1
|
Jia L, Zhu S, Zhu M, Nie R, Huang L, Xu S, Luo Y, Su H, Huang S, Tan Q. Celastrol inhibits angiogenesis and the biological processes of MDA-MB-231 cells via the DEGS1/S1P signaling pathway. Biol Chem 2024; 405:267-281. [PMID: 38081222 DOI: 10.1515/hsz-2023-0324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 11/25/2023] [Indexed: 04/02/2024]
Abstract
Celastrol (Cel) shows potent antitumor activity in various experimental models. This study examined the relationship between Cel's antivascular and antitumor effects and sphingolipids. CCK-8 assay, transwell assay, Matrigel, PCR-array/RT-PCR/western blotting/immunohistochemistry assay, ELISA and HE staining were used to detect cell proliferation, migration and invasion, adhesion and angiogenesis, mRNA and protein expression, S1P production and tumor morphology. The results showed that Cel could inhibit proliferation, migration or invasion, adhesion and angiogenesis of human umbilical vein endothelial cells (HUVECs) and MDA-MB-231 cells by downregulating the expression of degenerative spermatocyte homolog 1 (DEGS1). Transfection experiments showed that downregulation of DEGS1 inhibited the above processes and sphingosine-1-phosphate (S1P) production of HUVECs and MDA-MB-231 cells, while upregulation of DEGS1 had the opposite effects. Coculture experiments showed that HUVECs could promote proliferation, migration and invasion of MDA-MB-231 cells through S1P/sphingosine-1-phosphate receptor (S1PR) signaling pathway, while Cel inhibited these processes in MDA-MB-231 cells induced by HUVECs. Animal experiments showed that Cel could inhibit tumor growth in nude mice. Western blotting, immunohistochemistry and ELISA assay showed that Cel downregulated the expression of DEGS1, CD146, S1PR1-3 and S1P production. These data confirm that DEGS1/S1P signaling pathway may be related to the antivascular and antitumor effects of cel.
Collapse
Affiliation(s)
- Lulu Jia
- Clinical Pharmacy & Pharmacology Research Institute, Affiliated Hospital of Guilin Medical University, 541001 Guilin, Guangxi Province, China
- Guangxi Key Laboratory of Molecular Medicine in Liver Injury and Repair, Affiliated Hospital of Guilin Medical University, 541001 Guilin, Guangxi Province, China
- Laboratory of Hepatobiliary and Pancreatic Surgery, Affiliated Hospital of Guilin Medical University, 541001 Guilin, Guangxi Province, China
| | - Shengnan Zhu
- Clinical Pharmacy & Pharmacology Research Institute, Affiliated Hospital of Guilin Medical University, 541001 Guilin, Guangxi Province, China
- Guangxi Key Laboratory of Molecular Medicine in Liver Injury and Repair, Affiliated Hospital of Guilin Medical University, 541001 Guilin, Guangxi Province, China
- Laboratory of Hepatobiliary and Pancreatic Surgery, Affiliated Hospital of Guilin Medical University, 541001 Guilin, Guangxi Province, China
| | - Mingfei Zhu
- Clinical Pharmacy & Pharmacology Research Institute, Affiliated Hospital of Guilin Medical University, 541001 Guilin, Guangxi Province, China
- Guangxi Key Laboratory of Molecular Medicine in Liver Injury and Repair, Affiliated Hospital of Guilin Medical University, 541001 Guilin, Guangxi Province, China
- Laboratory of Hepatobiliary and Pancreatic Surgery, Affiliated Hospital of Guilin Medical University, 541001 Guilin, Guangxi Province, China
| | - Rongrong Nie
- Rehabilitation Department, Affiliated Hospital of Guilin Medical University, 541001 Guilin, Guangxi Province, China
| | - Lingyue Huang
- Clinical Pharmacy & Pharmacology Research Institute, Affiliated Hospital of Guilin Medical University, 541001 Guilin, Guangxi Province, China
- Guangxi Key Laboratory of Molecular Medicine in Liver Injury and Repair, Affiliated Hospital of Guilin Medical University, 541001 Guilin, Guangxi Province, China
- Laboratory of Hepatobiliary and Pancreatic Surgery, Affiliated Hospital of Guilin Medical University, 541001 Guilin, Guangxi Province, China
| | - Siyuan Xu
- Clinical Pharmacy & Pharmacology Research Institute, Affiliated Hospital of Guilin Medical University, 541001 Guilin, Guangxi Province, China
- Guangxi Key Laboratory of Molecular Medicine in Liver Injury and Repair, Affiliated Hospital of Guilin Medical University, 541001 Guilin, Guangxi Province, China
- Laboratory of Hepatobiliary and Pancreatic Surgery, Affiliated Hospital of Guilin Medical University, 541001 Guilin, Guangxi Province, China
| | - Yuqin Luo
- Clinical Pharmacy & Pharmacology Research Institute, Affiliated Hospital of Guilin Medical University, 541001 Guilin, Guangxi Province, China
- Guangxi Key Laboratory of Molecular Medicine in Liver Injury and Repair, Affiliated Hospital of Guilin Medical University, 541001 Guilin, Guangxi Province, China
- Laboratory of Hepatobiliary and Pancreatic Surgery, Affiliated Hospital of Guilin Medical University, 541001 Guilin, Guangxi Province, China
| | - Huazhen Su
- Clinical Pharmacy & Pharmacology Research Institute, Affiliated Hospital of Guilin Medical University, 541001 Guilin, Guangxi Province, China
| | - Shaoyuan Huang
- Clinical Pharmacy & Pharmacology Research Institute, Affiliated Hospital of Guilin Medical University, 541001 Guilin, Guangxi Province, China
| | - Qinyou Tan
- Clinical Pharmacy & Pharmacology Research Institute, Affiliated Hospital of Guilin Medical University, 541001 Guilin, Guangxi Province, China
- Guangxi Key Laboratory of Molecular Medicine in Liver Injury and Repair, Affiliated Hospital of Guilin Medical University, 541001 Guilin, Guangxi Province, China
- Laboratory of Hepatobiliary and Pancreatic Surgery, Affiliated Hospital of Guilin Medical University, 541001 Guilin, Guangxi Province, China
- Guangxi Health Commission Key Laboratory of Basic Research in Sphingolipid Metabolism Related Diseases, Affiliated Hospital of Guilin Medical University, 541001 Guilin, Guangxi Province, China
- China-USA Lipids in Health and Disease Research Center, Guilin Medical University, 541001 Guilin, Guangxi Province, China
| |
Collapse
|
2
|
Pan W, Yang B, He D, Chen L, Fu C. Functions and targets of miRNAs in pharmacological and toxicological effects of major components of Tripterygium wilfordii Hook F. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:1997-2019. [PMID: 37831113 DOI: 10.1007/s00210-023-02764-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 09/29/2023] [Indexed: 10/14/2023]
Abstract
Tripterygium wilfordii Hook F (TwHF) has a long history of use as a traditional Chinese medicine and has been widely administered to treat various inflammatory and autoimmune diseases. MicroRNAs (miRNAs) are endogenous, short, non-coding RNAs that regulate gene expression post-transcriptionally. They participate in the efficacies and even toxicities of the components of TwHF, rendering miRNAs an appealing therapeutic strategy. This review summarizes the recent literature related to the roles and mechanisms of miRNAs in the pharmacological and toxicological effects of main components of TwHF, focusing on two active compounds, triptolide (TP) and celastrol (CEL). Additionally, the prospects for the "You Gu Wu Yun" theory regarding TwHF nephrotoxicity are presented.
Collapse
Affiliation(s)
- Wei Pan
- Institute of Pharmacy and Pharmacology, College of Basic Medical Science, Hengyang Medical School, University of South China, Hengyang, 421200, Hunan, People's Republic of China
- The First Affiliated Hospital, Department of Pharmacy, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, People's Republic of China
| | - Bo Yang
- The First Affiliated Hospital, Department of Pharmacy, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, People's Republic of China
| | - Dongxiu He
- Institute of Pharmacy and Pharmacology, College of Basic Medical Science, Hengyang Medical School, University of South China, Hengyang, 421200, Hunan, People's Republic of China
| | - Linxi Chen
- Institute of Pharmacy and Pharmacology, College of Basic Medical Science, Hengyang Medical School, University of South China, Hengyang, 421200, Hunan, People's Republic of China
| | - Chengxiao Fu
- Institute of Pharmacy and Pharmacology, College of Basic Medical Science, Hengyang Medical School, University of South China, Hengyang, 421200, Hunan, People's Republic of China.
- The First Affiliated Hospital, Department of Pharmacy, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, People's Republic of China.
| |
Collapse
|
3
|
Wei H, Zhang Y, Jia Y, Chen X, Niu T, Chatterjee A, He P, Hou G. Heat shock protein 90: biological functions, diseases, and therapeutic targets. MedComm (Beijing) 2024; 5:e470. [PMID: 38283176 PMCID: PMC10811298 DOI: 10.1002/mco2.470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 12/30/2023] [Accepted: 01/04/2024] [Indexed: 01/30/2024] Open
Abstract
Heat shock protein 90 (Hsp90) is a predominant member among Heat shock proteins (HSPs), playing a central role in cellular protection and maintenance by aiding in the folding, stabilization, and modification of diverse protein substrates. It collaborates with various co-chaperones to manage ATPase-driven conformational changes in its dimer during client protein processing. Hsp90 is critical in cellular function, supporting the proper operation of numerous proteins, many of which are linked to diseases such as cancer, Alzheimer's, neurodegenerative conditions, and infectious diseases. Recognizing the significance of these client proteins across diverse diseases, there is a growing interest in targeting Hsp90 and its co-chaperones for potential therapeutic strategies. This review described biological background of HSPs and the structural characteristics of HSP90. Additionally, it discusses the regulatory role of heat shock factor-1 (HSF-1) in modulating HSP90 and sheds light on the dynamic chaperone cycle of HSP90. Furthermore, the review discusses the specific contributions of HSP90 in various disease contexts, especially in cancer. It also summarizes HSP90 inhibitors for cancer treatment, offering a thoughtful analysis of their strengths and limitations. These advancements in research expand our understanding of HSP90 and open up new avenues for considering HSP90 as a promising target for therapeutic intervention in a range of diseases.
Collapse
Affiliation(s)
- Huiyun Wei
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Key Laboratory of Advanced Drug Preparation Technologies, Ministry of EducationSchool of Pharmaceutical SciencesZhengzhou UniversityZhengzhouChina
| | - Yingying Zhang
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Key Laboratory of Advanced Drug Preparation Technologies, Ministry of EducationSchool of Pharmaceutical SciencesZhengzhou UniversityZhengzhouChina
| | - Yilin Jia
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Key Laboratory of Advanced Drug Preparation Technologies, Ministry of EducationSchool of Pharmaceutical SciencesZhengzhou UniversityZhengzhouChina
| | - Xunan Chen
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Key Laboratory of Advanced Drug Preparation Technologies, Ministry of EducationSchool of Pharmaceutical SciencesZhengzhou UniversityZhengzhouChina
| | - Tengda Niu
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Key Laboratory of Advanced Drug Preparation Technologies, Ministry of EducationSchool of Pharmaceutical SciencesZhengzhou UniversityZhengzhouChina
| | - Aniruddha Chatterjee
- Department of PathologyDunedin School of MedicineUniversity of OtagoDunedinNew Zealand
| | - Pengxing He
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Key Laboratory of Advanced Drug Preparation Technologies, Ministry of EducationSchool of Pharmaceutical SciencesZhengzhou UniversityZhengzhouChina
| | - Guiqin Hou
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Key Laboratory of Advanced Drug Preparation Technologies, Ministry of EducationSchool of Pharmaceutical SciencesZhengzhou UniversityZhengzhouChina
- Department of PathologyDunedin School of MedicineUniversity of OtagoDunedinNew Zealand
| |
Collapse
|
4
|
Huang F, Zhang E, Lei Y, Yan Q, Xue C. Tripterine Inhibits Proliferation and Promotes Apoptosis of Keloid Fibroblasts by Targeting ROS/JNK Signaling. J Burn Care Res 2024; 45:104-111. [PMID: 37436955 PMCID: PMC11023317 DOI: 10.1093/jbcr/irad106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Indexed: 07/14/2023]
Abstract
Keloids are benign skin tumors characterized by excessive fibroblast proliferation and collagen deposition. The current treatment of keloids with hormone drug injection, surgical excision, radiotherapy, physical compression, laser therapy, cryotherapy often have unsatisfactory outcomes. The phytochemical compounds have shown great potential in treating keloids. Tripterine, a natural triterpene derived from the traditional Chinese medicine Thunder God Vine (Tripterygium wilfordii), was previously reported to exhibit an anti-scarring bioactivity in mouse embryonic fibroblast NIH/3T3 cells. Accordingly, our study was dedicated to explore its role in regulating the pathological phenotypes of keloid fibroblasts. Human keloid fibroblasts were treated with tripterine (0-10 μM) for 24 hours. Cell viability, proliferation, migration, apoptosis, and extracellular matrix (ECM) deposition were determined by CCK-8, EdU, wound healing, Transwell, flow cytometry, western blotting, and RT-qPCR assays. The effects of tripterine treatment on reactive oxygen species (ROS) generation and JNK activation in keloid fibroblasts were assessed by DCFH-DA staining and western blotting analysis. Tripterine at the concentrations higher than 4 μM attenuated the viability of human keloid fibroblasts in a dose-dependent manner. Treatment with tripterine (4, 6, and 8 μM) dose-dependently inhibited cell proliferation and migration, promoted cell apoptosis, reduced α-SMA, Col1, and Fn expression, induced ROS production, and enhanced JNK phosphorylation in keloid fibroblasts. Collectively, tripterine ameliorates the pathological characteristics of keloid fibroblasts that are associated with keloidformation and growth by inducing ROS generation and activating JNK signalingpathway.
Collapse
Affiliation(s)
- Fang Huang
- School Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Enjing Zhang
- Department of Pharmacy, Third Municipal Hospital, Wuhan, China
| | - Yan Lei
- School Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Qiong Yan
- School Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Chengbin Xue
- Department of Pharmacy, Hospital of Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
5
|
Zhai W, Hu Y, Zhang Y, Zhang G, Chen H, Tan X, Zheng Y, Gao W, Wei Y, Wu J. A systematic review of phytochemicals from Chinese herbal medicines for non-coding RNAs-mediated cancer prevention and treatment: From molecular mechanisms to potential clinical applications. MEDICINE IN NOVEL TECHNOLOGY AND DEVICES 2022. [DOI: 10.1016/j.medntd.2022.100192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
6
|
Zhou Y, Zhang J, Gong J, Tang X, Zhang C. UBE2C mediated radiotherapy resistance of head and neck squamous cell carcinoma by regulating oxidative-stress-relative apoptosis. Aging (Albany NY) 2022; 14:7003-7013. [PMID: 36069832 PMCID: PMC9512496 DOI: 10.18632/aging.204265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 08/17/2022] [Indexed: 11/25/2022]
Abstract
PURPOSE Radiotherapy resistance is the main obstacle in the effective treatment of advanced head and neck squamous cell carcinoma (HNSCC). Increasing scientific opinions present that ubiquitin-conjugating enzyme E2C (UBE2C) might be a target gene acting as an oncogene. METHOD TCGA database was used to analyze the expression of UBE2C in HNSCC patients, and the relationship between UBE2C expression and prognosis. Western blot and RT-PCR were used to assess UBE2C expression before and after radiation. Then, cell viability experiment and colony formation were used to evaluate proliferation after 2 Gy radiation. Cell viability experiment, migration, and invasion were evaluated in the condition of UBE2C knock-down. Western blot and RT-PCR were used to assess the expression of apoptosis and ROS relative gene expression. Then, the xenograft model was used to evaluate the efficacy of radiation combined with UBE2C suppression. RESULT The expression of UBE2C was high in tumors of patients with HNSCC and relatives with poor prognoses. Si-UBE2C cells showed proliferation inhibited and apoptosis enhanced after radiation. Furthermore, the mechanism of UBE2C in HNSCC radioresistance was explored. We performed RT-PCR to find the 4-HNE, which increases oxidative-stress-relative apoptosis in Si-UBE2C cells after radiation. CONCLUSIONS Through the RT-PCR, WB, cell viability experiment, migration, invasion, and in vivo experiment, UBE2C was confirmed to downregulate oxidative-stress-relative apoptosis induced by radiation and promote the development of malignant tumor cells.
Collapse
Affiliation(s)
- Yingchun Zhou
- Department of Head and Neck Cancer Center, Chongqing University Cancer Hospital, Chongqing 400030, China.,Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital, Chongqing 400030, China
| | - Junbin Zhang
- Department of Head and Neck Cancer Center, Chongqing University Cancer Hospital, Chongqing 400030, China.,Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital, Chongqing 400030, China
| | - Jinglin Gong
- Department of Head and Neck Cancer Center, Chongqing University Cancer Hospital, Chongqing 400030, China.,Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital, Chongqing 400030, China
| | - Xi Tang
- Department of Head and Neck Cancer Center, Chongqing University Cancer Hospital, Chongqing 400030, China.,Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital, Chongqing 400030, China
| | - Chengyao Zhang
- Department of Head and Neck Cancer Center, Chongqing University Cancer Hospital, Chongqing 400030, China.,Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital, Chongqing 400030, China
| |
Collapse
|
7
|
Liu P, Huang J, Mei W, Zeng X, Wang C, Wen C, Xu J. Epigallocatechin-3-gallate protects cardiomyocytes from hypoxia-reoxygenation damage via raising autophagy related 4C expression. Bioengineered 2021; 12:9496-9506. [PMID: 34699312 PMCID: PMC8810140 DOI: 10.1080/21655979.2021.1996018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Myocardial ischemia/reperfusion (I/R) injury is a serious issue during the therapy of myocardial infarction. Herein, we explored the beneficial influence of Epigallocatechin-3-gallate (EGCG) on hypoxia/reoxygenation (H/R)-stimulated cardiomyocyte H9c2 cells damage, along with possible internal molecular mechanism related autophagy related 4C (ATG4C). H9c2 cells were subjected to H/R stimulation and/or EGCG treatment. ATG4C mRNA expression was measured via q-PCR assay. ATG4C overexpression plasmid (OE-ATG4C) was transfected to arise ATG4C level. Cell viability, apoptosis, reactive oxygen species (ROS) production, ATP level were tested via CCK-8 assay, Annexin V-FITC/PI staining, DCFH-DA staining and ATP Assay Kit, respectively. Western blotting was performed to test Cleaved-caspase 3, Cleaved-caspase 9, cytochrome C, and LC3B protein levels. H/R stimulation resulted in H9c2 cell viability loss, promoted cell apoptosis, and ROS overproduction, as well as lowered ATP level in cells. EGCG treatment alleviated H/R-resulted H9c2 cell viability loss, cell apoptosis, ROS overproduction, and reduction of ATP level. Moreover, H/R stimulation reduced the ATG4C expression in H9c2 cells, while EGCG raised the ATG4C expression. Overexpression of ATG4C strengthened the beneficial influence of EGCG on H/R-stimulated H9c2 cell viability, apoptosis and ROS production. Besides, ATG4C overexpression weakened the H/R-stimulated H9c2 cell autophagy via reducing LC3B II/I expression. EGCG exerted beneficial influence on H/R-stimulated cardiomyocytes, which protected cardiomyocytes from H/R-stimulated viability loss, apoptosis, and ROS overproduction via enhancing ATG4C expression.
Collapse
Affiliation(s)
- Ping Liu
- Clinical Nursing Teaching and Research Section, The Second Xiangya Hospital, Central South University, Changsha, China.,Department of Pediatric Neurology and Cardiovasology, Children's Medical Center, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Jin Huang
- Clinical Nursing Teaching and Research Section, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Wanzhen Mei
- Clinical Nursing Teaching and Research Section, The Second Xiangya Hospital, Central South University, Changsha, China.,Department of Pediatric Neurology and Cardiovasology, Children's Medical Center, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Xingfang Zeng
- Clinical Nursing Teaching and Research Section, The Second Xiangya Hospital, Central South University, Changsha, China.,Department of Pediatric Neurology and Cardiovasology, Children's Medical Center, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Cheng Wang
- Department of Pediatric Neurology and Cardiovasology, Children's Medical Center, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Chuan Wen
- Department of Pediatric Hematology and Oncology, Children's Medical Center, the Second Xiangya Hospital, Central South University, Changsha, China
| | - Jing Xu
- Clinical Nursing Teaching and Research Section, The Second Xiangya Hospital, Central South University, Changsha, China.,Department of Pediatric Hematology and Oncology, Children's Medical Center, the Second Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
8
|
Qian Y, Zhang J, Xu R, Li Q, Shen Q, Zhu G. Nanoparticles based on polymers modified with pH-sensitive molecular switch and low molecular weight heparin carrying Celastrol and ferrocene for breast cancer treatment. Int J Biol Macromol 2021; 183:2215-2226. [PMID: 34097964 DOI: 10.1016/j.ijbiomac.2021.05.204] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Revised: 05/27/2021] [Accepted: 05/30/2021] [Indexed: 10/21/2022]
Abstract
Triple negative breast cancer (TNBC) metastasis is still one of the obstacles in clinical treatment, while highly-effective cancer drugs usually cannot be used for their hydrophobicity and comprehensive system toxicity. This study built a kind of pH-sensitive nanoparticles (PP/H NPs) constructed by poly (lactic-co-glycolic acid) modified with β-cyclodextrin (PLGA-β-CD), polyethyleneimine grafted with benzimidazole (PEI-BM) and low molecular weight heparin (LMWH) to delivery Celastrol (Cela) and ferrocene (Fc) for breast cancer therapy. PLGA-β-CD and PEI-BM were synthesized by amidation reaction, the amphipathic polymer nanoparticles with 108.37 ± 1.02 nm were self-assembled in water. After PP/H NPs treatment, the half maximal inhibitory concentration (IC50) decreased by 91% compared with Cela, and ROS level was also elevated. PP/H NPs led to substantial tumor inhibiting rate (TIR, 65.86%), utilized LMWH to strengthen the anti-metastasis effect of PP/H NPs. PP/H NPs took advantage of exogenous chemotherapeutics and endogenous ROS to inhibit tumor growth, and combined with LMWH to hinder breast cancer metastasis.
Collapse
Affiliation(s)
- Yun Qian
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai 201203, China
| | - Jun Zhang
- School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Rui Xu
- School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Qiang Li
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai 201203, China
| | - Qi Shen
- School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Guofu Zhu
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai 201203, China.
| |
Collapse
|
9
|
Wang B, Cui Y, Zhang Q, Wang S, Xu S. Selenomethionine alleviates LPS-induced JNK/NLRP3 inflammasome-dependent necroptosis by modulating miR-15a and oxidative stress in chicken lungs. Metallomics 2021; 13:6332293. [PMID: 34329475 DOI: 10.1093/mtomcs/mfab048] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 07/26/2021] [Indexed: 12/22/2022]
Abstract
Selenium (Se) was involved in many physiological processes in humans and animals. microRNAs (miRNAs) also played important roles in lung diseases. However, the regulatory mechanism of miRNA in chicken lungs and the mechanism of lipopolysaccharide (LPS)-induced pneumonia remained unclear. To further study these mechanisms, we established a supplement of selenomethionine (SeMet) and/or LPS-treated chicken model and a cell model of LPS and/or high and low expression of miR-15a in chicken hepatocellular carcinoma (LMH) cells. We detected the expression of some selenoproteins, p-c-Jun N-terminal kinase (JNK), nod-like receptor protein 3 (NLRP3), caspase1, receptor-interacting serine-threonine kinase 1 (RIPK1), receptor-interacting serine-threonine kinase 3 (RIPK3), mixed lineage kinase domain-like pseudokinase (MLKL), miR-15a and oxidative stress kits. Additionally, we observed the morphology of lungs by H.E. staining in vitro. The results indicated that necroptosis occurred in LPS-treated chicken and LMH cells. Moreover, LPS stimulation inhibited miR-15a, and increased the expression of JNK, NLRP3, caspase1, RIPK1, RIPK3, MLKL. We also found that LPS treatment not only increased the content of H2O2 and MDA in the lungs but also increased the activities of iNOS and CAT and the content of GSH decreased. Conclusion: SeMet could reduce the oxidative damage and activate NLRP3 inflammasome reaction by stimulating miR-15a/JNK, thus reduced the pulmonary necroptosis induced by LPS.
Collapse
Affiliation(s)
- Bing Wang
- College of Veterinary Medicine, Northeast Agricultural University, 600 Changjiang Road, Harbin 150030, P. R. China
| | - Yuan Cui
- College of Veterinary Medicine, Northeast Agricultural University, 600 Changjiang Road, Harbin 150030, P. R. China
| | - Qiaojian Zhang
- College of Veterinary Medicine, Northeast Agricultural University, 600 Changjiang Road, Harbin 150030, P. R. China
| | - ShengChen Wang
- College of Veterinary Medicine, Northeast Agricultural University, 600 Changjiang Road, Harbin 150030, P. R. China
| | - Shiwen Xu
- College of Veterinary Medicine, Northeast Agricultural University, 600 Changjiang Road, Harbin 150030, P. R. China.,Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment, College of Vetearinary Medicine, Northeast Agricultural University, Harbin, 150030, P. R. China
| |
Collapse
|
10
|
Wang J. Tripterine and miR-184 show synergy to suppress breast cancer progression. Biochem Biophys Res Commun 2021; 561:19-25. [PMID: 34000513 DOI: 10.1016/j.bbrc.2021.04.108] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 04/26/2021] [Indexed: 01/12/2023]
Abstract
BACKGROUND The anti-cancer activities of tripterine in human cells offer promising therapeutic solutions to patients living with cancer. However, the effects of tripterine on breast cancer (BC) have not been closely examined. This study was to investigate the underlying biological pathway through which tripterine and miR-184 influence BC progression. METHODS Two human BC cell lines (MCF-7 and BT-474) were cultured in this study. Different concentrations of tripterine (0, 5, 10 and 15 μM) were dissolved in dimethyl sulfoxide (DMSO) and then added to the cells. The expression of miR-184 was measured using qRT-PCR. The inhibitory impact of tripterine and miR-184 on BC development was assessed by CCK-8, BrdU, transwell, and wound healing assays. Western blot assay was also performed to analyze Bax and Bcl-2 protein expression of BC cells. RESULTS Findings indicated that tripterine suppressed BC cells' viability, proliferation, migration, invasion capacity and Bcl-2 protein expression, but it induced BC cells' Bax protein expression. It was also found miR-184 expression was high in the BC cell lines treated with tripterine and that miR-184 overexpression reduced the viability, proliferation, and invasion abilities of BC cells under tripterine treatment. Interference with miR-184 neutralized the effects of tripterine on BC cell viability, proliferation and invasion. CONCLUSION This research suggested that by interacting with miR-184, tripterine could restrain the progression of BC. This knowledge could be instrumental in developing highly effective treatment solutions for BC.
Collapse
Affiliation(s)
- Jinjun Wang
- Department of Acupuncture Rheumatology, Wuhan Hospital of Traditional Chinese Medicine, No. 49, Lihuangpi Road, Jiang'an District, Wuhan, 430010, Hubei, China.
| |
Collapse
|
11
|
Jiang ZT, Han Y, Liu XY, Lv LY, Pan JH, Liu CD. Tripterine Restrains the Aggressiveness of Hepatocellular Carcinoma Cell via Regulating miRNA-532-5p/CXCL2 Axis. Onco Targets Ther 2020; 13:2973-2985. [PMID: 32308429 PMCID: PMC7152543 DOI: 10.2147/ott.s238074] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Accepted: 03/23/2020] [Indexed: 12/24/2022] Open
Abstract
Introduction Triterpene has attracted considerable interests because it exhibits anticancer effects. However, the effects of tripterine on hepatocellular carcinoma (HCC) are not well studied. In the current study, the mechanism of tripterine on HCC cells growth and metastasis was examined. Methods The inhibitory effect on the growth and aggressiveness in HCC cells was analyzed by Cell Counting Kit-8 (CCK-8), wound healing and Transwell assay. The levels of microRNA-532-5p (miR-532-5p) in HCC cells and tissues were measured using qRT-PCR. The expression of chemokine (C-X-C Motif) ligand 2 (CXCL2) was determined by Western blotting and immunohistochemistry (IHC). Luciferase reporter gene assay was used to validate the binding between miR-532-5p and CXCL2. The impact of tripterine on the growth and metastasis of HCC cells in vivo was analyzed using transplanted tumor model and experimental lung metastasis model, respectively. Results We found that tripterine inhibited HCC cells proliferation, migration ability and invasion. Under tripterine treatment, the level of miR-532-5p was strikingly raised, and overexpression of miR‑532-5p reduced cell viability and metastatic-related traits. In addition, we identified CXCL2 as a target of miR-532-5p in HCC. Rescue experiments indicated that overexpression of CXCL2 restored the migration and invasive capacity of HCC cells inhibited by miR-532-5p or tripterine treatment. Finally, the tumor growth and metastatic ability of HCC MHCC97H cell in vivo were also significantly restrained by tripterine. The expression of CXCL2 was distinctly decreased and miR-532-5p level was increased by tripterine in vivo. Conclusion In conclusion, tripterine inhibits the growth, migration ability and invasiveness of HCC cells through intervening miR-532-5p/CXCL2.
Collapse
Affiliation(s)
- Zhi Tao Jiang
- Department of Pharmacy Office, Zhangjiagang Hospital of Traditional Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Zhangjiagang, Jiangsu, People's Republic of China
| | - Yi Han
- Department of Pharmacy Office, Zhangjiagang Hospital of Traditional Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Zhangjiagang, Jiangsu, People's Republic of China
| | - Xiao Yan Liu
- Department of Pharmacy Office, Zhangjiagang Hospital of Traditional Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Zhangjiagang, Jiangsu, People's Republic of China
| | - Ling Yan Lv
- Department of Pharmacy Office, Zhangjiagang Hospital of Traditional Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Zhangjiagang, Jiangsu, People's Republic of China
| | - Jin Huo Pan
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, People's Republic of China
| | - Chun Di Liu
- Department of Pharmacy Office, Zhangjiagang Hospital of Traditional Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Zhangjiagang, Jiangsu, People's Republic of China
| |
Collapse
|