1
|
Eftekhari R, Ewanchuk BW, Rawji KS, Yates RM, Noorbakhsh F, Kuipers HF, Hollenberg MD. Blockade of Proteinase-Activated Receptor 2 (PAR2) Attenuates Neuroinflammation in Experimental Autoimmune Encephalomyelitis. J Pharmacol Exp Ther 2024; 388:12-22. [PMID: 37699708 DOI: 10.1124/jpet.123.001685] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 07/17/2023] [Accepted: 08/08/2023] [Indexed: 09/14/2023] Open
Abstract
Proteinase-activated receptor-2 (PAR2), which modulates inflammatory responses, is elevated in the central nervous system in multiple sclerosis (MS) and in its murine model, experimental autoimmune encephalomyelitis (EAE). In PAR2-null mice, disease severity of EAE is markedly diminished. We therefore tested whether inhibiting PAR2 activation in vivo might be a viable strategy for the treatment of MS. Using the EAE model, we show that a PAR2 antagonist, the pepducin palmitoyl-RSSAMDENSEKKRKSAIK-amide (P2pal-18S), attenuates EAE progression by affecting immune cell function. P2pal-18S treatment markedly diminishes disease severity and reduces demyelination, as well as the infiltration of T-cells and macrophages into the central nervous system. Moreover, P2pal-18S decreases granulocyte-macrophage colony-stimulating factor (GM-CSF) production and T-cell activation in cultured splenocytes and prevents macrophage polarization in vitro. We conclude that PAR2 plays a key role in regulating neuroinflammation in EAE and that PAR2 antagonists represent promising therapeutic agents for treating MS and other neuroinflammatory diseases. SIGNIFICANCE STATEMENT: Proteinase-activated receptor-2 modulates inflammatory responses and is increased in multiple sclerosis lesions. We show that the proteinase-activated receptor-2 antagonist palmitoyl-RSSAMDENSEKKRKSAIK-amide reduces disease in the murine experimental autoimmune encephalomyelitis model of multiple sclerosis by inhibiting T-cell and macrophage activation and infiltration into the central nervous system, making it a potential treatment for multiple sclerosis.
Collapse
Affiliation(s)
- Rahil Eftekhari
- Department of Physiology & Pharmacology (R.E., M.D.H.), Department of Medicine (R.E., M.D.H.), Department of Clinical Neurosciences (R.E., K.S.R., H.F.K.), Department of Biochemistry and Molecular Biology (B.W.E., R.M.Y.), Department of Comparative Biology and Experimental Medicine (B.W.E., R.M.Y.), and Department of Cell Biology and Anatomy (H.F.K.), Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada; and Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran (R.E., F.N.)
| | - Benjamin W Ewanchuk
- Department of Physiology & Pharmacology (R.E., M.D.H.), Department of Medicine (R.E., M.D.H.), Department of Clinical Neurosciences (R.E., K.S.R., H.F.K.), Department of Biochemistry and Molecular Biology (B.W.E., R.M.Y.), Department of Comparative Biology and Experimental Medicine (B.W.E., R.M.Y.), and Department of Cell Biology and Anatomy (H.F.K.), Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada; and Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran (R.E., F.N.)
| | - Khalil S Rawji
- Department of Physiology & Pharmacology (R.E., M.D.H.), Department of Medicine (R.E., M.D.H.), Department of Clinical Neurosciences (R.E., K.S.R., H.F.K.), Department of Biochemistry and Molecular Biology (B.W.E., R.M.Y.), Department of Comparative Biology and Experimental Medicine (B.W.E., R.M.Y.), and Department of Cell Biology and Anatomy (H.F.K.), Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada; and Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran (R.E., F.N.)
| | - Robin M Yates
- Department of Physiology & Pharmacology (R.E., M.D.H.), Department of Medicine (R.E., M.D.H.), Department of Clinical Neurosciences (R.E., K.S.R., H.F.K.), Department of Biochemistry and Molecular Biology (B.W.E., R.M.Y.), Department of Comparative Biology and Experimental Medicine (B.W.E., R.M.Y.), and Department of Cell Biology and Anatomy (H.F.K.), Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada; and Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran (R.E., F.N.)
| | - Farshid Noorbakhsh
- Department of Physiology & Pharmacology (R.E., M.D.H.), Department of Medicine (R.E., M.D.H.), Department of Clinical Neurosciences (R.E., K.S.R., H.F.K.), Department of Biochemistry and Molecular Biology (B.W.E., R.M.Y.), Department of Comparative Biology and Experimental Medicine (B.W.E., R.M.Y.), and Department of Cell Biology and Anatomy (H.F.K.), Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada; and Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran (R.E., F.N.)
| | - Hedwich F Kuipers
- Department of Physiology & Pharmacology (R.E., M.D.H.), Department of Medicine (R.E., M.D.H.), Department of Clinical Neurosciences (R.E., K.S.R., H.F.K.), Department of Biochemistry and Molecular Biology (B.W.E., R.M.Y.), Department of Comparative Biology and Experimental Medicine (B.W.E., R.M.Y.), and Department of Cell Biology and Anatomy (H.F.K.), Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada; and Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran (R.E., F.N.)
| | - Morley D Hollenberg
- Department of Physiology & Pharmacology (R.E., M.D.H.), Department of Medicine (R.E., M.D.H.), Department of Clinical Neurosciences (R.E., K.S.R., H.F.K.), Department of Biochemistry and Molecular Biology (B.W.E., R.M.Y.), Department of Comparative Biology and Experimental Medicine (B.W.E., R.M.Y.), and Department of Cell Biology and Anatomy (H.F.K.), Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada; and Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran (R.E., F.N.)
| |
Collapse
|
2
|
Koistinen H, Kovanen RM, Hollenberg MD, Dufour A, Radisky ES, Stenman UH, Batra J, Clements J, Hooper JD, Diamandis E, Schilling O, Rannikko A, Mirtti T. The roles of proteases in prostate cancer. IUBMB Life 2023; 75:493-513. [PMID: 36598826 PMCID: PMC10159896 DOI: 10.1002/iub.2700] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 11/22/2022] [Indexed: 01/05/2023]
Abstract
Since the proposition of the pro-invasive activity of proteolytic enzymes over 70 years ago, several roles for proteases in cancer progression have been established. About half of the 473 active human proteases are expressed in the prostate and many of the most well-characterized members of this enzyme family are regulated by androgens, hormones essential for development of prostate cancer. Most notably, several kallikrein-related peptidases, including KLK3 (prostate-specific antigen, PSA), the most well-known prostate cancer marker, and type II transmembrane serine proteases, such as TMPRSS2 and matriptase, have been extensively studied and found to promote prostate cancer progression. Recent findings also suggest a critical role for proteases in the development of advanced and aggressive castration-resistant prostate cancer (CRPC). Perhaps the most intriguing evidence for this role comes from studies showing that the protease-activated transmembrane proteins, Notch and CDCP1, are associated with the development of CRPC. Here, we review the roles of proteases in prostate cancer, with a special focus on their regulation by androgens.
Collapse
Affiliation(s)
- Hannu Koistinen
- Department of Clinical Chemistry and Haematology, Faculty of Medicine, University of Helsinki and Helsinki University Hospital, Finland
| | - Ruusu-Maaria Kovanen
- Department of Clinical Chemistry and Haematology, Faculty of Medicine, University of Helsinki and Helsinki University Hospital, Finland
- Research Program in Systems Oncology, Faculty of Medicine, University of Helsinki, Finland
- Department of Pathology, HUS Diagnostic Centre, Helsinki University Hospital, Helsinki, Finland
| | - Morley D Hollenberg
- Department of Physiology & Pharmacology and Department of Medicine, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Antoine Dufour
- Department of Physiology & Pharmacology and Department of Medicine, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Evette S. Radisky
- Department of Cancer Biology, Mayo Clinic, Jacksonville, Florida, U.S.A
| | - Ulf-Håkan Stenman
- Department of Clinical Chemistry and Haematology, Faculty of Medicine, University of Helsinki and Helsinki University Hospital, Finland
| | - Jyotsna Batra
- School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, Australia
- Translational Research Institute, Queensland University of Technology, Brisbane, Australia
| | - Judith Clements
- School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, Australia
- Translational Research Institute, Queensland University of Technology, Brisbane, Australia
| | - John D. Hooper
- Mater Research Institute, The University of Queensland, Brisbane, Australia
| | - Eleftherios Diamandis
- Department of Pathology and Laboratory Medicine, Mount Sinai Hospital, Toronto, Ontario, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | - Oliver Schilling
- Institute for Surgical Pathology, Medical Center – University of Freiburg, Faculty of Medicine, University of Freiburg, Germany
- German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Antti Rannikko
- Research Program in Systems Oncology, Faculty of Medicine, University of Helsinki, Finland
- Department of Urology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Tuomas Mirtti
- Research Program in Systems Oncology, Faculty of Medicine, University of Helsinki, Finland
- Department of Pathology, HUS Diagnostic Centre, Helsinki University Hospital, Helsinki, Finland
| |
Collapse
|
3
|
Lehto TPK, Kovanen RM, Lintula S, Malén A, Stürenberg C, Erickson A, Pulkka OP, Stenman UH, Diamandis EP, Rannikko A, Mirtti T, Koistinen H. Prognostic impact of kallikrein-related peptidase transcript levels in prostate cancer. Int J Cancer 2023. [PMID: 37139608 DOI: 10.1002/ijc.34551] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 03/26/2023] [Accepted: 04/11/2023] [Indexed: 05/05/2023]
Abstract
We aimed to study mRNA levels and prognostic impact of all 15 human kallikrein-related peptidases (KLKs) and their targets, proteinase-activated receptors (PARs), in surgically treated prostate cancer (PCa). Seventy-nine patients with localized grade group 2-4 PCas represented aggressive cases, based on metastatic progression during median follow-up of 11 years. Eighty-six patients with similar baseline characteristics, but no metastasis during follow-up, were assigned as controls. Transcript counts were detected with nCounter technology. KLK12 protein expression was investigated with immunohistochemistry. The effects of KLK12 and KLK15 were studied in LNCaP cells using RNA interference. KLK3, -2, -4, -11, -15, -10 and -12 mRNA, in decreasing order, were expressed over limit of detection (LOD). The expression of KLK2, -3, -4 and -15 was decreased and KLK12 increased in aggressive cancers, compared to controls (P < .05). Low KLK2, -3 and -15 expression was associated with short metastasis-free survival (P < .05) in Kaplan-Meier analysis. PAR1 and -2 were expressed over LOD, and PAR1 expression was higher, and PAR2 lower, in aggressive cases than controls. Together, KLKs and PARs improved classification of metastatic and lethal disease over grade, pathological stage and prostate-specific antigen combined, in random forest analyses. Strong KLK12 immunohistochemical staining was associated with short metastasis-free and PCa-specific survival in Kaplan-Meier analysis (P < .05). Knock-down of KLK15 reduced colony formation of LNCaP cells grown on Matrigel basement membrane preparation. These results support the involvement of several KLKs in PCa progression, highlighting, that they may serve as prognostic PCa biomarkers.
Collapse
Affiliation(s)
- Timo-Pekka K Lehto
- Department of Pathology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
- Department of Urology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
- Research Program in Systems Oncology, University of Helsinki, Helsinki, Finland
| | - Ruusu-Maaria Kovanen
- Department of Pathology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
- Research Program in Systems Oncology, University of Helsinki, Helsinki, Finland
- Department of Clinical Chemistry and Haematology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Susanna Lintula
- Department of Clinical Chemistry and Haematology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Adrian Malén
- Department of Pathology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Carolin Stürenberg
- Department of Pathology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
- Research Program in Systems Oncology, University of Helsinki, Helsinki, Finland
| | - Andrew Erickson
- Department of Pathology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
- Research Program in Systems Oncology, University of Helsinki, Helsinki, Finland
- iCAN-Digital Precision Cancer Medicine Flagship, Helsinki, Finland
| | - Olli-Pekka Pulkka
- Laboratory of Molecular Oncology, Department of Oncology, University of Helsinki, Helsinki, Finland
| | - Ulf-Håkan Stenman
- Department of Clinical Chemistry and Haematology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Eleftherios P Diamandis
- Department of Pathology and Laboratory Medicine, Mount Sinai Hospital, Toronto, Ontario, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | - Antti Rannikko
- Department of Urology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
- Research Program in Systems Oncology, University of Helsinki, Helsinki, Finland
- iCAN-Digital Precision Cancer Medicine Flagship, Helsinki, Finland
| | - Tuomas Mirtti
- Department of Pathology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
- Research Program in Systems Oncology, University of Helsinki, Helsinki, Finland
- iCAN-Digital Precision Cancer Medicine Flagship, Helsinki, Finland
- Department of Biomedical Engineering, School of Medicine, Emory University, Atlanta, Georgia, USA
| | - Hannu Koistinen
- Department of Clinical Chemistry and Haematology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| |
Collapse
|
4
|
Yuan Q, Wang X, Li Z, Guo W, Cheng H, Cao Q. A Preliminary Study on Microbiota Characteristics of Bronchoalveolar Lavage Fluid in Patients with Pulmonary Nodules Based on Metagenomic Next-Generation Sequencing. Biomedicines 2023; 11:biomedicines11020631. [PMID: 36831166 PMCID: PMC9953410 DOI: 10.3390/biomedicines11020631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 02/16/2023] [Accepted: 02/17/2023] [Indexed: 02/22/2023] Open
Abstract
BACKGROUND The characteristics and roles of microbes in the occurrence and development of pulmonary nodules are still unclear. METHODS We retrospectively analyzed the microbial mNGS results of BALF from 229 patients with pulmonary nodules before surgery, and performed a comparative analysis of lung flora between lung cancer and benign nodules according to postoperative pathology. The analysis also focused on investigating the characteristics of lung microbiota in lung adenocarcinomas with varying histopathology. RESULTS There were differences in lung microbiota between lung cancer and benign lung nodules. Bacterial diversity was lower in lung cancer than in benign lung nodules. Four species (Porphyromonas somerae, Corynebacterium accolens, Burkholderia cenocepacia and Streptococcus mitis) were enriched in lung cancer compared with the benign lung nodules. The areas under the ROC curves of these four species were all greater than 0.6, and the AUC of Streptococcus mitis was 0.702, which had the highest diagnostic value for differentiating lung cancer from benign lung diseases. The significantly enriched microbiota varied with the different pathological subtypes of lung adenocarcinoma. Streptococcus mitis, Burkholderia oklahomensis and Burkholderia latens displayed a trend of increasing from the benign lung disease group to the AIS group, MIA group and IAC group, whereas Lactobacillus plantarum showed a downward trend. CONCLUSION Changes in the abundance of lung microbiota are closely related to the development of infiltrating adenocarcinoma. Our findings provide new insights into the relationship between the changes in lung microbiota and the development of lung cancer.
Collapse
|
5
|
Pignatelli P, Romei FM, Bondi D, Giuliani M, Piattelli A, Curia MC. Microbiota and Oral Cancer as A Complex and Dynamic Microenvironment: A Narrative Review from Etiology to Prognosis. Int J Mol Sci 2022; 23:ijms23158323. [PMID: 35955456 PMCID: PMC9368704 DOI: 10.3390/ijms23158323] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Revised: 07/25/2022] [Accepted: 07/26/2022] [Indexed: 11/23/2022] Open
Abstract
A complex balanced equilibrium of the bacterial ecosystems exists in the oral cavity that can be altered by tobacco smoking, psychological stressors, bad dietary habit, and chronic periodontitis. Oral dysbiosis can promote the onset and progression of oral squamous cell carcinoma (OSCC) through the release of toxins and bacterial metabolites, stimulating local and systemic inflammation, and altering the host immune response. During the process of carcinogenesis, the composition of the bacterial community changes qualitatively and quantitatively. Bacterial profiles are characterized by targeted sequencing of the 16S rRNA gene in tissue and saliva samples in patients with OSCC. Capnocytophaga gingivalis, Prevotella melaninogenica, Streptococcus mitis, Fusobacterium periodonticum, Prevotella tannerae, and Prevotella intermedia are the significantly increased bacteria in salivary samples. These have a potential diagnostic application to predict oral cancer through noninvasive salivary screenings. Oral lactic acid bacteria, which are commonly used as probiotic therapy against various disorders, are valuable adjuvants to improve the response to OSCC therapy.
Collapse
Affiliation(s)
- Pamela Pignatelli
- Department of Oral and Maxillofacial Sciences, Sapienza University of Rome, Via Caserta 6, 00161 Rome, Italy
- Correspondence:
| | - Federica Maria Romei
- Department of Medical, Oral and Biotechnological Sciences, “G. d’Annunzio” University of Chieti-Pescara, Via dei Vestini, 66100 Chieti, Italy; (F.M.R.); (M.C.C.)
| | - Danilo Bondi
- Department of Neuroscience, Imaging and Clinical Sciences, “G. d’Annunzio” University of Chieti-Pescara, Via dei Vestini, 66100 Chieti, Italy;
| | - Michele Giuliani
- Department of Clinical and Experimental Medicine, University of Foggia, Via Rovelli 50, 71122 Foggia, Italy;
| | - Adriano Piattelli
- School of Dentistry, Saint Camillus International University for Health Sciences (Unicamillus), 00131 Rome, Italy;
- Fondazione Villa Serena per la Ricerca, 65013 Città Sant’Angelo, Italy
- Casa di Cura Villa Serena, 65013 Città Saint’Angelo, Italy
| | - Maria Cristina Curia
- Department of Medical, Oral and Biotechnological Sciences, “G. d’Annunzio” University of Chieti-Pescara, Via dei Vestini, 66100 Chieti, Italy; (F.M.R.); (M.C.C.)
| |
Collapse
|
6
|
Liu C, Jiang S, Xie H, Jia H, Li R, Zhang K, Wang N, Lin P, Yu X. Long non-coding RNA AC245100.4 contributes to prostate cancer migration via regulating PAR2 and activating p38-MAPK pathway. Med Oncol 2022; 39:94. [DOI: 10.1007/s12032-022-01689-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 02/21/2022] [Indexed: 12/25/2022]
|
7
|
Zeng W, Zhao C, Yu M, Chen H, Pan Y, Wang Y, Bao H, Ma H, Ma S. Alterations of lung microbiota in patients with non-small cell lung cancer. Bioengineered 2022; 13:6665-6677. [PMID: 35254206 PMCID: PMC8973753 DOI: 10.1080/21655979.2022.2045843] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The role of lung microbiota in non-small cell lung cancer remains unclear. We investigated the characteristics and functional roles of lung microbiota in non-small cell lung cancer. Bronchoalveolar lavage fluid samples were obtained from patients with non-small cell lung cancer (n = 46) and with benign lung disease (n = 29). The differences in composition and gene expression in the microbiota between the samples were analyzed using 16s rRNA sequencing. The oncogenic genus (Veillonella) was then evaluated in the progression of lung cancer in C57 BL/6 mice. Compared to benign lung disease, the lung microbiota in non-small cell lung cancer was significantly altered, both in terms of α- and β-diversity. In terms of bacterial composition, the non-small cell lung cancer group was enriched with two Phyla (Firmicutes, Bacteroidetes) and three genera (Streptococcus, Prevotella, Veillonella). Prevotella and Veillonella were most strongly associated with non-small cell lung cancer, and Veillonella significantly promoted the progression of lung cancer in vivo. Moreover, metabolic prediction revealed that ribosomes, biosynthesis of secondary metabolites, and pyrimidine metabolism were among the enriched pathways that may be involved in the progression of non-small cell lung cancer. Overall, results suggest that the progression of non-small cell lung cancer is followed by significant changes in the composition and function of the lung microbiota. These differing genera may be potential diagnostic markers and therapeutic targets.
Collapse
Affiliation(s)
- Wen Zeng
- Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China.,Department of Oncology, Ganzhou Cancer Hospital, Gannan Medical University,Ganzhou, Jiangxi, China
| | - ChengZhu Zhao
- Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Mengge Yu
- Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Hailong Chen
- Department of Oncology, Ganzhou Cancer Hospital, Gannan Medical University,Ganzhou, Jiangxi, China
| | - Yiyun Pan
- Department of Oncology, Ganzhou Cancer Hospital, Gannan Medical University,Ganzhou, Jiangxi, China
| | - Yuhuan Wang
- Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Hejing Bao
- Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | | | - Shudong Ma
- Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| |
Collapse
|
8
|
Koistinen H, Künnapuu J, Jeltsch M. KLK3 in the Regulation of Angiogenesis-Tumorigenic or Not? Int J Mol Sci 2021; 22:ijms222413545. [PMID: 34948344 PMCID: PMC8704207 DOI: 10.3390/ijms222413545] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 12/10/2021] [Accepted: 12/14/2021] [Indexed: 02/07/2023] Open
Abstract
In this focused review, we address the role of the kallikrein-related peptidase 3 (KLK3), also known as prostate-specific antigen (PSA), in the regulation of angiogenesis. Early studies suggest that KLK3 is able to inhibit angiogenic processes, which is most likely dependent on its proteolytic activity. However, more recent evidence suggests that KLK3 may also have an opposite role, mediated by the ability of KLK3 to activate the (lymph)angiogenic vascular endothelial growth factors VEGF-C and VEGF-D, further discussed in the review.
Collapse
Affiliation(s)
- Hannu Koistinen
- Department of Clinical Chemistry, Helsinki University Hospital and University of Helsinki, 00290 Helsinki, Finland
- Correspondence: (H.K.); (M.J.)
| | - Jaana Künnapuu
- Drug Research Program, University of Helsinki, 00014 Helsinki, Finland;
| | - Michael Jeltsch
- Drug Research Program, University of Helsinki, 00014 Helsinki, Finland;
- Individualized Drug Therapy Research Program, University of Helsinki, 00014 Helsinki, Finland
- Wihuri Research Institute, 00290 Helsinki, Finland
- Correspondence: (H.K.); (M.J.)
| |
Collapse
|
9
|
Zhang W, Yang F, Kadier A, Chen Y, Yu Y, Zhang J, Geng J, Yan Y, Li W, Yao X. Development of nomograms related to inflammatory biomarkers to estimate the prognosis of bladder cancer after radical cystectomy. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:1440. [PMID: 34733992 PMCID: PMC8506704 DOI: 10.21037/atm-21-4097] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 09/01/2021] [Indexed: 01/02/2023]
Abstract
Background Bladder cancer is one of the most common carcinomas and it brings about huge social economic burden. There is not a reliable way to predict the prognosis of bladder patients. We develop the nomogram to predict the prognosis of bladder cancer patients. Methods A total of 127 bladder cancer patients after radical cystectomy were studied retrospectively. Their clinicopathological data were collected for statistical analysis. Results The level of albumin/globulin ratio (AGR), C-reactive protein/albumin ratio (CAR), neutrophil to lymphocyte ratio (NLR) and platelet to lymphocyte ratio (PLR) associated with pathological and hematological parameters like T stage and hemoglobin. Furthermore, the AGR was associated with overall survival (OS) and CAR, NLR, and PLR were associated with both OS and progression-free survival (PFS) (P<0.05). The multivariate analysis revealed that tobacco smoking, tumor T stage, M stage, NLR, CAR, and AGR were all independent predictors for OS of patients and tobacco smoking, tumor T stage, NLR, CAR, and AGR were independent predictors for PFS of patients. In addition, AGR, CAR, and NLR, as well as, the clinicopathological parameters in the development of nomograms with a C index of 0.901 (95% CI: 0.505-1.269) for OS, and 0.807 (95% CI: 0.755-0.858) for PFS. The nomograms were able to provide a prognosis of the OS with the area under the curve (AUC) =0.86. Further, tests assessed the PFS with the AUC =0.84. Conclusions This study demonstrates that the nomograms of the inflammatory biomarkers were able to predict prognosis of bladder cancer patients after radical cystectomy.
Collapse
Affiliation(s)
- Wentao Zhang
- Department of Urology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China.,Institute of Urinary Oncology, School of Medicine, Tongji University, Shanghai, China
| | - Fuhan Yang
- Department of Urology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China.,Institute of Urinary Oncology, School of Medicine, Tongji University, Shanghai, China
| | - Aimaitiaji Kadier
- Department of Urology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China.,Institute of Urinary Oncology, School of Medicine, Tongji University, Shanghai, China
| | - Yifan Chen
- Department of Urology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China.,Institute of Urinary Oncology, School of Medicine, Tongji University, Shanghai, China
| | - Yang Yu
- Department of Urology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China.,Institute of Urinary Oncology, School of Medicine, Tongji University, Shanghai, China
| | - Junfeng Zhang
- Department of Urology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China.,Institute of Urinary Oncology, School of Medicine, Tongji University, Shanghai, China
| | - Jiang Geng
- Department of Urology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China.,Institute of Urinary Oncology, School of Medicine, Tongji University, Shanghai, China
| | - Yang Yan
- Department of Urology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China.,Institute of Urinary Oncology, School of Medicine, Tongji University, Shanghai, China
| | - Wei Li
- Department of Urology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China.,Institute of Urinary Oncology, School of Medicine, Tongji University, Shanghai, China
| | - Xudong Yao
- Department of Urology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China.,Institute of Urinary Oncology, School of Medicine, Tongji University, Shanghai, China
| |
Collapse
|
10
|
Kim HN, Triplet EM, Radulovic M, Bouchal S, Kleppe LS, Simon WL, Yoon H, Scarisbrick IA. The thrombin receptor modulates astroglia-neuron trophic coupling and neural repair after spinal cord injury. Glia 2021; 69:2111-2132. [PMID: 33887067 PMCID: PMC8672305 DOI: 10.1002/glia.24012] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 04/10/2021] [Accepted: 04/11/2021] [Indexed: 12/15/2022]
Abstract
Excessive activation of the thrombin receptor, protease activated receptor 1 (PAR1) is implicated in diverse neuropathologies from neurodegenerative conditions to neurotrauma. PAR1 knockout mice show improved outcomes after experimental spinal cord injury (SCI), however information regarding the underpinning cellular and molecular mechanisms is lacking. Here we demonstrate that genetic blockade of PAR1 in female mice results in improvements in sensorimotor co-ordination after thoracic spinal cord lateral compression injury. We document improved neuron preservation with increases in Synapsin-1 presynaptic proteins and GAP43, a growth cone marker, after a 30 days recovery period. These improvements were coupled to signs of enhanced myelin resiliency and repair, including increases in the number of mature oligodendrocytes, their progenitors and the abundance of myelin basic protein. These significant increases in substrates for neural recovery were accompanied by reduced astrocyte (Serp1) and microglial/monocyte (CD68 and iNOS) pro-inflammatory markers, with coordinate increases in astrocyte (S100A10 and Emp1) and microglial (Arg1) markers reflective of pro-repair activities. Complementary astrocyte-neuron co-culture bioassays suggest astrocytes with PAR1 loss-of-function promote both neuron survival and neurite outgrowth. Additionally, the pro-neurite outgrowth effects of switching off astrocyte PAR1 were blocked by inhibiting TrkB, the high affinity receptor for brain derived neurotrophic factor. Altogether, these studies demonstrate unique modulatory roles for PAR1 in regulating glial-neuron interactions, including the capacity for neurotrophic factor signaling, and underscore its position at neurobiological intersections critical for the response of the CNS to injury and the capacity for regenerative repair and restoration of function.
Collapse
Affiliation(s)
- Ha Neui Kim
- Department of Physical Medicine and Rehabilitation, Rehabilitation Medicine Research Center, Rochester MN 55905
- Department of Physiology and Biomedical Engineering, Rochester MN 55905
| | - Erin M. Triplet
- Department of Physical Medicine and Rehabilitation, Rehabilitation Medicine Research Center, Rochester MN 55905
- Department of Physiology and Biomedical Engineering, Rochester MN 55905
- Neuroscience Program, Mayo Clinic Graduate School of Biomedical Sciences, Rochester MN 55905
| | - Maja Radulovic
- Department of Physical Medicine and Rehabilitation, Rehabilitation Medicine Research Center, Rochester MN 55905
- Department of Physiology and Biomedical Engineering, Rochester MN 55905
| | - Samantha Bouchal
- Department of Physical Medicine and Rehabilitation, Rehabilitation Medicine Research Center, Rochester MN 55905
| | - Laurel S. Kleppe
- Department of Physical Medicine and Rehabilitation, Rehabilitation Medicine Research Center, Rochester MN 55905
| | - Whitney L. Simon
- Department of Physical Medicine and Rehabilitation, Rehabilitation Medicine Research Center, Rochester MN 55905
| | - Hyesook Yoon
- Department of Physical Medicine and Rehabilitation, Rehabilitation Medicine Research Center, Rochester MN 55905
- Department of Physiology and Biomedical Engineering, Rochester MN 55905
| | - Isobel A. Scarisbrick
- Department of Physical Medicine and Rehabilitation, Rehabilitation Medicine Research Center, Rochester MN 55905
- Department of Physiology and Biomedical Engineering, Rochester MN 55905
- Neuroscience Program, Mayo Clinic Graduate School of Biomedical Sciences, Rochester MN 55905
| |
Collapse
|
11
|
Candido JB, Maiques O, Boxberg M, Kast V, Peerani E, Tomás-Bort E, Weichert W, Sananes A, Papo N, Magdolen V, Sanz-Moreno V, Loessner D. Kallikrein-Related Peptidase 6 Is Associated with the Tumour Microenvironment of Pancreatic Ductal Adenocarcinoma. Cancers (Basel) 2021; 13:cancers13163969. [PMID: 34439122 PMCID: PMC8392253 DOI: 10.3390/cancers13163969] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 07/29/2021] [Accepted: 07/30/2021] [Indexed: 11/16/2022] Open
Abstract
Simple Summary Kallikrein-related peptidases have tumour-biological roles and are dysregulated in many cancers. Only a few studies have reported their upregulation in pancreatic cancer and linked them to poor prognosis. By interrogating publicly available and our own datasets, we studied their expression in patient-derived tissues and pancreatic cancer cells. We found several kallikrein-related peptidases that were upregulated, in particular kallikrein-related peptidase 6 at the forefront of the tumour area. We then tested the effect of a kallikrein-related peptidase 6 inhibitor on cancer cell functions. Because the majority of patients present with inoperable disease, a targeted therapeutic intervention may have a positive impact on the survival of this patient population. Abstract As cancer-associated factors, kallikrein-related peptidases (KLKs) are components of the tumour microenvironment, which represents a rich substrate repertoire, and considered attractive targets for the development of novel treatments. Standard-of-care therapy of pancreatic cancer shows unsatisfactory results, indicating the need for alternative therapeutic approaches. We aimed to investigate the expression of KLKs in pancreatic cancer and to inhibit the function of KLK6 in pancreatic cancer cells. KLK6, KLK7, KLK8, KLK10 and KLK11 were coexpressed and upregulated in tissues from pancreatic cancer patients compared to normal pancreas. Their high expression levels correlated with each other and were linked to shorter survival compared to low KLK levels. We then validated KLK6 mRNA and protein expression in patient-derived tissues and pancreatic cancer cells. Coexpression of KLK6 with KRT19, αSMA or CD68 was independent of tumour stage, while KLK6 was coexpressed with KRT19 and CD68 in the invasive tumour area. High KLK6 levels in tumour and CD68+ cells were linked to shorter survival. KLK6 inhibition reduced KLK6 mRNA expression, cell metabolic activity and KLK6 secretion and increased the secretion of other serine and aspartic lysosomal proteases. The association of high KLK levels and poor prognosis suggests that inhibiting KLKs may be a therapeutic strategy for precision medicine.
Collapse
Affiliation(s)
- Juliana B. Candido
- Centre for Tumour Microenvironment, Barts Cancer Institute, Queen Mary University of London, London EC1M 6BQ, UK; (J.B.C.); (O.M.); (E.P.); (E.T.-B.); (V.S.-M.)
| | - Oscar Maiques
- Centre for Tumour Microenvironment, Barts Cancer Institute, Queen Mary University of London, London EC1M 6BQ, UK; (J.B.C.); (O.M.); (E.P.); (E.T.-B.); (V.S.-M.)
| | - Melanie Boxberg
- Institute of Pathology, Technical University of Munich, 81657 Munich, Germany; (M.B.); (W.W.)
| | - Verena Kast
- Max Bergmann Center of Biomaterials Dresden, Leibniz Institute of Polymer Research Dresden e.V., Hohe Straβe 6, 01069 Dresden, Germany;
| | - Eleonora Peerani
- Centre for Tumour Microenvironment, Barts Cancer Institute, Queen Mary University of London, London EC1M 6BQ, UK; (J.B.C.); (O.M.); (E.P.); (E.T.-B.); (V.S.-M.)
| | - Elena Tomás-Bort
- Centre for Tumour Microenvironment, Barts Cancer Institute, Queen Mary University of London, London EC1M 6BQ, UK; (J.B.C.); (O.M.); (E.P.); (E.T.-B.); (V.S.-M.)
| | - Wilko Weichert
- Institute of Pathology, Technical University of Munich, 81657 Munich, Germany; (M.B.); (W.W.)
| | - Amiram Sananes
- Avram and Stella Goldstein-Goren Department of Biotechnology Engineering and The National Institute of Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel; (A.S.); (N.P.)
| | - Niv Papo
- Avram and Stella Goldstein-Goren Department of Biotechnology Engineering and The National Institute of Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel; (A.S.); (N.P.)
| | - Viktor Magdolen
- Department of Obstetrics and Gynaecology, Technical University of Munich, 81675 Munich, Germany;
| | - Victoria Sanz-Moreno
- Centre for Tumour Microenvironment, Barts Cancer Institute, Queen Mary University of London, London EC1M 6BQ, UK; (J.B.C.); (O.M.); (E.P.); (E.T.-B.); (V.S.-M.)
| | - Daniela Loessner
- Centre for Tumour Microenvironment, Barts Cancer Institute, Queen Mary University of London, London EC1M 6BQ, UK; (J.B.C.); (O.M.); (E.P.); (E.T.-B.); (V.S.-M.)
- Max Bergmann Center of Biomaterials Dresden, Leibniz Institute of Polymer Research Dresden e.V., Hohe Straβe 6, 01069 Dresden, Germany;
- Department of Chemical Engineering and Department of Materials Science and Engineering, Faculty of Engineering, Monash University, Melbourne, VIC 3800, Australia
- Department of Anatomy and Developmental Biology, Biomedicine Discovery Institute, Faculty of Medicine, Nursing and Health Sciences, Monash University, Melbourne, VIC 3800, Australia
- Correspondence:
| |
Collapse
|
12
|
Akan S, Ediz C, Sahin A, Tavukcu HH, Urkmez A, Horasan A, Yilmaz O, Verit A. Can the systemic immune inflammation index be a predictor of BCG response in patients with high-risk non-muscle invasive bladder cancer? Int J Clin Pract 2021; 75:e13813. [PMID: 33152142 DOI: 10.1111/ijcp.13813] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Accepted: 11/02/2020] [Indexed: 12/25/2022] Open
Abstract
AIM We aimed to investigate the predictor role of the systemic immune-inflammation index (SII) on Bacille Calmette-Guerin (BCG) response in patients with high-risk non-muscle invasive bladder cancer (NMIBC). METHODS A total of 96 patients with high-risk NMIBC, who received intravesical BCG, were enrolled in the study. BCG responsive group (group 1) and BCG failure group (group 2) were compared in terms of demographic and pathological data, peripheral lymphocyte, neutrophil and platelet counts, neutrophil lymphocyte ratio (NLR), platelet lymphocyte ratio (PLR), SII, recurrence-free survival (RFS) and progression-free survival (PFS). The SII was calculated as in the formula: SII = neutrophil × platelet/lymphocyte. The prognostic ability of the SII for progression was analysed with multivariate backward stepwise regression models. RESULTS The mean follow-up time 34.635 ± 14.7 months. Group 2 had significantly higher SII, peripheral lymphocyte, neutrophil and platelet counts than group 1. An ROC curve was plotted for the SII to predict the BCG failure and the cut-off point was calculated as 672.75. Effect of the SII to the model was statistically significant (P = .003) and a higher SII increased the progression onefold. A tumour greater than 30 mm in size and a high SII together increased the progression 3.6 folds. CONCLUSIONS The SII might be a successful, non-invasive and low-cost parameter for prediction of BCG failure in patients with high-risk NMIBC. The cut-off value for SII is 672.75 and above this level BCG failure and progression to MIBC might be anticipated. However, these results should be validated in prospective randomised controlled studies with large patient groups.
Collapse
Affiliation(s)
- Serkan Akan
- Department of Urology, University of Health Sciences, Sultan Abdulhamid Han Training and Research Hospital, Istanbul, Turkey
| | - Caner Ediz
- Department of Urology, University of Health Sciences, Sultan Abdulhamid Han Training and Research Hospital, Istanbul, Turkey
| | - Aytac Sahin
- Department of Urology, University of Health Sciences, Fatih Sultan Mehmet Training and Research Hospital, Istanbul, Turkey
| | - Hasan Huseyin Tavukcu
- Department of Urology, University of Health Sciences, Sultan Abdulhamid Han Training and Research Hospital, Istanbul, Turkey
| | - Ahmet Urkmez
- Department of Urology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Alper Horasan
- Department of Urology, University of Health Sciences, Sultan Abdulhamid Han Training and Research Hospital, Istanbul, Turkey
| | - Omer Yilmaz
- Department of Urology, University of Health Sciences, Sultan Abdulhamid Han Training and Research Hospital, Istanbul, Turkey
| | - Ayhan Verit
- Department of Urology, University of Health Sciences, Fatih Sultan Mehmet Training and Research Hospital, Istanbul, Turkey
| |
Collapse
|
13
|
Zhang L, Liu Y, Zheng HJ, Zhang CP. The Oral Microbiota May Have Influence on Oral Cancer. Front Cell Infect Microbiol 2020; 9:476. [PMID: 32010645 PMCID: PMC6974454 DOI: 10.3389/fcimb.2019.00476] [Citation(s) in RCA: 206] [Impact Index Per Article: 51.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Accepted: 12/24/2019] [Indexed: 12/19/2022] Open
Abstract
The oral microbiota plays an important role in the human microbiome and human health, and imbalances between microbes and their hosts can lead to oral and systemic diseases and chronic inflammation, which is usually caused by bacteria and contributes to cancer. There may be a relationship between oral bacteria and oral squamous cell carcinoma (OSCC); however, this relationship has not been thoroughly characterized. Therefore, in this study, we compared the microbiota compositions between tumor sites and opposite normal tissues in buccal mucosal of 50 patients with OSCC using the 16S rDNA sequencing. Richness and diversity of bacteria were significantly higher in tumor sites than in the control tissues. Cancer tissues were enriched in six families (Prevotellaceae, Fusobacteriaceae, Flavobacteriaceae, Lachnospiraceae, Peptostreptococcaceae, and Campylobacteraceae) and 13 genera, including Fusobacterium, Alloprevotella and Porphyromonas. At the species level, the abundances of Fusobacterium nucleatum, Prevotella intermedia, Aggregatibacter segnis, Capnocytophaga leadbetteri, Peptostreptococcus stomatis, and another five species were significantly increased, suggesting a potential association between these bacteria and OSCC. Furthermore, the functional prediction revealed that genes involved in bacterial chemotaxis, flagellar assembly and lipopolysaccharide (LPS) biosynthesis which are associated with various pathological processes, were significantly increased in the OSCC group. Overall, oral bacterial profiles showed significant difference between cancer sites and normal tissue of OSCC patients, which might be onsidered diagnostic markers and treatment targets. Our study has been registered in the Chinese clinical trial registry (ChiCTR1900025253, http://www.chictr.org.cn/index.aspx).
Collapse
Affiliation(s)
- Ling Zhang
- Department of Oral and Maxillofacial-Head and Neck Oncology, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,National Clinical Research Center for Oral Diseases, Shanghai, China.,Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, China
| | - Yuan Liu
- Department of Oral and Maxillofacial-Head and Neck Oncology, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hua Jun Zheng
- NHC Key Lab of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), Fudan University, Shanghai, China
| | - Chen Ping Zhang
- Department of Oral and Maxillofacial-Head and Neck Oncology, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
14
|
Filippou PS, Ren AH, Soosaipillai A, Safar R, Prassas I, Diamandis EP, Conner JR. Kallikrein-related peptidases protein expression in lymphoid tissues suggests potential implications in immune response. Clin Biochem 2020; 77:41-47. [PMID: 31904348 DOI: 10.1016/j.clinbiochem.2019.12.015] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Revised: 12/02/2019] [Accepted: 12/27/2019] [Indexed: 12/29/2022]
Abstract
OBJECTIVES Kallikrein-related peptidases (KLKs) are a subgroup of 15 secreted chymotrypsin- and trypsin-like serine proteases that have been reported to possess novel functions in innate immunity and inflammation. Since the potential role of KLKs in immunity has not been studied in detail at the protein level, we examined the expression pattern of 12 members of the KLK family in immune-related tissues. DESIGN & METHODS Protein expression in tissue extracts was evaluated using immunoassays (ELISA). Immunohistochemistry (IHC) was performed on representative sections of tonsil and lymph nodes to determine the cellular localization of the KLK family members. RESULTS ELISA profiling of KLK3-KLK15 (except KLK12) revealed higher protein levels in the tonsil, compared to the lymph nodes and spleen. Relatively high protein levels in the tonsil were observed for KLK7, KLK9, KLK10 and KLK13. Expression of these KLKs was significantly lower in lymph nodes and spleen. IHC analysis in tonsil unveiled that KLK9 and KLK10 were differentially expressed in lymphoid cells. KLK9 was strongly expressed in the germinal center of lymphoid follicles where activated B-cells reside, whereas KLK10 was expressed in the follicular dendritic cells (FDCs) that are vital for maintaining the cycle of B cell maturation. CONCLUSION Overall, our study revealed the possible implications of KLK expression and regulation in the immune cells of lymphoid tissues.
Collapse
Affiliation(s)
- Panagiota S Filippou
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada; Department of Clinical Biochemistry, University Health Network, Toronto, Canada
| | - Annie H Ren
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada; Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Canada
| | | | - Roaa Safar
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Canada
| | - Ioannis Prassas
- Department of Pathology and Laboratory Medicine, Mount Sinai Hospital, Toronto, Canada
| | - Eleftherios P Diamandis
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada; Department of Clinical Biochemistry, University Health Network, Toronto, Canada; Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Canada; Department of Pathology and Laboratory Medicine, Mount Sinai Hospital, Toronto, Canada
| | - James R Conner
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada; Department of Pathology and Laboratory Medicine, Mount Sinai Hospital, Toronto, Canada.
| |
Collapse
|
15
|
Zhang W, Wang R, Ma W, Wu Y, Maskey N, Guo Y, Liu J, Mao S, Zhang J, Yao X, Liu Y. Systemic immune-inflammation index predicts prognosis of bladder cancer patients after radical cystectomy. ANNALS OF TRANSLATIONAL MEDICINE 2019; 7:431. [PMID: 31700867 DOI: 10.21037/atm.2019.09.02] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Background The systemic immune-inflammation index (SII) has been used as a prognostic marker for several cancer types, but there is no in-depth study in bladder cancer. This study evaluated the potential utility of the SII as a prognostic factor in patients with bladder cancer after radical cystectomy. Methods A retrospective analysis of 209 patients with bladder cancer who had undergone radical cystectomy and were randomized into primary (N=139) and validation (N=70) cohorts was conducted. The overall survival (OS) was calculated using the Kaplan-Meier survival curves. The prognostic value of the SII in primary and validation cohorts were analyzed by using the Cox regression model. A SII-based nomogram for bladder cancer was produced in R software. Results A high SII (>507) was associated with poor prognosis in bladder cancer patients. Univariate and multivariate analyses revealed that the SII was an independent predictor for OS. The SII emerged as an independent prognostic factor that provided more accurate prognostic prediction than neutrophil-lymphocyte ratio (NLR), platelet-lymphocyte ratio (PLR), and C-reactive protein/albumin ratio (CAR), in the primary and validation cohorts. The nomogram had better accuracy and discrimination than tumor, lymph node, metastasis (TNM) classification. The concordance index values of nomogram were 0.82 for the primary cohort and 0.784 for the validation cohort. Conclusions The SII can serve as an independent predictor of OS in patients who have undergone radical cystectomy for bladder cancer, and was found to be a better predictor of prognosis than NLR, PLR, and CAR. The nomogram is a reliable model for predicting postoperative OS of patients after radical cystectomy.
Collapse
Affiliation(s)
- Wentao Zhang
- Department of Urology, Shanghai Tenth People's Hospital, Tongji University, Shanghai 200072, China
| | - Ruiliang Wang
- Department of Urology, Shanghai Tenth People's Hospital, Tongji University, Shanghai 200072, China
| | - Wenchao Ma
- Department of Urology, Shanghai Tenth People's Hospital, Tongji University, Shanghai 200072, China.,Anhui Medical University, Hefei 230032, China
| | - Yuan Wu
- Department of Urology, Shanghai Tenth People's Hospital, Tongji University, Shanghai 200072, China.,Anhui Medical University, Hefei 230032, China
| | - Niraj Maskey
- Department of Urology, Shanghai Tenth People's Hospital, Tongji University, Shanghai 200072, China
| | - Yadong Guo
- Department of Urology, Shanghai Tenth People's Hospital, Tongji University, Shanghai 200072, China
| | - Ji Liu
- Department of Urology, Shanghai Tenth People's Hospital, Tongji University, Shanghai 200072, China
| | - Shiyu Mao
- Department of Urology, Shanghai Tenth People's Hospital, Tongji University, Shanghai 200072, China
| | - Junfeng Zhang
- Department of Urology, Shanghai Tenth People's Hospital, Tongji University, Shanghai 200072, China
| | - Xudong Yao
- Department of Urology, Shanghai Tenth People's Hospital, Tongji University, Shanghai 200072, China.,Anhui Medical University, Hefei 230032, China
| | - Yongzhen Liu
- Department of Urology, Shanghai Tenth People's Hospital, Tongji University, Shanghai 200072, China
| |
Collapse
|
16
|
Damalanka VC, Han Z, Karmakar P, O’Donoghue AJ, La Greca F, Kim T, Pant SM, Helander J, Klefström J, Craik CS, Janetka JW. Discovery of Selective Matriptase and Hepsin Serine Protease Inhibitors: Useful Chemical Tools for Cancer Cell Biology. J Med Chem 2018; 62:480-490. [DOI: 10.1021/acs.jmedchem.8b01536] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Vishnu C. Damalanka
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, Missouri, 63110, United States
| | - Zhenfu Han
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, Missouri, 63110, United States
| | - Partha Karmakar
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, Missouri, 63110, United States
| | - Anthony J. O’Donoghue
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, California, 92093, United States
- Department of Pharmaceutical Chemistry, University of California, San Francisco, California, 94158, United States
| | - Florencia La Greca
- Department of Pharmaceutical Chemistry, University of California, San Francisco, California, 94158, United States
| | - Tommy Kim
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, Missouri, 63110, United States
| | - Shishir M. Pant
- Cancer Cell Circuitry Laboratory, Research Programs Unit/Translational Cancer Biology & Medicum, University of Helsinki, P.O. Box 63, Haartmaninkatu 8, 00014 Helsinki, Finland
| | - Jonathan Helander
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, Missouri, 63110, United States
| | - Juha Klefström
- Cancer Cell Circuitry Laboratory, Research Programs Unit/Translational Cancer Biology & Medicum, University of Helsinki, P.O. Box 63, Haartmaninkatu 8, 00014 Helsinki, Finland
| | - Charles S. Craik
- Department of Pharmaceutical Chemistry, University of California, San Francisco, California, 94158, United States
| | - James W. Janetka
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, Missouri, 63110, United States
| |
Collapse
|
17
|
Activation of PAR4 Upregulates p16 through Inhibition of DNMT1 and HDAC2 Expression via MAPK Signals in Esophageal Squamous Cell Carcinoma Cells. J Immunol Res 2018; 2018:4735752. [PMID: 30363984 PMCID: PMC6186345 DOI: 10.1155/2018/4735752] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Revised: 07/30/2018] [Accepted: 08/14/2018] [Indexed: 12/13/2022] Open
Abstract
A previous study showed that a downexpression of protease-activated receptor 4 (PAR4) is associated with the development of esophageal squamous cell carcinoma (ESCC). In this study, we explored the relationship between PAR4 activation and the expression of p16, and elucidated the underlying mechanisms in PAR4 inducing the tumor suppressor role in ESCC. ESCC cell lines (EC109 and TE-1) were treated with PAR4-activating peptide (PAR4-AP). Immunohistochemistry for DNA methyltransferase 1 (DNMT1) and histone deacetylase 2 (HDAC2) was performed in 26 cases of ESCC tissues. We found that DNMT1 and HDAC2 immunoreactivities in ESCC were significantly higher than those in adjacent noncancerous tissues. PAR4 activation could suppress DNMT1 and HDAC2, as well as increase p16 expressions, whereas silencing PAR4 dramatically increased HDAC2 and DNMT1, as well as reduced p16 expressions. Importantly, the chromatin immunoprecipitation-PCR (ChIP-PCR) data indicated that treatment of ESCC cells with PAR4-AP remarkably suppressed DNMT1 and HDAC2 enrichments on the p16 promoter. Furthermore, we demonstrated that activation of PAR4 resulted in an increase of p38/ERK phosphorylation and activators for p38/ERK enhanced the effect of PAR4 activation on HDAC2, DNMT1, and p16 expressions, whereas p38/ERK inhibitors reversed these effects. Moreover, we found that activation of PAR4 in ESCC cells significantly inhibited cell proliferation and induced apoptosis. These findings suggest that PAR4 plays a potential tumor suppressor role in ESCC cells and represents a potential therapeutic target of this disease.
Collapse
|