International Medical University, Kuala Lumpur 57000, Malaysia
- AGTC Genomics, Kuala Lumpur 57000, Malaysia
| | - Wei-Meng Lim
- Center for Cancer and Stem Cell Research, Development and Innovation (IRDI), Institute for Research, International Medical University, Kuala Lumpur 57000, Malaysia; (L.-W.H.); (C.-O.L.); (W.-M.L.)
- School of Pharmacy, International Medical University, Kuala Lumpur 57000, Malaysia
- School of Pharmacy, Monash University Malaysia, Subang Jaya 47500, Malaysia
| | - Chun-Wai Mai
- Center for Cancer and Stem Cell Research, Development and Innovation (IRDI), Institute for Research, International Medical University, Kuala Lumpur 57000, Malaysia; (L.-W.H.); (C.-O.L.); (W.-M.L.)
- School of Pharmacy, International Medical University, Kuala Lumpur 57000, Malaysia
- State Key Laboratory of Oncogenes and Related Genes, Renji-Med X Clinical Stem Cell Research Center, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Pudong New District, Shanghai 200127, China
| |
Collapse
|
8
|
Xue H, Li Y, Zhao Z, Ren J, Yu W, Wang F, Li X, Li J, Xia Q, Zhang Y, Li B. Deacetylation mechanism and potential reversal strategy of long QT syndrome on hERG K + channel under hypoxia. Biochim Biophys Acta Mol Basis Dis 2022; 1868:166487. [PMID: 35840042 DOI: 10.1016/j.bbadis.2022.166487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Revised: 07/05/2022] [Accepted: 07/06/2022] [Indexed: 11/30/2022]
Abstract
Clinically, hypoxia is a major risk factor for long QT syndrome (LQTS), which is associated with many diseases, such as myocardial ischemia. LQTS can be caused by the deficiency of hERG, a potassium ion channel that plays a key role in cardiac repolarization. Modifications such as acetylation of histones or non-histone proteins can affect the protein expression. In the present study, we explored the mechanism underlying hypoxia-induced LQTS and a potential reversal strategy. Experiments were performed under hypoxia to determine transcriptional and post-transcriptional expression changes. We used real-time PCR, chromatin immunoprecipitation assay, and western blotting to determine the histones acetylation in the hERG gene and the mechanism. Molecular docking, western blotting, IP, and patch -clamp assay were performed to determine the acetylation and ubiquitination levels of hERG protein and the mechanism. hERG mRNA and protein expression were found to decrease under hypoxia. The histone deacetylation level increased under hypoxia at both H3K27 and H4 of the hERG gene. HDAC1 and HDAC2 are the key enzymes for the mechanism. HDAC6 directly interacts with hERG. The acetylation level of hERG decreased and the ubiquitination level of hERG increased under hypoxia. The inhibitors of HDAC1, HDAC2, and HDAC6 could reverse the reduction of hERG mRNA and hERG protein expression under hypoxia. In conclusion, deacetylation of hERG gene-associated histones and hERG protein might be the mechanisms for LQTS in patients with hypoxia, and the inhibition of HDAC1, HDAC2, and HDAC6 might be a promising reversal strategy for reducing hERG expression under different pathological conditions.
Collapse
Affiliation(s)
- Hui Xue
- Department of Pharmacology, College of Pharmacy, Harbin Medical University, Harbin, China
| | - Yuexin Li
- Department of Pharmacology, College of Pharmacy, Harbin Medical University, Harbin, China
| | - Zhengrong Zhao
- Department of Pharmacology, College of Pharmacy, Harbin Medical University, Harbin, China
| | - Jiacheng Ren
- Department of Pharmacology, College of Pharmacy, Harbin Medical University, Harbin, China
| | - Wenting Yu
- Department of Pharmacology, College of Pharmacy, Harbin Medical University, Harbin, China
| | - Fang Wang
- Department of Pharmacology, College of Pharmacy, Harbin Medical University, Harbin, China
| | - Xianghua Li
- Department of Pharmacology, College of Pharmacy, Harbin Medical University, Harbin, China
| | - Jiaxin Li
- Department of Pharmacology, College of Pharmacy, Harbin Medical University, Harbin, China
| | - Qianqian Xia
- Department of Pharmacology, College of Pharmacy, Harbin Medical University, Harbin, China
| | - Yuxin Zhang
- Department of Pharmacology, College of Pharmacy, Harbin Medical University, Harbin, China
| | - Baoxin Li
- Department of Pharmacology, College of Pharmacy, Harbin Medical University, Harbin, China.
| |
Collapse
|
9
|
Comprehensive Computational Analysis of Honokiol Targets for Cell Cycle Inhibition and Immunotherapy in Metastatic Breast Cancer Stem Cells. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:4172531. [PMID: 35845599 PMCID: PMC9286982 DOI: 10.1155/2022/4172531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 04/12/2022] [Indexed: 11/18/2022]
Abstract
Breast cancer stem cells (BCSCs) play a critical role in chemoresistance, metastasis, and poor prognosis of breast cancer. BCSCs are mostly dormant, and therefore, activating them and modulating the cell cycle are important for successful therapy against BCSCs. The tumor microenvironment (TME) promotes BCSC survival and cancer progression, and targeting the TME can aid in successful immunotherapy. Honokiol (HNK), a bioactive polyphenol isolated from the bark and seed pods of Magnolia spp., is known to exert anticancer effects, such as inducing cell cycle arrest, inhibiting metastasis, and overcoming immunotherapy resistance in breast cancer cells. However, the molecular mechanisms of action of HNK in BCSCs, as well as its effects on the cell cycle, remain unclear. This study aimed to explore the potential targets and molecular mechanisms of HNK on metastatic BCSC (mBCSC)-cell cycle arrest and the impact of the TME. Using bioinformatics analyses, we predicted HNK protein targets from several databases and retrieved the genes differentially expressed in mBCSCs from the GEO database. The intersection between the differentially expressed genes (DEGs) and the HNK-targets was determined using a Venn diagram, and the results were analyzed using a protein-protein interaction network, hub gene selection, gene ontology and Kyoto Encyclopedia of Genes and Genomes pathway enrichment analyses, genetic alteration analysis, survival rate, and immune cell infiltration levels. Finally, the interaction between HNK and two HNK-targets regulating the cell cycle was analyzed using molecular docking analysis. The identified potential therapeutic targets of HNK (PTTH) included CCND1, SIRT2, AURKB, VEGFA, HDAC1, CASP9, HSP90AA1, and HSP90AB1, which can potentially inhibit the cell cycle of mBCSCs. Moreover, our results showed that PTTH could modulate the PI3K/Akt/mTOR and HIF1/NFkB/pathways. Overall, these findings highlight the potential of HNK as an immunotherapeutic agent for mBCSCs by modulating the tumor immune environment.
Collapse
|
10
|
Zhao W, Jiang X, Weisenthal K, Ma J, Botticelli EM, Zhou Y, Hedley-Whyte ET, Wang B, Swearingen B, Soberman RJ, Klibanski A, Zhang X. High Histone Deacetylase 2/3 Expression in Non-Functioning Pituitary Tumors. Front Oncol 2022; 12:875122. [PMID: 35646715 PMCID: PMC9136140 DOI: 10.3389/fonc.2022.875122] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Accepted: 04/13/2022] [Indexed: 11/21/2022] Open
Abstract
Epigenetic modification of chromatin is involved in non-malignant pituitary neoplasia by causing abnormal expression of tumor suppressors and oncogenes. These changes are potentially reversible, suggesting the possibility of targeting tumor cells by restoring the expression of epigenetically silenced tumor suppressors. The role of the histone deacetylase (HDAC) family in pituitary tumorigenesis is not known. We report that HDAC2 and 3, Class I HDAC members, are highly expressed in clinically non-functioning pituitary adenomas (NFPAs) compared to normal pituitary (NP) samples as determined by RT-PCR and immunohistochemical staining (IHC). Treatment of a human NFPA derived folliculostellate cell line, PDFS, with the HDAC3 inhibitor RGFP966 for 96 hours resulted in inhibition of cell proliferation by 70%. Furthermore, the combination of RGFP966 with a methyltransferase/DNMT inhibitor, 5’-aza-2’-deoxycytidine, led to the restoration of the expression of several tumor suppressor genes, including STAT1, P16, PTEN, and the large non-coding RNA tumor suppressor MEG3, in PDFS cells. Our data support the hypothesis that both histone modification and DNA methylation are involved in the pathogenesis of human NFPAs and suggest that targeting HDACs and DNA methylation can be incorporated into future therapies.
Collapse
Affiliation(s)
- Wenxiu Zhao
- Neuroendocrine Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | - Xiaobin Jiang
- Neuroendocrine Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | - Karrin Weisenthal
- Neuroendocrine Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | - Jun Ma
- Neuroendocrine Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | - Erin M. Botticelli
- Neuroendocrine Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | - Yunli Zhou
- Neuroendocrine Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | - E. Tessa Hedley-Whyte
- Neuropathology Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | - Baiyao Wang
- Neuroendocrine Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | - Brooke Swearingen
- Neurosurgical Service, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | - Roy J. Soberman
- Nephrology Division, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | - Anne Klibanski
- Neuroendocrine Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | - Xun Zhang
- Neuroendocrine Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
- *Correspondence: Xun Zhang,
| |
Collapse
|
11
|
Barbosa-Silva A, Magalhães M, Da Silva GF, Da Silva FAB, Carneiro FRG, Carels N. A Data Science Approach for the Identification of Molecular Signatures of Aggressive Cancers. Cancers (Basel) 2022; 14:2325. [PMID: 35565454 PMCID: PMC9103663 DOI: 10.3390/cancers14092325] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 03/04/2022] [Accepted: 03/12/2022] [Indexed: 02/05/2023] Open
Abstract
The main hallmarks of cancer include sustaining proliferative signaling and resisting cell death. We analyzed the genes of the WNT pathway and seven cross-linked pathways that may explain the differences in aggressiveness among cancer types. We divided six cancer types (liver, lung, stomach, kidney, prostate, and thyroid) into classes of high (H) and low (L) aggressiveness considering the TCGA data, and their correlations between Shannon entropy and 5-year overall survival (OS). Then, we used principal component analysis (PCA), a random forest classifier (RFC), and protein-protein interactions (PPI) to find the genes that correlated with aggressiveness. Using PCA, we found GRB2, CTNNB1, SKP1, CSNK2A1, PRKDC, HDAC1, YWHAZ, YWHAB, and PSMD2. Except for PSMD2, the RFC analysis showed a different list, which was CAD, PSMD14, APH1A, PSMD2, SHC1, TMEFF2, PSMD11, H2AFZ, PSMB5, and NOTCH1. Both methods use different algorithmic approaches and have different purposes, which explains the discrepancy between the two gene lists. The key genes of aggressiveness found by PCA were those that maximized the separation of H and L classes according to its third component, which represented 19% of the total variance. By contrast, RFC classified whether the RNA-seq of a tumor sample was of the H or L type. Interestingly, PPIs showed that the genes of PCA and RFC lists were connected neighbors in the PPI signaling network of WNT and cross-linked pathways.
Collapse
Affiliation(s)
- Adriano Barbosa-Silva
- Center for Medical Statistics, Informatics and Intelligent Systems, Institute for Artificial Intelligence, Medical University of Vienna, 1090 Vienna, Austria
- Centre for Translational Bioinformatics, William Harvey Research Institute, Queen Mary University of London, London E14NS, UK
- ITTM S.A.-Information Technology for Translational Medicine, Esch-sur-Alzette, 4354 Luxembourg, Luxembourg
| | - Milena Magalhães
- Plataforma de Modelagem de Sistemas Biológicos, Center for Technology Development in Health (CDTS), Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro 21040900, Brazil
| | - Gilberto Ferreira Da Silva
- Plataforma de Modelagem de Sistemas Biológicos, Center for Technology Development in Health (CDTS), Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro 21040900, Brazil
| | - Fabricio Alves Barbosa Da Silva
- Laboratório de Modelagem Computacional de Sistemas Biológicos, Scientific Computing Program, Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro 21040900, Brazil
| | - Flávia Raquel Gonçalves Carneiro
- Center for Technology Development in Health (CDTS), Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro 21040900, Brazil
- Laboratório Interdisciplinar de Pesquisas Médicas, Instituto Oswaldo Cruz, Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro 21040900, Brazil
- Program of Immunology and Tumor Biology, Brazilian National Cancer Institute (INCA), Rio de Janeiro 20231050, Brazil
| | - Nicolas Carels
- Plataforma de Modelagem de Sistemas Biológicos, Center for Technology Development in Health (CDTS), Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro 21040900, Brazil
| |
Collapse
|
12
|
Weiss F, Lauffenburger D, Friedl P. Towards targeting of shared mechanisms of cancer metastasis and therapy resistance. Nat Rev Cancer 2022; 22:157-173. [PMID: 35013601 PMCID: PMC10399972 DOI: 10.1038/s41568-021-00427-0] [Citation(s) in RCA: 123] [Impact Index Per Article: 61.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/22/2021] [Indexed: 02/07/2023]
Abstract
Resistance to therapeutic treatment and metastatic progression jointly determine a fatal outcome of cancer. Cancer metastasis and therapeutic resistance are traditionally studied as separate fields using non-overlapping strategies. However, emerging evidence, including from in vivo imaging and in vitro organotypic culture, now suggests that both programmes cooperate and reinforce each other in the invasion niche and persist upon metastatic evasion. As a consequence, cancer cell subpopulations exhibiting metastatic invasion undergo multistep reprogramming that - beyond migration signalling - supports repair programmes, anti-apoptosis processes, metabolic adaptation, stemness and survival. Shared metastasis and therapy resistance signalling are mediated by multiple mechanisms, such as engagement of integrins and other context receptors, cell-cell communication, stress responses and metabolic reprogramming, which cooperate with effects elicited by autocrine and paracrine chemokine and growth factor cues present in the activated tumour microenvironment. These signals empower metastatic cells to cope with therapeutic assault and survive. Identifying nodes shared in metastasis and therapy resistance signalling networks should offer new opportunities to improve anticancer therapy beyond current strategies, to eliminate both nodular lesions and cells in metastatic transit.
Collapse
Affiliation(s)
- Felix Weiss
- Department of Cell Biology, RIMLS, Radboud University Medical Center, Nijmegen, Netherlands
| | - Douglas Lauffenburger
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Peter Friedl
- Department of Cell Biology, RIMLS, Radboud University Medical Center, Nijmegen, Netherlands.
- David H. Koch Center for Applied Research of Genitourinary Cancers, Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
- Cancer Genomics Center, Utrecht, Netherlands.
| |
Collapse
|
13
|
Anti-Colon Cancer Activity of Novel Peptides Isolated from In Vitro Digestion of Quinoa Protein in Caco-2 Cells. Foods 2022; 11:foods11020194. [PMID: 35053925 PMCID: PMC8774364 DOI: 10.3390/foods11020194] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Revised: 12/31/2021] [Accepted: 01/07/2022] [Indexed: 02/07/2023] Open
Abstract
Quinoa peptides are the bioactive components obtained from quinoa protein digestion, which have been proved to possess various biological activities. However, there are few studies on the anticancer activity of quinoa peptides, and the mechanism has not been clarified. In this study, the novel quinoa peptides were obtained from quinoa protein hydrolysate and identified by liquid chromatography-tandem mass spectrometry (LC-MS/MS). The anticancer activity of these peptides was predicted by PeptideRanker and evaluated using an antiproliferative assay in colon cancer Caco-2 cells. Combined with the result of histone deacetylase 1 (HDAC1) inhibitory activity assay, the highly anticancer activity peptides FHPFPR, NWFPLPR, and HYNPYFPG were screened and further investigated. Molecular docking was used to analyze the binding site between peptides and HDAC1, and results showed that three peptides were bound in the active pocket of HDAC1. Moreover, real-time quantitative polymerase chain reaction (RT-qPCR), and Western blot showed that the expression of HDAC1, NFκB, IL-6, IL-8, Bcl-2 was significantly decreased, whereas caspase3 expression showed a remarkable evaluation. In conclusion, quinoa peptides may have the potential to protect against cancer development by inhibiting HDAC1 activity and regulating the expression of the cancer-related genes, which indicates that these peptides could be explored as functional foods to alleviate colon cancer.
Collapse
|
14
|
Lin HY, Wu HJ, Chen SY, Hou MF, Lin CS, Chu PY. Epigenetic therapy combination of UNC0638 and CI-994 suppresses breast cancer via epigenetic remodeling of BIRC5 and GADD45A. Biomed Pharmacother 2022; 145:112431. [PMID: 34798471 DOI: 10.1016/j.biopha.2021.112431] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Revised: 11/08/2021] [Accepted: 11/12/2021] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND There is currently a growing interest in the roles of epigenetic mechanisms in the diagnosis, prognosis, and therapies associated with precision oncology for breast cancer (BC). This study aimed to demonstrate the clinical significance of euchromatic histone lysine methyltransferase 2 (EHMT2), histone deacetylase 1 (HDAC1) and HDAC2 in BC, to evaluate the antitumor effectiveness of a combination of the selective inhibitors UNC0638 and CI-994 (U+C), and to clarify the underlying mechanisms. METHODS Multi-omic analysis was used to study the clinical significance of the biomarkers of interest. The effects of U+C treatment were evaluated by detecting cell viability, cell cycle, apoptosis, and representative gene expressions. RNA-Seq and Gene Set Enrichment Analysis (GSEA) were employed to identify over-represented genes associated with the treatment. Chromatin immunoprecipitation and qPCR (ChIP-qPCR) assay were applied to verify epigenetic profiling on the identified promoters. RESULTS The significance of elevated expressions of EHMT2, HDAC1, and HDAC2 in tumor tissue and BC basal-like subtype in predicting a poor prognosis was noted. The U+C combined treatment showed an enhanced suppressive effect as compared to single agent treatment, perturbed the cell cycle, induced apoptosis, reduced expressions of the genes representing anti-apoptosis, stemness, drug resistance and basal-like state, while increasing luminal-like state genes. In addition, the combined U+C treatment suppressed xenograft tumor growth. The epigenetic reprogramming of histones was identified in the down-regulated BIRC5 and upregulated GADD45A. CONCLUSION These findings demonstrate that selectively targeting EHMT2, HDAC1, and HDAC2 by concurrent U+C treatment suppresses BC tumor progression via epigenetic remodeling of BIRC5 and GADD45A.
Collapse
Affiliation(s)
- Hung-Yu Lin
- College of Medicine, National Chung Hsing University, Taichung 402, Taiwan; Research Assistant Center, Show Chwan Memorial Hospital, Changhua 500, Taiwan.
| | - Hsing-Ju Wu
- College of Medicine, National Chung Hsing University, Taichung 402, Taiwan; Research Assistant Center, Show Chwan Memorial Hospital, Changhua 500, Taiwan; Department of Biology, National Changhua University of Education, Changhua 500, Taiwan.
| | - Si-Yun Chen
- Graduate Institute of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan; Department of Pathology, Show Chwan Memorial Hospital, Changhua 500, Taiwan.
| | - Ming-Feng Hou
- Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan; Division of Breast Surgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan.
| | - Chang-Shen Lin
- Graduate Institute of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan; Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan; Department of Biological Sciences, National Sun Yet-sen University, Kaohsiung 804, Taiwan.
| | - Pei-Yi Chu
- College of Medicine, National Chung Hsing University, Taichung 402, Taiwan; Department of Pathology, Show Chwan Memorial Hospital, Changhua 500, Taiwan; School of Medicine, College of Medicine, Fu Jen Catholic University, New Taipei City 242, Taiwan; Department of Health Food, Chung Chou University of Science and Technology, Changhua 510, Taiwan; National Institute of Cancer Research, National Health Research Institutes, Tainan 704, Taiwan.
| |
Collapse
|
15
|
Zheng L, Zhang A, Liu J, Liu M, Zhang Y. HDAC1 promotes the migration of human myeloma cells via regulation of the lncRNA/Slug axis. Int J Mol Med 2022; 49:3. [PMID: 34738621 PMCID: PMC8589458 DOI: 10.3892/ijmm.2021.5058] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Accepted: 09/21/2021] [Indexed: 12/13/2022] Open
Abstract
Understanding the mechanisms underlying malignancy in myeloma cells is important for targeted treatment and drug development. Histone deacetylases (HDACs) can regulate the progression of various cancer types; however, their roles in myeloma are not well known. In the present study, the expression of class I HDACs in myeloma cells and tissues was evaluated. Furthermore, the effects of HDAC1 on the migration of myeloma cells and the associated mechanisms were investigated. Among the class I HDACs evaluated, HDAC1 was upregulated in both myeloma cells and tissues. Targeted inhibition of HDAC1 suppressed the migration of myeloma cells. Of the assessed transcription factors, small interfering (si)‑HDAC1 decreased the expression of Slug. Overexpression of Slug reversed the si‑HDAC1‑mediated suppressed migration of myeloma cells. Mechanistically, the results revealed that HDAC1 regulated the mRNA stability of Slug, while it had no effect on its transcription or nuclear export. Furthermore, HDAC1 negatively regulated the expression of long non‑coding RNA (lncRNA) NONHSAT113026, which could bind with the 3'‑untranslated region of Slug mRNA to facilitate its degradation. The present study demonstrated that HDAC1 promoted the migration of human myeloma cells via regulation of lncRNA/Slug signaling.
Collapse
Affiliation(s)
- Lisha Zheng
- School of Biological Science and Medical Engineering, Beihang University, Beijing 100191, P.R. China
| | - Ang Zhang
- Department of Hematology, PLA Strategic Support Force Characteristic Medical Center, Beijing 100101, P.R. China
| | - Jishan Liu
- School of Biological Science and Medical Engineering, Beihang University, Beijing 100191, P.R. China
| | - Min Liu
- School of Biological Science and Medical Engineering, Beihang University, Beijing 100191, P.R. China
| | - Yikun Zhang
- Department of Hematology, PLA Strategic Support Force Characteristic Medical Center, Beijing 100101, P.R. China
| |
Collapse
|
16
|
Wu Q, Zhang W, Liu Y, Huang Y, Wu H, Ma C. Histone deacetylase 1 facilitates aerobic glycolysis and growth of endometrial cancer. Oncol Lett 2021; 22:721. [PMID: 34429761 PMCID: PMC8371952 DOI: 10.3892/ol.2021.12982] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 06/24/2021] [Indexed: 01/20/2023] Open
Abstract
The deregulation of histone deacetylase 1 (HDAC1) is reportedly involved in the progression of several cancer types. However, its function in endometrial cancer remains unknown. The aim of the present study was to clarify the role of HDAC1 in aerobic glycolysis and the progression of endometrial cancer. Lentiviral vector transfection was used to up- and downregulate HDAC1 expression in HEC-1-A endometrial cancer cells. The effects of HDAC1 on cellular proliferation, apoptosis, migration, invasiveness and tumorigenesis were determined by CCK-8, flow cytometry, wound-healing, transwell chamber and in vivo tumor formation experiments, respectively. HDAC1 level was significantly increased in endometrial cancer tissues and cells, and its high expression was associated with advanced clinicopathological progression. HEC-1-A cell proliferation, invasiveness, migration and tumorigenesis were enhanced, and apoptosis was inhibited when HDAC1 was overexpressed. Moreover, upregulation of HDAC1 significantly promoted the epithelial-mesenchymal transition of HEC-1-A cells, and increased glucose consumption, lactate secretion and ATP levels. Collectively, the present study revealed that HDAC1 promoted the aerobic glycolysis and progression of endometrial cancer, which may provide a potential target for endometrial cancer treatment.
Collapse
Affiliation(s)
- Qiongwei Wu
- Gynecology Department, Shanghai Changning Maternity and Infant Health Hospital, Shanghai 200051, P.R. China
| | - Wenying Zhang
- Gynecology Department, Shanghai Changning Maternity and Infant Health Hospital, Shanghai 200051, P.R. China
| | - Yu Liu
- Gynecology Department, Shanghai Changning Maternity and Infant Health Hospital, Shanghai 200051, P.R. China
| | - Yuhua Huang
- Gynecology Department, Shanghai Changning Maternity and Infant Health Hospital, Shanghai 200051, P.R. China
| | - Huiheng Wu
- Gynecology Department, Shanghai Changning Maternity and Infant Health Hospital, Shanghai 200051, P.R. China
| | - Chengbin Ma
- Gynecology Department, Shanghai Changning Maternity and Infant Health Hospital, Shanghai 200051, P.R. China
| |
Collapse
|
17
|
Porcine Epidemic Diarrhea Virus Inhibits HDAC1 Expression To Facilitate Its Replication via Binding of Its Nucleocapsid Protein to Host Transcription Factor Sp1. J Virol 2021; 95:e0085321. [PMID: 34232065 DOI: 10.1128/jvi.00853-21] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Porcine epidemic diarrhea virus (PEDV) is an enteric coronavirus causing acute intestinal infection in pigs, with high mortality often seen in neonatal pigs. The newborns rely on innate immune responses against invading pathogens because of lacking adaptive immunity. However, how PEDV disables the innate immunity of newborns toward severe infection remains unknown. We found that PEDV infection led to reduced expression of histone deacetylases (HDACs), especially HDAC1, in porcine IPEC-J2 cells. HDACs are considered important regulators of innate immunity. We hypothesized that PEDV interacts with certain host factors to regulate HDAC1 expression in favor of its replication. We show that HDAC1 acted as a negative regulator of PEDV replication in IPEC-J2 cells, as shown by chemical inhibition, gene knockout, and overexpression. A GC-box (GCCCCACCCCC) within the HDAC1 promoter region was identified for Sp1 binding in IPEC-J2 cells. Treatment of the cells with Sp1 inhibitor mithramycin A inhibited HDAC1 expression, indicating direct regulation of HDAC1 expression by Sp1. Of the viral proteins that were overexpressed in IPEC-J2 cells, the N protein was found to be present in the nuclei and more inhibitory to HDAC1 transcription. The putative nuclear localization sequence 261PKKNKSR267 contributed to its nuclear localization. The N protein interacted with Sp1 and interfered with its binding to the promoter region, thereby inhibiting its transcriptional activity for HDAC1 expression. Our findings reveal a novel mechanism of PEDV evasion of the host responses, offering implications for studying the infection processes of other coronaviruses. IMPORTANCE The enteric coronavirus porcine epidemic diarrhea virus (PEDV) causes fatal acute intestinal infection in neonatal pigs that rely on innate immune responses. Histone deacetylases (HDACs) play important roles in innate immune regulation. Our study found PEDV suppresses HDAC1 expression via the interaction of its N protein and porcine Sp1, which identified a novel mechanism of PEDV evasion of the host responses to benefit its replication. This study suggests that other coronaviruses, including SARS-CoV and SARS-CoV-2, also make use of their N proteins to intercept the host immune responses in favor of their infection.
Collapse
|
18
|
Lee JE, Kim MY. Cancer epigenetics: Past, present and future. Semin Cancer Biol 2021; 83:4-14. [PMID: 33798724 DOI: 10.1016/j.semcancer.2021.03.025] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Revised: 03/22/2021] [Accepted: 03/25/2021] [Indexed: 12/14/2022]
Abstract
Cancer was thought to be caused solely by genetic mutations in oncogenes and tumor suppressor genes. In the last 35 years, however, epigenetic changes have been increasingly recognized as another primary driver of carcinogenesis and cancer progression. Epigenetic deregulation in cancer often includes mutations and/or aberrant expression of chromatin-modifying enzymes, their associated proteins, and even non-coding RNAs, which can alter chromatin structure and dynamics. This leads to changes in gene expression that ultimately contribute to the emergence and evolution of cancer cells. Studies of the deregulation of chromatin modifiers in cancer cells have reshaped the way we approach cancer and guided the development of novel anticancer therapeutics that target epigenetic factors. There remain, however, a number of unanswered questions in this field that are the focus of present research. Areas of particular interest include the actions of emerging classes of epigenetic regulators of carcinogenesis and the tumor microenvironment, as well as epigenetic tumor heterogeneity. In this review, we discuss past findings on epigenetic mechanisms of cancer, current trends in the field of cancer epigenetics, and the directions of future research that may lead to the identification of new prognostic markers for cancer and the development of more effective anticancer therapeutics.
Collapse
Affiliation(s)
- Jae Eun Lee
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
| | - Mi-Young Kim
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea; KAIST Institute for the BioCentury, Cancer Metastasis Control Center, Daejeon, Republic of Korea.
| |
Collapse
|
19
|
Prominent Role of Histone Modifications in the Regulation of Tumor Metastasis. Int J Mol Sci 2021; 22:ijms22052778. [PMID: 33803458 PMCID: PMC7967218 DOI: 10.3390/ijms22052778] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Accepted: 03/08/2021] [Indexed: 12/22/2022] Open
Abstract
Tumor aggressiveness and progression is highly dependent on the process of metastasis, regulated by the coordinated interplay of genetic and epigenetic mechanisms. Metastasis involves several steps of epithelial to mesenchymal transition (EMT), anoikis resistance, intra- and extravasation, and new tissue colonization. EMT is considered as the most critical process allowing cancer cells to switch their epithelial characteristics and acquire mesenchymal properties. Emerging evidence demonstrates that epigenetics mechanisms, DNA methylation, histone modifications, and non-coding RNAs participate in the widespread changes of gene expression that characterize the metastatic phenotype. At the chromatin level, active and repressive histone post-translational modifications (PTM) in association with pleiotropic transcription factors regulate pivotal genes involved in the initiation of the EMT process as well as in intravasation and anoikis resistance, playing a central role in the progression of tumors. Herein, we discuss the main epigenetic mechanisms associated with the different steps of metastatic process, focusing in particular on the prominent role of histone modifications and the modifying enzymes that mediate transcriptional regulation of genes associated with tumor progression. We further discuss the development of novel treatment strategies targeting the reversibility of histone modifications and highlight their importance in the future of cancer therapy.
Collapse
|
20
|
HDAC1 regulates the chemosensitivity of laryngeal carcinoma cells via modulation of interleukin-8 expression. Eur J Pharmacol 2021; 896:173923. [PMID: 33539818 DOI: 10.1016/j.ejphar.2021.173923] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 01/14/2021] [Accepted: 01/29/2021] [Indexed: 01/28/2023]
Abstract
Chemotherapies such as 5-fluorouracil (5-FU) and cisplatin (CDDP) have been widely used to treat laryngeal squamous cell carcinoma (LSCC), the second most common head and neck squamous cell carcinoma. However, chemoresistance seriously impairs chemotherapeutic efficacy. Our present study reveals that 5-FU and CDDP treatment increase the expression of histone deacetylase 1 (HDAC1) in LSCC cells. Consistently, increased levels of HDAC1 are observed in chemoresistant cells. Knockdown of HDAC1 significantly restores the sensitivity of LSCC cells, as HDAC1 increases the expression of interleukin-8 (IL-8), which is essential for LSCC chemoresistance. Mechanistically, HDAC1 directly initiates the transcription of IL-8 though binding to its promoter. Simultaneously, si-HDAC1 increases the levels of miR-93, which binds to the 3'UTR of IL-8 mRNA to trigger its degradation. In summary, the HDAC1/IL-8 axis can confer chemotherapeutic resistance to LSCC cells.
Collapse
|
21
|
Kong J, Shen S, Zhang Z, Wang W. Identification of hub genes and pathways in cholangiocarcinoma by coexpression analysis. Cancer Biomark 2020; 27:505-517. [PMID: 32116234 DOI: 10.3233/cbm-190038] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
BACKGROUND Cholangiocarcinoma (CCA) is the most common biliary malignancy worldwide. However, the molecular mechanisms of its tumorigenesis and progression are still largely unclear. OBJECTIVE This study aimed to explore the hub genes and pathways associated with CCA prognosis by coexpression analysis. METHODS A coexpression network complex was constructed using the top 20% most variant genes in the GSE89748 dataset to find modules associated with prognosis related clinical trait-histology. The hub genes in the clinically significant modules were defined as candidates if they were common in both the coexpression network and protein-protein interaction (PPI) network. Afterwards, survival analysis, expression level analysis and a series of bioinformatic analysis were used to validate the hub genes. RESULTS Twenty-five modules were obtained, and the cyan, light cyan and red modules regarded as closely associated with histology were selected. Subsequently, combining the PPI network complexes and coexpression networks, we screened 20 candidates. After expression and survival analysis, 10 real hub genes (LIMA1, HDAC1, ITGA3, ACTR3, GSK3B, ITGA2, THOC2, PTGES3, HEATR1 and ILF2) were finally identified. Additionally, functional enrichment analysis revealed that the hub genes were mainly enriched in cell cycle-related pathways. CONCLUSIONS Overall, this study identified 10 hub genes and cell cycle-related pathways were closely related to CCA development, progression and prognosis, which may contribute to CCA diagnosis and treatment.
Collapse
|
22
|
Zhuang J, Huo Q, Yang F, Xie N. Perspectives on the Role of Histone Modification in Breast Cancer Progression and the Advanced Technological Tools to Study Epigenetic Determinants of Metastasis. Front Genet 2020; 11:603552. [PMID: 33193750 PMCID: PMC7658393 DOI: 10.3389/fgene.2020.603552] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Accepted: 10/09/2020] [Indexed: 12/11/2022] Open
Abstract
Metastasis is a complex process that involved in various genetic and epigenetic alterations during the progression of breast cancer. Recent evidences have indicated that the mutation in the genome sequence may not be the key factor for increasing metastatic potential. Epigenetic changes were revealed to be important for metastatic phenotypes transition with the development in understanding the epigenetic basis of breast cancer. Herein, we aim to present the potential epigenetic drivers that induce dysregulation of genes related to breast tumor growth and metastasis, with a particular focus on histone modification including histone acetylation and methylation. The pervasive role of major histone modification enzymes in cancer metastasis such as histone acetyltransferases (HAT), histone deacetylases (HDACs), DNA methyltransferases (DNMTs), and so on are demonstrated and further discussed. In addition, we summarize the recent advances of next-generation sequencing technologies and microfluidic-based devices for enhancing the study of epigenomic landscapes of breast cancer. This feature also introduces several important biotechnologists for identifying robust epigenetic biomarkers and enabling the translation of epigenetic analyses to the clinic. In summary, a comprehensive understanding of epigenetic determinants in metastasis will offer new insights of breast cancer progression and can be achieved in the near future with the development of innovative epigenomic mapping tools.
Collapse
Affiliation(s)
- Jialang Zhuang
- Biobank, Shenzhen Second People's Hospital, First Affiliated Hospital of Shenzhen University, Shenzhen, China.,Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Qin Huo
- Biobank, Shenzhen Second People's Hospital, First Affiliated Hospital of Shenzhen University, Shenzhen, China
| | - Fan Yang
- Biobank, Shenzhen Second People's Hospital, First Affiliated Hospital of Shenzhen University, Shenzhen, China
| | - Ni Xie
- Biobank, Shenzhen Second People's Hospital, First Affiliated Hospital of Shenzhen University, Shenzhen, China
| |
Collapse
|
23
|
Potential Molecular Mechanisms of Chaihu-Shugan-San in Treatment of Breast Cancer Based on Network Pharmacology. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2020; 2020:3670309. [PMID: 33062007 PMCID: PMC7533014 DOI: 10.1155/2020/3670309] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Accepted: 08/05/2020] [Indexed: 12/16/2022]
Abstract
Breast cancer is one of the most common cancers endangering women's health all over the world. Traditional Chinese medicine is increasingly recognized as a possible complementary and alternative therapy for breast cancer. Chaihu-Shugan-San is a traditional Chinese medicine prescription, which is extensively used in clinical practice. Its therapeutic effect on breast cancer has attracted extensive attention, but its mechanism of action is still unclear. In this study, we explored the molecular mechanism of Chaihu-Shugan-San in the treatment of breast cancer by network pharmacology. The results showed that 157 active ingredients and 8074 potential drug targets were obtained in the TCMSP database according to the screening conditions. 2384 disease targets were collected in the TTD, OMIM, DrugBank, GeneCards disease database. We applied the Bisogenet plug-in in Cytoscape 3.7.1 to obtain 451 core targets. The biological process of gene ontology (GO) involves the mRNA catabolic process, RNA catabolic process, telomere organization, nucleobase-containing compound catabolic process, heterocycle catabolic process, and so on. In cellular component, cytosolic part, focal adhesion, cell-substrate adherens junction, and cell-substrate junction are highly correlated with breast cancer. In the molecular function category, most proteins were addressed to ubiquitin-like protein ligase binding, protein domain specific binding, and Nop56p-associated pre-rRNA complex. Besides, the results of the KEGG pathway analysis showed that the pathways mainly involved in apoptosis, cell cycle, transcriptional dysregulation, endocrine resistance, and viral infection. In conclusion, the treatment of breast cancer by Chaihu-Shugan-San is the result of multicomponent, multitarget, and multipathway interaction. This study provides a certain theoretical basis for the treatment of breast cancer by Chaihu-Shugan-San and has certain reference value for the development and application of new drugs.
Collapse
|
24
|
Chen CY, Fang JY, Chen CC, Chuang WY, Leu YL, Ueng SH, Wei LS, Cheng SF, Hsueh C, Wang TH. 2-O-Methylmagnolol, a Magnolol Derivative, Suppresses Hepatocellular Carcinoma Progression via Inhibiting Class I Histone Deacetylase Expression. Front Oncol 2020; 10:1319. [PMID: 32850418 PMCID: PMC7431949 DOI: 10.3389/fonc.2020.01319] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Accepted: 06/24/2020] [Indexed: 12/24/2022] Open
Abstract
Magnolia officinalis is widely used in Southeast Asian countries for the treatment of fever, headache, diarrhea, and stroke. Magnolol is a phenolic compound extracted from M. officinalis, with proven antibacterial, antioxidant, anti-inflammatory, and anticancer activities. In this study, we modified magnolol to synthesize a methoxylated derivative, 2-O-methylmagnolol (MM1), and investigated the use of MM1, and magnolol in the treatment of liver cancer. We found that both magnolol and MM1 exhibited inhibitory effects on the growth, migration, and invasion of hepatocellular carcinoma (HCC) cell lines and halted the cell cycle at the G1 phase. MM1 also demonstrated a substantially better tumor-suppressive effect than magnolol. Further analysis suggested that by inhibiting class I histone deacetylase expression in HCC cell lines, magnolol and MM1 induced p21 expression and p53 activation, thereby causing cell cycle arrest and inhibiting HCC cell growth, migration, and invasion. Subsequently, we verified the significant tumor-suppressive effects of magnolol and MM1 in an animal model. Collectively, these findings demonstrate the anti-HCC activities of magnolol and MM1 and their potential for clinical use.
Collapse
Affiliation(s)
- Chi-Yuan Chen
- Tissue Bank, Chang Gung Memorial Hospital, Taoyuan City, Taiwan.,Graduate Institute of Health Industry Technology, Research Center for Food and Cosmetic Safety, Research Center for Chinese Herbal Medicine, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan City, Taiwan
| | - Jia-You Fang
- Graduate Institute of Natural Products, Chang Gung University, Taoyuan City, Taiwan.,Department of Anesthesiology, Chang Gung Memorial Hospital, Taoyuan City, Taiwan
| | - Chin-Chuan Chen
- Tissue Bank, Chang Gung Memorial Hospital, Taoyuan City, Taiwan.,Graduate Institute of Natural Products, Chang Gung University, Taoyuan City, Taiwan
| | - Wen-Yu Chuang
- Department of Anatomic Pathology, Chang Gung Memorial Hospital, Chang Gung University School of Medicine, Taoyuan City, Taiwan
| | - Yann-Lii Leu
- Graduate Institute of Natural Products, Chang Gung University, Taoyuan City, Taiwan.,Chinese Herbal Medicine Research Team, Healthy Aging Research Center, Chang Gung University, Taoyuan City, Taiwan.,Center for Traditional Chinese Medicine, Chang Gung Memorial Hospital, Taoyuan City, Taiwan
| | - Shir-Hwa Ueng
- Department of Anatomic Pathology, Chang Gung Memorial Hospital, Chang Gung University School of Medicine, Taoyuan City, Taiwan
| | - Li-Shan Wei
- Tissue Bank, Chang Gung Memorial Hospital, Taoyuan City, Taiwan
| | - Shu-Fang Cheng
- Tissue Bank, Chang Gung Memorial Hospital, Taoyuan City, Taiwan.,Graduate Institute of Natural Products, Chang Gung University, Taoyuan City, Taiwan
| | - Chuen Hsueh
- Tissue Bank, Chang Gung Memorial Hospital, Taoyuan City, Taiwan.,Department of Anatomic Pathology, Chang Gung Memorial Hospital, Chang Gung University School of Medicine, Taoyuan City, Taiwan
| | - Tong-Hong Wang
- Tissue Bank, Chang Gung Memorial Hospital, Taoyuan City, Taiwan.,Graduate Institute of Health Industry Technology, Research Center for Food and Cosmetic Safety, Research Center for Chinese Herbal Medicine, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan City, Taiwan.,Department of Hepato-Gastroenterology, Liver Research Center, Chang Gung Memorial Hospital, Taoyuan City, Taiwan
| |
Collapse
|
25
|
Ma L, Qi L, Li S, Yin Q, Liu J, Wang J, She C, Li P, Liu Q, Wang X, Li W. Aberrant HDAC3 expression correlates with brain metastasis in breast cancer patients. Thorac Cancer 2020; 11:2493-2505. [PMID: 32686908 PMCID: PMC7471029 DOI: 10.1111/1759-7714.13561] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 06/17/2020] [Accepted: 06/17/2020] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND Brain metastasis is an unsolved clinical problem in breast cancer patients due to its poor prognosis and high fatality rate. Although accumulating evidence has shown that some pan-histone deacetylase (HDAC) inhibitors can relieve breast cancer brain metastasis, the specific HDAC protein involved in this process is unclear. Thus, identifying a specific HDAC protein closely correlated with breast cancer brain metastasis will not only improve our understanding of the functions of the HDAC family but will also help develop a novel target for precision cancer therapy. METHODS Immunohistochemical staining of HDAC1, HDAC2, and HDAC3 in 161 samples from breast invasive ductal carcinoma patients, including 63 patients with brain metastasis, was performed using the standard streptavidin-peroxidase method. The relationships between HDAC1, HDAC2, and HDAC3 and overall survival/brain metastasis-free survival/post-brain metastatic survival were evaluated using Kaplan-Meier curves and Cox regression analyses. RESULTS HDAC1, HDAC2, and cytoplasmic HDAC3 all displayed typical oncogenic characteristics and were independent prognostic factors for the overall survival of breast cancer patients. Only cytoplasmic HDAC3 was an independent prognostic factor for brain metastasis-free survival. Cytoplasmic expression of HDAC3 was further upregulated in the brain metastases compared with the matched primary tumors, while nuclear expression was downregulated. The HDAC1, HDAC2, and HDAC3 expression levels in the brain metastases were not correlated with survival post-brain metastasis. CONCLUSIONS Our studies first demonstrate a critical role for HDAC3 in the brain metastasis of breast cancer patients and it may serve as a promising therapeutic target for the vigorously developing field of precision medicine. KEY POINTS Significant findings of the study Cytoplasmic HDAC3 is an independent prognostic factor for the overall survival and brain metastasis-free survival of breast cancer patients. What this study adds Cytoplasmic expression of HDAC3 was further upregulated in the brain metastases compared with the matched primary tumours, while nuclear expression was downregulated.
Collapse
Affiliation(s)
- Li Ma
- Department of Neuro-Oncology and Neurosurgery, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy of Tianjin, Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Lisha Qi
- Department of Pathology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy of Tianjin, Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Shuangjing Li
- Department of Central Laboratory, Liaocheng People's Hospital, Liaocheng, China
| | - Qiang Yin
- Department of Neuro-Oncology and Neurosurgery, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy of Tianjin, Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Jinmei Liu
- Department of Neuro-Oncology and Neurosurgery, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy of Tianjin, Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Jingyi Wang
- Department of Pathology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy of Tianjin, Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Chunhua She
- Department of Neuro-Oncology and Neurosurgery, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy of Tianjin, Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Peng Li
- Department of Neuro-Oncology and Neurosurgery, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy of Tianjin, Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Qun Liu
- Department of Neuro-Oncology and Neurosurgery, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy of Tianjin, Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Xiaoguang Wang
- Department of Neuro-Oncology and Neurosurgery, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy of Tianjin, Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Wenliang Li
- Department of Neuro-Oncology and Neurosurgery, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy of Tianjin, Tianjin's Clinical Research Center for Cancer, Tianjin, China
| |
Collapse
|
26
|
Yeon M, Kim Y, Jung HS, Jeoung D. Histone Deacetylase Inhibitors to Overcome Resistance to Targeted and Immuno Therapy in Metastatic Melanoma. Front Cell Dev Biol 2020; 8:486. [PMID: 32626712 PMCID: PMC7311641 DOI: 10.3389/fcell.2020.00486] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Accepted: 05/22/2020] [Indexed: 12/12/2022] Open
Abstract
Therapies that target oncogenes and immune checkpoint molecules constitute a major group of treatments for metastatic melanoma. A mutation in BRAF (BRAF V600E) affects various signaling pathways, including mitogen activated protein kinase (MAPK) and PI3K/AKT/mammalian target of rapamycin (mTOR) in melanoma. Target-specific agents, such as MAPK inhibitors improve progression-free survival. However, BRAFV600E mutant melanomas treated with BRAF kinase inhibitors develop resistance. Immune checkpoint molecules, such as programmed death-1 (PD-1) and programmed death ligand-1(PD-L1), induce immune evasion of cancer cells. MAPK inhibitor resistance results from the increased expression of PD-L1. Immune checkpoint inhibitors, such as anti-PD-L1 or anti-PD-1, are main players in immune therapies designed to target metastatic melanoma. However, melanoma patients show low response rate and resistance to these inhibitors develops within 6–8 months of treatment. Epigenetic reprogramming, such as DNA methylaion and histone modification, regulates the expression of genes involved in cellular proliferation, immune checkpoints and the response to anti-cancer drugs. Histone deacetylases (HDACs) remove acetyl groups from histone and non-histone proteins and act as transcriptional repressors. HDACs are often dysregulated in melanomas, and regulate MAPK signaling, cancer progression, and responses to various anti-cancer drugs. HDACs have been shown to regulate the expression of PD-1/PD-L1 and genes involved in immune evasion. These reports make HDACs ideal targets for the development of anti-melanoma therapeutics. We review the mechanisms of resistance to anti-melanoma therapies, including MAPK inhibitors and immune checkpoint inhibitors. We address the effects of HDAC inhibitors on the response to MAPK inhibitors and immune checkpoint inhibitors in melanoma. In addition, we discuss current progress in anti-melanoma therapies involving a combination of HDAC inhibitors, immune checkpoint inhibitors, and MAPK inhibitors.
Collapse
Affiliation(s)
- Minjeong Yeon
- Department of Biochemistry, College of Natural Sciences, Kangwon National University, Chunchon, South Korea
| | - Youngmi Kim
- Institute of New Frontier Research, College of Medicine, Hallym University, Chunchon, South Korea
| | - Hyun Suk Jung
- Department of Biochemistry, College of Natural Sciences, Kangwon National University, Chunchon, South Korea
| | - Dooil Jeoung
- Department of Biochemistry, College of Natural Sciences, Kangwon National University, Chunchon, South Korea
| |
Collapse
|
27
|
lncRNA PCAT18 inhibits proliferation, migration and invasion of gastric cancer cells through miR-135b suppression to promote CLDN11 expression. Life Sci 2020; 249:117478. [PMID: 32119960 DOI: 10.1016/j.lfs.2020.117478] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 02/17/2020] [Accepted: 02/26/2020] [Indexed: 12/26/2022]
Abstract
BACKGROUND Gastric cancer is a severe disease with a high occurrence rate worldwide. And lncRNAs are demonstrated to be responsible for cancer growth and metastasis. So, it is of great importance to explore the lncRNAs involved mechanism of gastric cancer occurrence and development deeply. METHODS Transfection was conducted to build over-expression and down-expression models. Moreover, RT-qPCR and western blot were used to detect the transcriptional and translational levels. The biological functions such as proliferation, migration and invasion of AGS cells were evaluated by MTT analysis, colony formation assay, scarification detection and transwell assay, respectively. The potential binding of miR-135b and its downstream and upstream molecules was validated by dual luciferase reporter gene assay or RIP. Also, the in-vivo mice model was further used to demonstrate the role of lncRNA PCAT18 in gastric cancer. RESULTS PCAT18 down-expression promoted proliferation, migration and invasion of gastric cancer cells. Furtherly, over-expression of miR-135b also promoted these biological characteristics of AGS cells. Importantly, we found that PCAT18 could bind miR-135b which also was bound with CLDN11. We found that miR-135b is negatively correlated with CLDN11; PCAT18 and CLDN11 are positively correlated. Moreover, miR-135b mimics could down-regulate protein level of CLDN11, whereas CLDN11 could reverse this effect. In in-vivo experiment, PCAT18 over-expression restrained tumor growth and metastasis. CONCLUSIONS Over-expressed lncRNA PCAT18 inhibits proliferation, migration and invasion of gastric cancer cells through regulation of miR-135b/CLDN11.
Collapse
|
28
|
Xu X, Yu H, Xu Y. Ras-ERK1/2 Signaling Promotes The Development Of Osteosarcoma By Regulating H2BK12ac Through CBP. Cancer Manag Res 2019; 11:9153-9163. [PMID: 31695502 PMCID: PMC6817345 DOI: 10.2147/cmar.s219535] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Accepted: 08/27/2019] [Indexed: 12/29/2022] Open
Abstract
Background H2BK12ac is an important histone acetylation pattern of H2B, which has been reported in several cancers. However, whether H2BK12ac joins in Ras-ERK1/2 activation-induced osteosarcoma (OS) cell behaviors remain unclear. The study explored this peradventure and revealed the underlying mechanism. Methods MG-63 cells were transfected with pEGFP-N1, pEGFP-RasWT and pEGFP-K-RasG12V/T35S, H2BK12ac and ERK1/2 expression levels were analyzed by Western blot. Effects of H2BK12ac on cell viability, migration, colony formation and cell cycle were investigated by MTT, Transwell, soft-agar colony formation and flow cytometry assays. RT-qPCR and ChIP were performed to study the effect of H2BK12ac and CBP on ERK1/2-downstream gene transcriptions. Results H2BK12ac was specifically down-regulated by Ras-ERK1/2 activation in MG-63 cells. Down-regulated H2BK12ac participated in regulating cell proliferation and migration of MG-63 cells, meanwhile, affected the transcription of ERK1/2-downstream genes. Additionally, silence of HDAC1 up-regulated H2BK12ac expression, and inhibited the promoting effect of Ras-ERK1/2 on MG-63 cells' proliferation, migration and RNA expression levels of ERK1/2-downstream genes. Further, the degradation of CBP mediated by MDM2 was discovered to be linked to Ras-ERK1/2 activation-induced H2BK12ac down-regulation. Conclusion These findings from the study demonstrated that Ras-ERK1/2 signaling could promote the development of OS via regulating H2BK12ac through MDM2-mediated CBP degradation.
Collapse
Affiliation(s)
- Xianlun Xu
- Department of Traumatology, Jining No.1 People's Hospital, Jining 272011, Shandong, People's Republic of China.,Affiliated Jining No.1 People's Hospital of Jining Medical University, Jining Medical University, Jining 272067, Shandong, People's Republic of China
| | - Hao Yu
- Department of Traumatology, Jining No.1 People's Hospital, Jining 272011, Shandong, People's Republic of China.,Affiliated Jining No.1 People's Hospital of Jining Medical University, Jining Medical University, Jining 272067, Shandong, People's Republic of China
| | - Yupeng Xu
- Department of Orthopedics, Jining Bone Fracture Hospital, Jining 272000, Shandong, People's Republic of China
| |
Collapse
|
29
|
Zhang L, Bu L, Hu J, Xu Z, Ruan L, Fang Y, Wang P. HDAC1 knockdown inhibits invasion and induces apoptosis in non-small cell lung cancer cells. Biol Chem 2019. [PMID: 29537214 DOI: 10.1515/hsz-2017-0306] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Non-small cell lung cancer (NSCLC) is a common malignant tumor. Although the abnormal expression and potential clinical prognostic value of histone deacetylase 1 (HDAC1) were recently discovered in many kinds of cancer, the roles and molecular mechanisms of HDAC1 in NSCLC is still limited. The CCK-8 assay is used to evaluate the viability of NSCLC cells. Downregulation of HDAC1 by shRNA. The TUNEL assay was used to evaluate the role of HDAC1 in NSCLC apoptosis. To evaluate the role of HDAC1 in NSCLC cells migration, the Boyden chamber transwell assay and wound healing assay were used. To evaluate the cells invasion, the matrigel precoated Transwell assay was used. Enzyme-linked immunosorbent assays (ELISAs) were used to detect the level of vascular endothelial growth factor (VEGF) and IL-8 in NSCLC. To investigate the role of HDAC1 in angiogenesis, the tube formation assay was investigated. In this study, we showed that HDAC1 expression was elevated in NSCLC lines compared to that in normal liver cells LO2. Furthermore, downregulation of HDAC1 inhibited cell proliferation, prevented cell migration, decreased cell invasion, reduced tumor angiogenesis and induced cell apoptosis. In summary, HDAC1 may be regarded as a potential indicator for NSCLC patient treatment.
Collapse
Affiliation(s)
- Libin Zhang
- Department of Thoracic Surgery, The First People's Hospital of Yunnan Province, Affiliated Hospital of Kunming University of Science and Technology, No.157 Jinbi Road, Kunming City, 650032 Yunnan Province, China
| | - Liang Bu
- Department of Thoracic Surgery, The First People's Hospital of Yunnan Province, Affiliated Hospital of Kunming University of Science and Technology, No.157 Jinbi Road, Kunming City, 650032 Yunnan Province, China
| | - Jiang Hu
- Department of Thoracic Surgery, The First People's Hospital of Yunnan Province, Affiliated Hospital of Kunming University of Science and Technology, No.157 Jinbi Road, Kunming City, 650032 Yunnan Province, China
| | - Zheyuan Xu
- Department of Thoracic Surgery, The First People's Hospital of Yunnan Province, Affiliated Hospital of Kunming University of Science and Technology, No.157 Jinbi Road, Kunming City, 650032 Yunnan Province, China
| | - Libo Ruan
- Department of Thoracic Surgery, The First People's Hospital of Yunnan Province, Affiliated Hospital of Kunming University of Science and Technology, No.157 Jinbi Road, Kunming City, 650032 Yunnan Province, China
| | - Yan Fang
- Department of Thoracic Surgery, The First People's Hospital of Yunnan Province, Affiliated Hospital of Kunming University of Science and Technology, No.157 Jinbi Road, Kunming City, 650032 Yunnan Province, China
| | - Ping Wang
- Department of Thoracic Surgery, The First People's Hospital of Yunnan Province, Affiliated Hospital of Kunming University of Science and Technology, No.157 Jinbi Road, Kunming City, 650032 Yunnan Province, China
| |
Collapse
|
30
|
Histone deacetylase-1 as a prognostic factor and mediator of gastric cancer progression by enhancing glycolysis. Hum Pathol 2018; 85:194-201. [PMID: 30500418 DOI: 10.1016/j.humpath.2018.10.031] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Revised: 10/23/2018] [Accepted: 10/31/2018] [Indexed: 01/17/2023]
Abstract
Histone deacetylase 1 (HDAC1) has been shown to be closely associated with tumor development. We investigated its effects on survival and biological behavior in gastric cancer (GC). HDAC1 expression and glycolysis activity were analyzed in a cohort of 252 samples of primary GC tumors and in vitro study. High HDAC1 (HDAC1High) staining was seen in 60.7% patients with GCs, which was significantly greater than was seen in normal epithelial cells (19.4%; P < .005). HDAC1High expression was associated with larger tumor size (P = .001), advanced T stage (P = .001), lymph node metastases (N stage; P < .001), and lymphovascular invasion (P = .005). Univariate and multivariate survival analyses showed HDAC1 expression to be an independent prognostic factor for both disease-free survival and overall survival (P < .05). In vitro studies showed a notably decreased glycolysis rate in HDAC1 knockdown cells. In patients' samples, HDAC1High expression was always accompanied with high Maximal standardized uptake value (SUVmax) value (P < .05). A hypoxia-inducible factor (HIF)-1α response element-luciferase reporter system showed HDAC1 to affect HIF1α activity in a dose-dependent manner. In conclusion, HDAC1 promotes glycolysis in GC and affects HIF-1α activity in tumor progression and metastasis. HDAC1High expression was also an independent adverse prognostic factor for overall survival and disease-free survival.
Collapse
|
31
|
Zhou L, Xu X, Liu H, Hu X, Zhang W, Ye M, Zhu X. Prognosis Analysis of Histone Deacetylases mRNA Expression in Ovarian Cancer Patients. J Cancer 2018; 9:4547-4555. [PMID: 30519361 PMCID: PMC6277648 DOI: 10.7150/jca.26780] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Accepted: 09/09/2018] [Indexed: 12/14/2022] Open
Abstract
Histone deacetylases modulate the dynamic balance of histone acetylation and deacetylation in cells, which participate in epigenetic regulations. Accumulated evidence has demonstrated that histone deacetylases are associated with angiogenesis, cell proliferation and survival in a variety of human cancers. However, the expression and distinct prognostic value of histone deacetylases in ovarian cancer have not been well elucidated. In the present study, we collected the overall survival (OS), progress free survival (PFS), and histone deacetylases (HDAC1-11) mRNA expression in ovarian cancer from the Kaplan-Meier plotter online database. We investigated the relationship between histone deacetylases mRNA level and the clinicopathological parameters of the ovarian cancer patients, such as histology subtypes, clinical stages, grades and TP53 mutation. Our analysis data showed that over-expression of HDAC1, HDAC2, HDAC4, HDAC5 and HDAC11 were correlated to poor overall survival and unfavorable progress free survival in all ovarian cancer patients. Notably, the higher level of HDAC11 was associated with the worse OS and PFS for serous/ stage III+IV/ grade III/ TP53 mutation ovarian cancer patients. In conclusion, HDACs may play a crucial role in the prognosis of ovarian cancer, but it is worth noting that HDAC11 may be a biomarker for poor prognosis in ovarian cancer patients.
Collapse
Affiliation(s)
- Lulu Zhou
- Department of Obstetrics and Gynecology, the Second Affiliated Hospital of Wenzhou Medical University, Wenzhou 325027, China
| | - Xiaohui Xu
- Department of Obstetrics and Gynecology, the Second Affiliated Hospital of Wenzhou Medical University, Wenzhou 325027, China
| | - Hailing Liu
- Department of Obstetrics and Gynecology, the Second Affiliated Hospital of Wenzhou Medical University, Wenzhou 325027, China
| | - Xiaoli Hu
- Department of Obstetrics and Gynecology, the Second Affiliated Hospital of Wenzhou Medical University, Wenzhou 325027, China
| | - Wenwen Zhang
- Department of Obstetrics and Gynecology, the Second Affiliated Hospital of Wenzhou Medical University, Wenzhou 325027, China
| | - Miaomiao Ye
- Department of Obstetrics and Gynecology, the Second Affiliated Hospital of Wenzhou Medical University, Wenzhou 325027, China
| | - Xueqiong Zhu
- Department of Obstetrics and Gynecology, the Second Affiliated Hospital of Wenzhou Medical University, Wenzhou 325027, China
| |
Collapse
|
32
|
Li S, Chen X, Mao L, Zahid KR, Wen J, Zhang L, Zhang M, Duan J, Duan J, Yin X, Wang Y, Zhao L, Tang X, Wang X, Xu G. Histone deacetylase 1 promotes glioblastoma cell proliferation and invasion via activation of PI3K/AKT and MEK/ERK signaling pathways. Brain Res 2018; 1692:154-162. [DOI: 10.1016/j.brainres.2018.05.023] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Revised: 05/14/2018] [Accepted: 05/18/2018] [Indexed: 12/22/2022]
|
33
|
Qiao W, Liu H, Liu R, Liu Q, Zhang T, Guo W, Li P, Deng M. Prognostic and clinical significance of histone deacetylase 1 expression in breast cancer: A meta-analysis. Clin Chim Acta 2018; 483:209-215. [DOI: 10.1016/j.cca.2018.05.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Revised: 05/03/2018] [Accepted: 05/04/2018] [Indexed: 01/11/2023]
|
34
|
Lv T, Song K, Zhang L, Li W, Chen Y, Diao Y, Yao Q, Liu P. miRNA-34a decreases ovarian cancer cell proliferation and chemoresistance by targeting HDAC1. Biochem Cell Biol 2018; 96:663-671. [PMID: 29561664 DOI: 10.1139/bcb-2018-0031] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
This study aimed to explore the roles of miRNA-34a (miR-34a) in ovarian cancer (OC) cells and uncover possible mechanisms. The proliferation of OC cells was measured with an MTT assay and soft agar colony formation assay. TargetScan analysis, real-time PCR, and a luciferase reporter assay were used to demonstrate the downstream target of miR-34a in OC cells. HDAC1 expression levels were detected by immunoblot analysis. miR-34a inhibited the proliferation of SKOV3 and OVCA433 cells and enhanced cisplatin sensitivity in cisplatin-resistant SKOV3cp cells. The results of TargetScan analysis, real-time PCR, and luciferase reporter assay confirmed that miR-34a downregulated HDAC1 expression by directly targeting the 3'-UTR of HDAC1 mRNA. The overexpression of HDAC1 decreased cisplatin sensitivity and promoted proliferation in OC cells. MTT assay and soft agar colony formation assay showed that HDAC1 overexpression blocked the suppressive effects of miR-34a on SKOV3 cell proliferation. In addition, treatment with the miR-34a mimic partially recovered the cisplatin sensitivity of SKOV3cp cells, whereas HDAC1 overexpression blocked the above phenomena caused by treatment with the miR-34a mimic. miR-34a exhibited suppressive effects on OC cells via directly binding and downregulating HDAC1 expression, which subsequently decreased the resistance to cisplatin and suppressed proliferation in OC cells.
Collapse
Affiliation(s)
- Teng Lv
- a Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, Jinan, Shandong, China.,b Department of Obstetrics and Gynecology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Kejuan Song
- b Department of Obstetrics and Gynecology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Lili Zhang
- c Department of Nutrition, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Weihua Li
- b Department of Obstetrics and Gynecology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Yulong Chen
- b Department of Obstetrics and Gynecology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Yuchao Diao
- b Department of Obstetrics and Gynecology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Qin Yao
- b Department of Obstetrics and Gynecology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Peishu Liu
- a Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, Jinan, Shandong, China
| |
Collapse
|
35
|
Vancurova I, Uddin MM, Zou Y, Vancura A. Combination Therapies Targeting HDAC and IKK in Solid Tumors. Trends Pharmacol Sci 2017; 39:295-306. [PMID: 29233541 DOI: 10.1016/j.tips.2017.11.008] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Revised: 11/21/2017] [Accepted: 11/27/2017] [Indexed: 12/18/2022]
Abstract
The rationale for developing histone deacetylase (HDAC) inhibitors (HDACi) as anticancer agents was based on their ability to induce apoptosis and cell cycle arrest in cancer cells. However, while HDACi have been remarkably effective in the treatment of hematological malignancies, clinical studies with HDACi as single agents in solid cancers have been disappointing. Recent studies have shown that, in addition to inducing apoptosis in cancer cells, class I HDACi induce IκB kinase (IKK)-dependent expression of proinflammatory chemokines, such as interleukin-8 (IL8; CXCL8), resulting in the increased proliferation of tumor cells, and limiting the effectiveness of HDACi in solid tumors. Here, we discuss the mechanisms responsible for HDACi-induced CXCL8 expression, and opportunities for combination therapies targeting HDACs and IKK in solid tumors.
Collapse
Affiliation(s)
- Ivana Vancurova
- Department of Biological Sciences, St John's University, New York, NY 11439, USA.
| | - Mohammad M Uddin
- Department of Biological Sciences, St John's University, New York, NY 11439, USA
| | - Yue Zou
- Department of Biological Sciences, St John's University, New York, NY 11439, USA
| | - Ales Vancura
- Department of Biological Sciences, St John's University, New York, NY 11439, USA
| |
Collapse
|