1
|
Zhang J, Yang Z, Zhang C, Gao S, Liu Y, Li Y, He S, Yao J, Du J, You B, Han Y. PALMD haploinsufficiency aggravates extracellular matrix remodeling in vascular smooth muscle cells and promotes calcification. Am J Physiol Cell Physiol 2024; 327:C1012-C1022. [PMID: 39246140 DOI: 10.1152/ajpcell.00217.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 08/20/2024] [Accepted: 08/23/2024] [Indexed: 09/10/2024]
Abstract
Reduced PALMD expression is strongly associated with the development of calcified aortic valve stenosis; however, the role of PALMD in vascular calcification remains unknown. Calcified arteries were collected from mice to detect PALMD expression. Heterozygous Palmd knockout (Palmd+/-) mice were established to explore the role of PALMD in subtotal nephrectomy-induced vascular calcification. RNA sequencing was applied to detect molecular changes in aortas from Palmd+/- mice. Primary Palmd+/- vascular smooth muscle cells (VSMCs) or PALMD-silenced VSMCs by short interfering RNA were used to analyze PALMD function in phenotypic changes and calcification. PALMD haploinsufficiency aggravated subtotal nephrectomy-induced vascular calcification. RNA sequencing analysis showed that loss of PALMD disturbed the synthesis and degradation of the extracellular matrix (ECM) in aortas, including collagens and matrix metalloproteinases (Col6a6, Mmp2, Mmp9, etc.). In vitro experiments revealed that PALMD-deficient VSMCs were more susceptible to high phosphate-induced calcification. Downregulation of SMAD6 expression and increased levels of p-SMAD2 were detected in Palmd+/- VSMCs, suggesting that transforming growth factor-β signaling may be involved in PALMD haploinsufficiency-induced vascular calcification. Our data revealed that PALMD haploinsufficiency causes ECM dysregulation in VSMCs and aggravates vascular calcification. Our findings suggest that reduced PALMD expression is also linked to vascular calcification, and PALMD may be a potential therapeutic target for this disease. NEW & NOTEWORTHY We found that PALMD haploinsufficiency causes extracellular matrix dysregulation, reduced PALMD expression links to vascular calcification, and PALMD mutations may lead to the risk of both calcific aortic valve stenosis and vascular calcification.
Collapse
Affiliation(s)
- Jichao Zhang
- Beijing Anzhen Hospital, Capital Medical University, Beijing, China
- Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing, China
| | - Zhao Yang
- Beijing Anzhen Hospital, Capital Medical University, Beijing, China
- Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing, China
| | - Congcong Zhang
- Beijing Anzhen Hospital, Capital Medical University, Beijing, China
- Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing, China
| | - Shijuan Gao
- Beijing Anzhen Hospital, Capital Medical University, Beijing, China
- Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing, China
| | - Yan Liu
- Beijing Anzhen Hospital, Capital Medical University, Beijing, China
- Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing, China
| | - Yingkai Li
- Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Songyuan He
- Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Jing Yao
- Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Jie Du
- Beijing Anzhen Hospital, Capital Medical University, Beijing, China
- Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing, China
| | - Bin You
- Beijing Anzhen Hospital, Capital Medical University, Beijing, China
- Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing, China
| | - Yingchun Han
- Beijing Anzhen Hospital, Capital Medical University, Beijing, China
- Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing, China
| |
Collapse
|
2
|
Wen P, Zhao Y, Yang M, Yang P, Nan K, Liu L, Xu P. Identification of necroptosis-related genes in ankylosing spondylitis by bioinformatics and experimental validation. J Cell Mol Med 2024; 28:e18557. [PMID: 39031474 PMCID: PMC11258886 DOI: 10.1111/jcmm.18557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 06/15/2024] [Accepted: 07/08/2024] [Indexed: 07/22/2024] Open
Abstract
The pathogenesis of ankylosing spondylitis (AS) remains unclear, and while recent studies have implicated necroptosis in various autoimmune diseases, an investigation of its relationship with AS has not been reported. In this study, we utilized the Gene Expression Omnibus database to compare gene expressions between AS patients and healthy controls, identifying 18 differentially expressed necroptosis-related genes (DENRGs), with 8 upregulated and 10 downregulated. Through the application of three machine learning algorithms-least absolute shrinkage and selection operation, support vector machine-recursive feature elimination and random forest-two hub genes, FASLG and TARDBP, were pinpointed. These genes demonstrated high specificity and sensitivity for AS diagnosis, as evidenced by receiver operating characteristic curve analysis. These findings were further supported by external datasets and cellular experiments, which confirmed the downregulation of FASLG and upregulation of TARDBP in AS patients. Immune cell infiltration analysis suggested that CD4+ T cells, CD8+ T cells, NK cells and neutrophils may be associated with the development of AS. Notably, in the group with high FASLG expression, there was a significant infiltration of CD8+ T cells, memory-activated CD4+ T cells and resting NK cells, with relatively less infiltration of memory-resting CD4+ T cells and neutrophils. Conversely, in the group with high TARDBP expression, there was enhanced infiltration of naïve CD4+ T cells and M0 macrophages, with a reduced presence of memory-resting CD4+ T cells. In summary, FASLG and TARDBP may contribute to AS pathogenesis by regulating the immune microenvironment and immune-related signalling pathways. These findings offer new insights into the molecular mechanisms of AS and suggest potential new targets for therapeutic strategies.
Collapse
Affiliation(s)
- Pengfei Wen
- Department of Joint Surgery, Honghui HospitalXi'an Jiaotong UniversityShaanxiChina
| | - Yan Zhao
- Department of Laboratory, Honghui HospitalXi'an Jiaotong UniversityShaanxiChina
| | - Mingyi Yang
- Department of Joint Surgery, Honghui HospitalXi'an Jiaotong UniversityShaanxiChina
| | - Peng Yang
- Department of Joint Surgery, Honghui HospitalXi'an Jiaotong UniversityShaanxiChina
| | - Kai Nan
- Department of Joint Surgery, Honghui HospitalXi'an Jiaotong UniversityShaanxiChina
| | - Lin Liu
- Department of Joint Surgery, Honghui HospitalXi'an Jiaotong UniversityShaanxiChina
| | - Peng Xu
- Department of Joint Surgery, Honghui HospitalXi'an Jiaotong UniversityShaanxiChina
| |
Collapse
|
3
|
Chen Z, Ou Y, Ye F, Li W, Jiang H, Liu S. Machine learning identifies the role of SMAD6 in the prognosis and drug susceptibility in bladder cancer. J Cancer Res Clin Oncol 2024; 150:264. [PMID: 38767747 PMCID: PMC11106122 DOI: 10.1007/s00432-024-05798-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 05/10/2024] [Indexed: 05/22/2024]
Abstract
BACKGROUND Bladder cancer (BCa) is among the most prevalent malignant tumors affecting the urinary system. Due to its highly recurrent nature, standard treatments such as surgery often fail to significantly improve patient prognosis. Our research aims to predict prognosis and identify precise therapeutic targets for novel treatment interventions. METHODS We collected and screened genes related to the TGF-β signaling pathway and performed unsupervised clustering analysis on TCGA-BLCA samples based on these genes. Our analysis revealed two novel subtypes of bladder cancer with completely different biological characteristics, including immune microenvironment, drug sensitivity, and more. Using machine learning classifiers, we identified SMAD6 as a hub gene contributing to these differences and further investigated the role of SMAD6 in bladder cancer in the single-cell transcriptome data. Additionally, we analyzed the relationship between SMAD6 and immune checkpoint genes. Finally, we performed a series of in vitro assays to verify the function of SMAD6 in bladder cancer cell lines. RESULTS We have revealed two novel subtypes of bladder cancer, among which C1 exhibits a worse prognosis, lower drug sensitivity, a more complex tumor microenvironment, and a 'colder' immune microenvironment compared to C2. We identified SMAD6 as a key gene responsible for the differences and further explored its impact on the molecular characteristics of bladder cancer. Through in vitro experiments, we found that SMAD6 promoted the prognosis of BCa patients by inhibiting the proliferation and migration of BCa cells. CONCLUSION Our study reveals two novel subtypes of BCa and identifies SMAD6 as a highly promising therapeutic target.
Collapse
Affiliation(s)
- Ziang Chen
- Department of Urology, Huashan Hospital, Fudan University, Shanghai, China
- Fudan Institute of Urology, Huashan Hospital, Fudan University, Shanghai, China
| | - Yuxi Ou
- Department of Urology, Huashan Hospital, Fudan University, Shanghai, China
- Fudan Institute of Urology, Huashan Hospital, Fudan University, Shanghai, China
| | - Fangdie Ye
- Department of Urology, Huashan Hospital, Fudan University, Shanghai, China
- Fudan Institute of Urology, Huashan Hospital, Fudan University, Shanghai, China
| | - Weijian Li
- Department of Urology, Huashan Hospital, Fudan University, Shanghai, China
- Fudan Institute of Urology, Huashan Hospital, Fudan University, Shanghai, China
| | - Haowen Jiang
- Department of Urology, Huashan Hospital, Fudan University, Shanghai, China.
- Fudan Institute of Urology, Huashan Hospital, Fudan University, Shanghai, China.
- National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, China.
| | - Shenghua Liu
- Department of Urology, Huashan Hospital, Fudan University, Shanghai, China.
| |
Collapse
|
4
|
Yao Y, Zhang F, Liu F, Xia D. Propofol-induced LINC01133 inhibits the progression of colorectal cancer via miR-186-5p/NR3C2 axis. ENVIRONMENTAL TOXICOLOGY 2024; 39:2265-2284. [PMID: 38146619 DOI: 10.1002/tox.24104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 12/08/2023] [Accepted: 12/10/2023] [Indexed: 12/27/2023]
Abstract
Colorectal cancer (CRC) is a formidable threat to human well-being, characterized by a largely enigmatic occurrence and progression mechanism. A growing body of literature has underscored the potential influence of propofol, a frequently administered anesthetic, on clinical outcomes in malignant tumor patients. However, the precise molecular mechanisms underlying the impact of propofol on the progression of CRC have yet to be fully elucidated. This study reveals a notable upregulation of LINC01133 expression in CRC cells subsequent to propofol treatment, which is mediated by FOXO1. Subsequently, a series of experiments were conducted to elucidate the role and mechanisms underlying propofol-induced LINC01133 in CRC development. Our study uncovers that the upregulation of LINC01133 exerts a substantial inhibitory effect on the proliferation, migration, and invasion of CRC cells. Further investigation revealed that LINC01133 can attenuate the proliferation, invasion, and migration of CRC cell lines through the miR-186-5p/NR3C2 axis. Results from in vivo experiments unequivocally demonstrated a significant reduction in the growth rate of subcutaneous implant tumors upon LINC01133 overexpression in CRC cells. These findings posit that propofol induces LINC01133 expression, leading to the inhibition of CRC progression. This revelation offers a novel perspective on propofol's antitumor properties and underscores the potential of LINC01133 as a promising therapeutic target for CRC.
Collapse
Affiliation(s)
- Yingying Yao
- Department of Anesthesiology, The First People's Hospital of Xuzhou, Xuzhou, Jiangsu, China
| | - Fang Zhang
- Department of Anesthesiology, People's Hospital of Xuyi County, Xuyi, Jiangsu, China
| | - Feiyu Liu
- Department of Anesthesiology, People's Hospital of Xuyi County, Xuyi, Jiangsu, China
| | - Daolin Xia
- Department of Anesthesiology, People's Hospital of Xuyi County, Xuyi, Jiangsu, China
| |
Collapse
|
5
|
Saadh MJ, Allela OQB, Sattay ZJ, Al Zuhairi RAH, Ahmad H, Eldesoky GE, Adil M, Ali MS. Deciphering the functional landscape and therapeutic implications of noncoding RNAs in the TGF-β signaling pathway in colorectal cancer: A comprehensive review. Pathol Res Pract 2024; 255:155158. [PMID: 38320438 DOI: 10.1016/j.prp.2024.155158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 01/18/2024] [Accepted: 01/18/2024] [Indexed: 02/08/2024]
Abstract
Colorectal cancer (CRC) remains a major global health concern, necessitating an in-depth exploration of the intricate molecular mechanisms underlying its progression and potential therapeutic interventions. Transforming Growth Factor-β (TGF-β) signaling, a pivotal pathway implicated in CRC plays a dual role as a tumor suppressor in the early stages and a promoter of tumor progression in later stages. Recent research has shed light on the critical involvement of noncoding RNAs (ncRNAs) in modulating the TGF-β signaling pathway, introducing a new layer of complexity to our understanding of CRC pathogenesis. This comprehensive review synthesizes the current state of knowledge regarding the function and therapeutic potential of various classes of ncRNAs, including microRNAs (miRNAs), long noncoding RNAs (lncRNAs), and circular RNAs (circRNAs), in the context of TGF-β signaling in CRC. The intricate interplay between these ncRNAs and key components of the TGF-β pathway is dissected, revealing regulatory networks that contribute to the dynamic balance between tumor suppression and promotion. Emphasis is placed on how dysregulation of specific ncRNAs can disrupt this delicate equilibrium, fostering CRC initiation, progression, and metastasis. Moreover, the review provides a critical appraisal of the emerging therapeutic strategies targeting ncRNAs associated with TGF-β signaling in CRC. The potential of these ncRNAs as diagnostic and prognostic biomarkers is discussed, highlighting their clinical relevance. Additionally, the challenges and prospects of developing RNA-based therapeutics, such as RNA interference and CRISPR/Cas-based approaches, are explored in the context of modulating TGF-β signaling for CRC treatment. In conclusion, this review offers a comprehensive overview of the intricate interplay between ncRNAs and the TGF-β signaling pathway in CRC. By unraveling the functional significance of these regulatory elements, we gain valuable insights into the molecular landscape of CRC, paving the way for the development of novel and targeted therapeutic interventions aimed at modulating the TGF-β signaling cascade through the manipulation of ncRNAs.
Collapse
Affiliation(s)
- Mohamed J Saadh
- Faculty of Pharmacy, Middle East University, Amman 11831, Jordan
| | | | - Zahraa Jasim Sattay
- Department of Medical Laboratory Technology l, University of imam Jaafar Al-Sadiq, Iraq
| | | | - Hijaz Ahmad
- Section of Mathematics, International Telematic University Uninettuno, Corso Vittorio Emanuele II, 39, Rome 00186, Italy; Center for Applied Mathematics and Bioinformatics, Gulf University for Science and Technology, Kuwait; Department of Computer Science and Mathematics, Lebanese American University, Beirut, Lebanon
| | - Gaber E Eldesoky
- Chemistry Department, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | | | | |
Collapse
|
6
|
Wang S, Liu S, Zhu Y, Zhang B, Yang Y, Li L, Sun Y, Zhang L, Fan L, Hu X, Huang C. A novel and independent survival prognostic model for OSCC: the functions and prognostic values of RNA-binding proteins. Eur Arch Otorhinolaryngol 2024; 281:397-409. [PMID: 37656222 DOI: 10.1007/s00405-023-08200-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 08/17/2023] [Indexed: 09/02/2023]
Abstract
BACKGROUND Oral squamous cell carcinoma (OSCC), exhibiting high morbidity and malignancy, is the most common type of oral cancer. The abnormal expression of RNA-binding proteins (RBPs) plays important roles in the occurrence and progression of cancer. The objective of the present study was to establish a prognostic assessment model of RBPs and to evaluate the prognosis of OSCC patients. METHODS Gene expression data in The Cancer Genome Atlas (TCGA) were analyzed by univariate Cox regression analysis model that established a novel nine RBPs, which were used to build a prognostic risk model. A multivariate Cox proportional regression model and the survival analysis were used to evaluate the prognostic risk model. Moreover, the receive operator curve (ROC) analysis was tested further the efficiency of prognostic risk model based on data from TCGA database and Gene Expression Omnibus (GEO). RESULTS Nine RBPs' signatures (ACO1, G3BP1, NMD3, RNGTT, ZNF385A, SARS, CARS2, YARS and SMAD6) with prognostic value were identified in OSCC patients. Subsequently, the patients were further categorized into high-risk group and low-risk in the overall survival (OS) and disease-free survival (DFS), and external validation dataset. ROC analysis was significant for both the TCGA and GEO. Moreover, GSEA revealed that patients in the high-risk group significantly enriched in many critical pathways correlated with tumorigenesis than the low, including cell cycle, adheres junctions, oocyte meiosis, spliceosome, ERBB signaling pathway and ubiquitin-mediated proteolysis. CONCLUSIONS Collectively, we developed and validated a novel robust nine RBPs for OSCC prognosis prediction. The nine RBPs could serve as an independent and reliable prognostic biomarker and guiding clinical therapy for OSCC patients.
Collapse
Affiliation(s)
- Shanshan Wang
- Shenzhen Stomatology Hospital, Shenzhen, 518001, Guangdong, People's Republic of China
| | - Shuang Liu
- Shenzhen Luohu People's Hospital, Shenzhen, 518001, Guangdong, People's Republic of China
| | - Yaomin Zhu
- Shenzhen Stomatology Hospital, Shenzhen, 518001, Guangdong, People's Republic of China
| | - Baorong Zhang
- Department of Stomatology, University of Chinese Academy of Sciences Shenzhen Hospital, Songbai Road 4253, Shenzhen, 518107, Guangdong, People's Republic of China
| | - Yongtao Yang
- Shenzhen Stomatology Hospital, Shenzhen, 518001, Guangdong, People's Republic of China
| | - Limei Li
- Shenzhen Stomatology Hospital, Shenzhen, 518001, Guangdong, People's Republic of China
| | - Yingying Sun
- Shenzhen Stomatology Hospital, Shenzhen, 518001, Guangdong, People's Republic of China
| | - Long Zhang
- Department of Stomatology, University of Chinese Academy of Sciences Shenzhen Hospital, Songbai Road 4253, Shenzhen, 518107, Guangdong, People's Republic of China
| | - Lina Fan
- Department of Stomatology, The 900th Hospital of Joint Logistic Support Force, PLA, Fuzong Clinical Medical College of Fujian Medical University, Fuzhou, 350025, Fujian, China
| | - Xuegang Hu
- Department of Stomatology, University of Chinese Academy of Sciences Shenzhen Hospital, Songbai Road 4253, Shenzhen, 518107, Guangdong, People's Republic of China.
| | - Chunyu Huang
- Department of Stomatology, University of Chinese Academy of Sciences Shenzhen Hospital, Songbai Road 4253, Shenzhen, 518107, Guangdong, People's Republic of China.
- Medical Affairs Department, University of Chinese Academy of Sciences-Shenzhen Hospital, Songbai Road 4253, Shenzhen, 518107, Guangdong, China.
| |
Collapse
|
7
|
Liu Y, Pang Z, Wang J, Wang J, Ji B, Xu Y, He J, Zhang L, Han Y, Shen L, Xu W, Ren M. Multi-omics comprehensive analysis reveals the predictive value of N6-methyladenosine- related genes in prognosis and immune escape of bladder cancer. Cancer Biomark 2024; 40:79-94. [PMID: 38517777 PMCID: PMC11307005 DOI: 10.3233/cbm-230286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 12/18/2023] [Indexed: 03/24/2024]
Abstract
BACKGROUND N6-methyladenosine (m6A) is the most frequent RNA modification in mammals, and its role in bladder cancer (BC) remains rarely revealed. OBJECTIVE To predict the value of m6A-related genes in prognosis and immunity in BC. METHODS We performed multiple omics analysis of 618 TCGA and GEO patients and used principal component analysis (PCA) to calculate the m6A score for BC patients. RESULTS We described the multiple omics status of 23 m6A methylation-related genes (MRGs), and four m6A clusters were identified, which showed significant differences in immune infiltration and biological pathways. Next, we intersected the differential genes among m6A clusters, and 11 survival-related genes were identified, which were used to calculate the m6A score for the patients. We found that the high-score (HS) group showed lower tumor mutation burden (TMB) and TP53 mutations and better prognosis than the low-score (LS) group. Lower immune infiltration, higher expression of PD-L1, PD-1, and CTLA4, and higher immune dysfunction and immune exclusion scores were identified in the LS group, suggesting a higher possibility of immune escape. Finally, the experimental verification shows that the m6A related genes, such as IGFBP1, plays an important role in the growth and metastasis of bladder cancer. CONCLUSIONS These findings revealed the important roles of m6A MRGs in predicting prognosis, TMB status, TP53 mutation, immune functions and immunotherapeutic response in BC.
Collapse
Affiliation(s)
- Yang Liu
- Department of Urology, The Eighth Affiliated Hospital of Sun Yat-Sen University, Shenzhen, Guangdong, China
- Department of Urology, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Zhongqi Pang
- Department of Urology, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Jianshe Wang
- Department of Urology, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Jinfeng Wang
- Department of Urology, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Bo Ji
- Department of Urology, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Yidan Xu
- Department of Urology, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Jiaxin He
- Department of Urology, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Lu Zhang
- Department of Urology, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Yansong Han
- Department of Urology, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Linkun Shen
- Department of Urology, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Wanhai Xu
- Department of Urology, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Minghua Ren
- Department of Urology, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| |
Collapse
|
8
|
Wu Y, Xu J, Tan B, Yi T, Liu S, Yang G, Li K, Zhao X. SMAD7 gene polymorphisms and their influence on patients with colorectal cancer. Cell Cycle 2023; 22:2424-2435. [PMID: 38146644 PMCID: PMC10802200 DOI: 10.1080/15384101.2023.2296210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 12/12/2023] [Accepted: 12/13/2023] [Indexed: 12/27/2023] Open
Abstract
Colorectal cancer (CRC) is a prevalent malignant tumor, and its pathogenesis is still not fully understood. Studies have shown that SMAD7 gene polymorphisms can affect CRC susceptibility, but the results have been inconsistent and require additional confirmation. Our study aimed to evaluate the effect of SMAD7 variants on the risk of CRC in the Chinese Han population. A total of five single nucleotide polymorphisms (SNPs) in SMAD7 were genotyped among 696 CRC patients and 696 healthy participants using the MassARRAY iPLEX platform. SNPs were evaluated for their associations with CRC using logistic regression analysis under multiple genetic models. The false-positive report probability (FPRP) analysis was used to validate the positive findings. Our study indicated that rs11874392 showed an increased association with CRC risk (odds ratio, 1.31; 95% confidence interval, 1.04-1.67; p = 0.024). Stratified analysis showed that rs11874392 might increase the risk of CRC in females (OR = 1.70, p = 0.028), individuals with smoking (OR = 1.87, p = 0.026), and drinking (OR = 1.38, p = 0.027). The rs11874392 was found to be related to an elevated risk of rectal cancer (OR = 1.73, p = 0.003), but not with colon cancer. FPRP analysis demonstrated that all of these associations were statistically significant (FPRP <0.2). Additionally, rs11874392 was the strongest predictive model for CRC. This study provides evidence that the SMAD7 rs11874392 is related to an increased susceptibility to CRC.
Collapse
Affiliation(s)
- Yongsheng Wu
- Department of Oncology, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
- The Second Ward of Oncology and Hematology Department, The People’s Hospital of XiangXiang, Xiangxiang, China
| | - Jue Xu
- Department of Intrarenal Rheumatology and Immunology, The People’s Hospital of XiangXiang, Xiangxiang, China
| | - Biaobin Tan
- The Second Ward of Oncology and Hematology Department, The People’s Hospital of XiangXiang, Xiangxiang, China
| | - Ting Yi
- The Second Ward of Oncology and Hematology Department, The People’s Hospital of XiangXiang, Xiangxiang, China
| | - Su Liu
- The Second Ward of Oncology and Hematology Department, The People’s Hospital of XiangXiang, Xiangxiang, China
| | - Guang Yang
- The Second Ward of Oncology and Hematology Department, The People’s Hospital of XiangXiang, Xiangxiang, China
| | - Kai Li
- The Second Ward of Oncology and Hematology Department, The People’s Hospital of XiangXiang, Xiangxiang, China
| | - Xinhan Zhao
- Department of Oncology, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| |
Collapse
|
9
|
Matsuoka T, Yashiro M. The Role of the Transforming Growth Factor-β Signaling Pathway in Gastrointestinal Cancers. Biomolecules 2023; 13:1551. [PMID: 37892233 PMCID: PMC10605301 DOI: 10.3390/biom13101551] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 10/17/2023] [Accepted: 10/18/2023] [Indexed: 10/29/2023] Open
Abstract
Transforming growth factor-β (TGF-β) has attracted attention as a tumor suppressor because of its potent growth-suppressive effect on epithelial cells. Dysregulation of the TGF-β signaling pathway is considered to be one of the key factors in carcinogenesis, and genetic alterations affecting TGF-β signaling are extraordinarily common in cancers of the gastrointestinal system, such as hereditary nonpolyposis colon cancer and pancreatic cancer. Accumulating evidence suggests that TGF-β is produced from various types of cells in the tumor microenvironment and mediates extracellular matrix deposition, tumor angiogenesis, the formation of CAFs, and suppression of the anti-tumor immune reaction. It is also being considered as a factor that promotes the malignant transformation of cancer, particularly the invasion and metastasis of cancer cells, including epithelial-mesenchymal transition. Therefore, elucidating the role of TGF-β signaling in carcinogenesis, cancer invasion, and metastasis will provide novel basic insight for diagnosis and prognosis and the development of new molecularly targeted therapies for gastrointestinal cancers. In this review, we outline an overview of the complex mechanisms and functions of TGF-β signaling. Furthermore, we discuss the therapeutic potentials of targeting the TGF-β signaling pathway for gastrointestinal cancer treatment and discuss the remaining challenges and future perspectives on targeting this pathway.
Collapse
Affiliation(s)
| | - Masakazu Yashiro
- Molecular Oncology and Therapeutics, Osaka Metropolitan University Graduate School of Medicine, Osaka 5458585, Japan;
| |
Collapse
|
10
|
Wang Z, Zhou X, Deng X, Ye D, Liu D, Zhou B, Zheng W, Wang X, Wang Y, Borkhuu O, Fang L. miR-186-ANXA9 signaling inhibits tumorigenesis in breast cancer. Front Oncol 2023; 13:1166666. [PMID: 37841425 PMCID: PMC10570552 DOI: 10.3389/fonc.2023.1166666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 09/12/2023] [Indexed: 10/17/2023] Open
Abstract
Breast cancer (BC) ranks as the highest incidence among cancer types in women all over the world. MicroRNAs (miRNAs) are a class of short endogenous non-coding RNA in cells mostly functioning to silence the target mRNAs. In the current study, a miRNA screening analysis identified miR-186-5p to be downregulated in human breast cancer tumors. Functional studies in vitro demonstrated that overexpression of miR-186-5p inhibited cellular proliferation and induced cell apoptosis in multiple breast cancer cell lines including MDA-MB-231, MCF-7, and BT549 cells. Transplantation of the miR-186-5p-overexpressing MDA-MB-231 cells into nude mice significantly inhibited mammary tumor growth in vivo. Sequence blast analysis predicted annexin A9 (ANXA9) as a target gene of miR-186-5p, which was validated by luciferase reporter assay, QRT-PCR analysis, and western blot. Additional gene expression analysis of clinical tumor samples indicated a negative correlation between miR-186-5p and ANXA9 in human breast cancer. Knockdown of ANXA9 mimicked the phenotype of miR-186-5p overexpression. Reintroduction of ANXA9 back rescued the miR-186-5p-induced cell apoptosis. In addition, miR-186-5p decreased the expression of Bcl-2 and increased the expression of p53, suggesting a mechanism regulating miR-186-5p-induced cellular apoptosis. In summary, our study is the first to demonstrate miR-186-5p-ANXA9 signaling in suppressing human breast cancer. It provided a potential therapeutic target in breast cancer.
Collapse
Affiliation(s)
- Zhongrui Wang
- Department of Thyroid and Breast Surgery, Shanghai Tenth People’s Hospital, Shanghai Tenth People’s Hospital of Nanjing Medical University, Shanghai, China
- Department of Breast and Thyroid Surgery, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Xiqian Zhou
- Department of Breast and Thyroid Surgery, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, China
| | - Xiaochong Deng
- Department of Breast and Thyroid Surgery, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, China
| | - Danrong Ye
- Department of Breast and Thyroid Surgery, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, China
| | - Diya Liu
- Department of Breast and Thyroid Surgery, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, China
| | - Baian Zhou
- Department of Breast and Thyroid Surgery, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, China
| | - Wenfang Zheng
- Department of Breast and Thyroid Surgery, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, China
| | - Xuehui Wang
- Department of Breast and Thyroid Surgery, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, China
| | - Yuying Wang
- Department of Breast and Thyroid Surgery, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, China
| | - Oyungerel Borkhuu
- Department of Breast and Thyroid Surgery, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, China
| | - Lin Fang
- Department of Thyroid and Breast Surgery, Shanghai Tenth People’s Hospital, Shanghai Tenth People’s Hospital of Nanjing Medical University, Shanghai, China
- Department of Breast and Thyroid Surgery, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, China
| |
Collapse
|
11
|
Wang Q, Xiong F, Wu G, Wang D, Liu W, Chen J, Qi Y, Wang B, Chen Y. SMAD Proteins in TGF-β Signalling Pathway in Cancer: Regulatory Mechanisms and Clinical Applications. Diagnostics (Basel) 2023; 13:2769. [PMID: 37685308 PMCID: PMC10487229 DOI: 10.3390/diagnostics13172769] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 08/17/2023] [Accepted: 08/25/2023] [Indexed: 09/10/2023] Open
Abstract
Suppressor of mother against decapentaplegic (SMAD) family proteins are central to one of the most versatile cytokine signalling pathways in metazoan biology, the transforming growth factor-β (TGF-β) pathway. The TGF-β pathway is widely known for its dual role in cancer progression as both an inhibitor of tumour cell growth and an inducer of tumour metastasis. This is mainly mediated through SMAD proteins and their cofactors or regulators. SMAD proteins act as transcription factors, regulating the transcription of a wide range of genes, and their rich post-translational modifications are influenced by a variety of regulators and cofactors. The complex role, mechanisms, and important functions of SMAD proteins in tumours are the hot topics in current oncology research. In this paper, we summarize the recent progress on the effects and mechanisms of SMAD proteins on tumour development, diagnosis, treatment and prognosis, and provide clues for subsequent research on SMAD proteins in tumours.
Collapse
Affiliation(s)
- Qi Wang
- Department of Biliary-Pancreatic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430000, China; (Q.W.); (F.X.); (G.W.); (D.W.); (W.L.); (J.C.); (B.W.)
| | - Fei Xiong
- Department of Biliary-Pancreatic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430000, China; (Q.W.); (F.X.); (G.W.); (D.W.); (W.L.); (J.C.); (B.W.)
| | - Guanhua Wu
- Department of Biliary-Pancreatic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430000, China; (Q.W.); (F.X.); (G.W.); (D.W.); (W.L.); (J.C.); (B.W.)
| | - Da Wang
- Department of Biliary-Pancreatic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430000, China; (Q.W.); (F.X.); (G.W.); (D.W.); (W.L.); (J.C.); (B.W.)
| | - Wenzheng Liu
- Department of Biliary-Pancreatic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430000, China; (Q.W.); (F.X.); (G.W.); (D.W.); (W.L.); (J.C.); (B.W.)
| | - Junsheng Chen
- Department of Biliary-Pancreatic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430000, China; (Q.W.); (F.X.); (G.W.); (D.W.); (W.L.); (J.C.); (B.W.)
| | - Yongqiang Qi
- Key Laboratory of Laparoscopic Technology of Zhejiang Province, Department of General Surgery, Sir Run-Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, China;
| | - Bing Wang
- Department of Biliary-Pancreatic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430000, China; (Q.W.); (F.X.); (G.W.); (D.W.); (W.L.); (J.C.); (B.W.)
| | - Yongjun Chen
- Department of Biliary-Pancreatic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430000, China; (Q.W.); (F.X.); (G.W.); (D.W.); (W.L.); (J.C.); (B.W.)
| |
Collapse
|
12
|
Ding N, Luo H, Zhang T, Peng T, Yao Y, He Y. Correlation between SMADs and Colorectal Cancer Expression, Prognosis, and Immune Infiltrates. Int J Anal Chem 2023; 2023:8414040. [PMID: 36969909 PMCID: PMC10038740 DOI: 10.1155/2023/8414040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 01/20/2023] [Accepted: 02/03/2023] [Indexed: 03/26/2023] Open
Abstract
Background In recent years, the incidence and mortality of colorectal cancer (CRC) are increasing, and the 5-year survival rate of advanced metastatic CRC is poor. Small mothers against decapentaplegic (SMAD) superfamily are intracellular signal transduction proteins associated with the development and prognosis of a variety of tumors. At present, no study has systematically analysed the relationship between SMADs and CRC. Methods Here, R3.6.3 was used to analyse the expression of SMADs in pan-cancer and CRC. Protein expression of SMADs were analysed by Human Protein Atlas (HPA). Gene expression profiling interactive analysis (GEPIA) was used to evaluate the correlation between SMADs and tumor stage in CRC. The effect of R language and GEPIA on prognosis was analysed. Mutation rates of SMADs in CRC were determined by cBioPortal, and potentially related genes were predicted using GeneMANIA. R analysis was used to correlate immune cell infiltration in CRC. Results Both SMAD1 and SMAD2 were found to be weakly expressed in CRC and correlated with the immune invasion level. SMAD1 was correlated with patient prognosis, and SMAD2 was correlated with tumor stage. SMAD3, SMAD4, and SMAD7 were all expressed at low levels in CRC and associated with a variety of immune cells. SMAD3 and SMAD4 proteins were also expressed at low levels, and SMAD4 had the highest mutation rate. SMAD5 and SMAD6 were overexpressed in CRC, and SMAD6 was also associated with patient overall survival (OS) and CD8+ T cells, macrophages, and neutrophils. Conclusions Our results reveal innovative and strong evidence that SMADs can be used as biomarkers for the treatment and prognosis of CRC.
Collapse
Affiliation(s)
- Ning Ding
- 1Hunan University of Chinese Medicine, Changsha, Hunan 410208, China
| | - Hongbiao Luo
- 1Hunan University of Chinese Medicine, Changsha, Hunan 410208, China
- 2Department of Anorectal Surgery, Chenzhou NO. 1 People's Hospital, Chenzhou 423000, China
| | - Tao Zhang
- 1Hunan University of Chinese Medicine, Changsha, Hunan 410208, China
| | - Tianshu Peng
- 3Department of Anorectal Surgery, The Second Affiliated Hospital of Hunan University of Chinese Medicine, Changsha, Hunan 410005, China
| | - Yanru Yao
- 1Hunan University of Chinese Medicine, Changsha, Hunan 410208, China
| | - Yongheng He
- 4Department of Anorectal Surgery, The Affiliated Hospital of Hunan Academy of Traditional Chinese Medicine, Changsha, Hunan 410006, China
| |
Collapse
|
13
|
Chi XJ, Song YB, Liu DH, Wei LQ, An X, Feng ZZ, Lan XH, Lan D, Huang C. Significance of platelet adhesion-related genes in colon cancer based on non-negative matrix factorization-based clustering algorithm. Digit Health 2023; 9:20552076231203902. [PMID: 37766908 PMCID: PMC10521306 DOI: 10.1177/20552076231203902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 09/08/2023] [Indexed: 09/29/2023] Open
Abstract
Background Although surgical methods are the most effective treatments for colon adenocarcinoma (COAD), the cure rates remain low, and recurrence rates remain high. Furthermore, platelet adhesion-related genes are gaining attention as potential regulators of tumorigenesis. Therefore, identifying the mechanisms responsible for the regulation of these genes in patients with COAD has become important. The present study aims to investigate the underlying mechanisms of platelet adhesion-related genes in COAD patients. Methods The present study was an experimental study. Initially, the effects of platelet number and related genomic alteration on survival were explored using real-world data and the cBioPortal database, respectively. Then, the differentially expressed platelet adhesion-related genes of COAD were analyzed using the TCGA database, and patients were further classified by employing the non-negative matrix factorization (NMF) analysis method. Afterward, some of the clinical and expression characteristics were analyzed between clusters. Finally, least absolute shrinkage and selection operator regression analysis was used to establish the prognostic nomogram. All data analyses were performed using the R package. Results High platelet counts are associated with worse survival in real-world patients, and alternations to platelet adhesion-related genes have resulted in poorer prognoses, based on online data. Based on platelet adhesion-related genes, patients with COAD were classified into two clusters by NMF-based clustering analysis. Cluster2 had a better overall survival, when compared to Cluster1. The gene copy number and enrichment analysis results revealed that two pathways were differentially enriched. In addition, the differentially expressed genes between these two clusters were enriched for POU6F1 in the transcription factor signaling pathway, and for MATN3 in the ceRNA network. Finally, a prognostic nomogram, which included the ALOX12 and ACTG1 genes, was established based on the platelet adhesion-related genes, with a concordance (C) index of 0.879 (0.848-0.910). Conclusion The mRNA expression-based NMF was used to reveal the potential role of platelet adhesion-related genes in COAD. The series of experiments revealed the feasibility of targeting platelet adhesion-associated gene therapy.
Collapse
Affiliation(s)
- Xiao-jv Chi
- Department of Clinical Laboratory, The First Affiliated Hospital of Guangxi Medical University, Key Laboratory of Clinical Laboratory Medicine of Guangxi Department of Education, Nanning, China
| | - Yi-bei Song
- Department of Clinical Laboratory, The First Affiliated Hospital of Guangxi Medical University, Key Laboratory of Clinical Laboratory Medicine of Guangxi Department of Education, Nanning, China
| | - Deng-he Liu
- Department of Clinical Laboratory, The First Affiliated Hospital of Guangxi Medical University, Key Laboratory of Clinical Laboratory Medicine of Guangxi Department of Education, Nanning, China
| | - Li-qiang Wei
- Department of Clinical Laboratory, The First Affiliated Hospital of Guangxi Medical University, Key Laboratory of Clinical Laboratory Medicine of Guangxi Department of Education, Nanning, China
| | - Xin An
- The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Zi-zhen Feng
- The Second Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Xiao-hua Lan
- The Second Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Dong Lan
- Department of Medical Oncology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Chao Huang
- School of Information and Management, Guangxi Medical University, Nanning, China
| |
Collapse
|
14
|
MACC1 Correlates with Tumor Progression and Immune Cell Infiltration of Colon Adenocarcinoma and is Regulated by the lncRNA ZFAS1/miR-642a-5p Axis. JOURNAL OF ONCOLOGY 2022; 2022:8179208. [PMID: 36545127 PMCID: PMC9763013 DOI: 10.1155/2022/8179208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 10/27/2022] [Accepted: 11/08/2022] [Indexed: 12/14/2022]
Abstract
Colon adenocarcinoma (COAD) is the most common pathologic type of colon cancer. Metastasis is responsible for the high mortality rate of patients with COAD. The gene, metastasis-associated in colon cancer 1 (MACC1), is a biomarker predictive of both metastatic and metastasis-free survival in patients with colon cancer and other solid tumors. However, the underlying mechanism by which MACC1 affect COAD progression and metastasis remains unknown. In this study, we analyzed the expression level and prognostic value of MACC1, as well as their correlation, in patients with various types of cancer included in The Cancer Genome Atlas (TCGA) and Genotype-Tissue Expression (GTEx) databases. High MACC1 expression was found to be significantly associated with poor prognosis in patients with COAD. Analysis of the potential upstream miRNA of MACC1 showed that miR-642a-5p was downregulated in COAD and was negatively correlated with MACC1 expression. Analysis of the upstream regulators of miR-642a-5p showed that the long non-coding RNA (lncRNA) ZFAS1was the most likely upstream regulator of miR-642a-5p. In addition, the expression of MACC1 correlated positively with tumor immune cell infiltration, as well as with the levels of biomarkers of five kinds of immune cells. In summary, these findings suggest that MACC1 contributes to COAD progression and immune cell infiltration via the ZFAS1/miR-642a-5p/MACC1 axis.
Collapse
|
15
|
Zhang Q, Yang P, Pang X, Guo W, Sun Y, Wei Y, Pang C. Preliminary exploration of the co-regulation of Alzheimer's disease pathogenic genes by microRNAs and transcription factors. Front Aging Neurosci 2022; 14:1069606. [PMID: 36561136 PMCID: PMC9764863 DOI: 10.3389/fnagi.2022.1069606] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 11/15/2022] [Indexed: 12/12/2022] Open
Abstract
Background Alzheimer's disease (AD) is the most common form of age-related neurodegenerative disease. Unfortunately, due to the complexity of pathological types and clinical heterogeneity of AD, there is a lack of satisfactory treatment for AD. Previous studies have shown that microRNAs and transcription factors can modulate genes associated with AD, but the underlying pathophysiology remains unclear. Methods The datasets GSE1297 and GSE5281 were downloaded from the gene expression omnibus (GEO) database and analyzed to obtain the differentially expressed genes (DEGs) through the "R" language "limma" package. The GSE1297 dataset was analyzed by weighted correlation network analysis (WGCNA), and the key gene modules were selected. Next, gene ontology (GO) and Kyoto encyclopedia of genes and genomes (KEGG) pathway enrichment analysis for the key gene modules were performed. Then, the protein-protein interaction (PPI) network was constructed and the hub genes were identified using the STRING database and Cytoscape software. Finally, for the GSE150693 dataset, the "R" package "survivation" was used to integrate the data of survival time, AD transformation status and 35 characteristics, and the key microRNAs (miRNAs) were selected by Cox method. We also performed regression analysis using least absolute shrinkage and selection operator (Lasso)-Cox to construct and validate prognostic features associated with the four key genes using different databases. We also tried to find drugs targeting key genes through DrugBank database. Results GO and KEGG enrichment analysis showed that DEGs were mainly enriched in pathways regulating chemical synaptic transmission, glutamatergic synapses and Huntington's disease. In addition, 10 hub genes were selected from the PPI network by using the algorithm Between Centrality. Then, four core genes (TBP, CDK7, GRM5, and GRIA1) were selected by correlation with clinical information, and the established model had very good prognosis in different databases. Finally, hsa-miR-425-5p and hsa-miR-186-5p were determined by COX regression, AD transformation status and aberrant miRNAs. Conclusion In conclusion, we tried to construct a network in which miRNAs and transcription factors jointly regulate pathogenic genes, and described the process that abnormal miRNAs and abnormal transcription factors TBP and CDK7 jointly regulate the transcription of AD central genes GRM5 and GRIA1. The insights gained from this study offer the potential AD biomarkers, which may be of assistance to the diagnose and therapy of AD.
Collapse
Affiliation(s)
- Qi Zhang
- School of Computer Science, Sichuan Normal University, Chengdu, China
| | - Ping Yang
- School of Computer Science, Sichuan Normal University, Chengdu, China
| | - Xinping Pang
- West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, China
| | - Wenbo Guo
- School of Computer Science, Sichuan Normal University, Chengdu, China
| | - Yue Sun
- School of Computer Science, Sichuan Normal University, Chengdu, China
| | - Yanyu Wei
- National Key Laboratory of Science and Technology on Vacuum Electronics, School of Electronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu, China
| | - Chaoyang Pang
- School of Computer Science, Sichuan Normal University, Chengdu, China
| |
Collapse
|
16
|
Hatmal MM, Al-Hatamleh MAI, Olaimat AN, Alshaer W, Hasan H, Albakri KA, Alkhafaji E, Issa NN, Al-Holy MA, Abderrahman SM, Abdallah AM, Mohamud R. Immunomodulatory Properties of Human Breast Milk: MicroRNA Contents and Potential Epigenetic Effects. Biomedicines 2022; 10:1219. [PMID: 35740242 PMCID: PMC9219990 DOI: 10.3390/biomedicines10061219] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Revised: 05/15/2022] [Accepted: 05/17/2022] [Indexed: 02/07/2023] Open
Abstract
Infants who are exclusively breastfed in the first six months of age receive adequate nutrients, achieving optimal immune protection and growth. In addition to the known nutritional components of human breast milk (HBM), i.e., water, carbohydrates, fats and proteins, it is also a rich source of microRNAs, which impact epigenetic mechanisms. This comprehensive work presents an up-to-date overview of the immunomodulatory constituents of HBM, highlighting its content of circulating microRNAs. The epigenetic effects of HBM are discussed, especially those regulated by miRNAs. HBM contains more than 1400 microRNAs. The majority of these microRNAs originate from the lactating gland and are based on the remodeling of cells in the gland during breastfeeding. These miRNAs can affect epigenetic patterns by several mechanisms, including DNA methylation, histone modifications and RNA regulation, which could ultimately result in alterations in gene expressions. Therefore, the unique microRNA profile of HBM, including exosomal microRNAs, is implicated in the regulation of the genes responsible for a variety of immunological and physiological functions, such as FTO, INS, IGF1, NRF2, GLUT1 and FOXP3 genes. Hence, studying the HBM miRNA composition is important for improving the nutritional approaches for pregnancy and infant's early life and preventing diseases that could occur in the future. Interestingly, the composition of miRNAs in HBM is affected by multiple factors, including diet, environmental and genetic factors.
Collapse
Affiliation(s)
- Ma’mon M. Hatmal
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, The Hashemite University, P.O. Box 330127, Zarqa 13133, Jordan;
| | - Mohammad A. I. Al-Hatamleh
- Department of Immunology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Kota Bharu 16150, Malaysia;
| | - Amin N. Olaimat
- Department of Clinical Nutrition and Dietetics, Faculty of Applied Medical Sciences, The Hashemite University, P.O. Box 330127, Zarqa 13133, Jordan; (A.N.O.); (M.A.A.-H.)
| | - Walhan Alshaer
- Cell Therapy Center (CTC), The University of Jordan, Amman 11942, Jordan;
| | - Hanan Hasan
- Department of Pathology, Microbiology and Forensic Medicine, School of Medicine, The University of Jordan, Amman 11942, Jordan;
| | - Khaled A. Albakri
- Faculty of Medicine, The Hashemite University, P.O. Box 330127, Zarqa 13133, Jordan;
| | - Enas Alkhafaji
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, The University of Jordan, Amman 11942, Jordan;
| | - Nada N. Issa
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, The Hashemite University, P.O. Box 330127, Zarqa 13133, Jordan;
| | - Murad A. Al-Holy
- Department of Clinical Nutrition and Dietetics, Faculty of Applied Medical Sciences, The Hashemite University, P.O. Box 330127, Zarqa 13133, Jordan; (A.N.O.); (M.A.A.-H.)
| | - Salim M. Abderrahman
- Department of Biology and Biotechnology, Faculty of Sciences, The Hashemite University, P.O. Box 330127, Zarqa 13133, Jordan;
| | - Atiyeh M. Abdallah
- Department of Biomedical Sciences, College of Health Sciences, QU Health, Qatar University, Doha 2713, Qatar;
| | - Rohimah Mohamud
- Department of Immunology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Kota Bharu 16150, Malaysia;
| |
Collapse
|
17
|
Korfiati A, Grafanaki K, Kyriakopoulos GC, Skeparnias I, Georgiou S, Sakellaropoulos G, Stathopoulos C. Revisiting miRNA Association with Melanoma Recurrence and Metastasis from a Machine Learning Point of View. Int J Mol Sci 2022; 23:1299. [PMID: 35163222 PMCID: PMC8836065 DOI: 10.3390/ijms23031299] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 01/20/2022] [Accepted: 01/20/2022] [Indexed: 02/07/2023] Open
Abstract
The diagnostic and prognostic value of miRNAs in cutaneous melanoma (CM) has been broadly studied and supported by advanced bioinformatics tools. From early studies using miRNA arrays with several limitations, to the recent NGS-derived miRNA expression profiles, an accurate diagnostic panel of a comprehensive pre-specified set of miRNAs that could aid timely identification of specific cancer stages is still elusive, mainly because of the heterogeneity of the approaches and the samples. Herein, we summarize the existing studies that report several miRNAs as important diagnostic and prognostic biomarkers in CM. Using publicly available NGS data, we analyzed the correlation of specific miRNA expression profiles with the expression signatures of known gene targets. Combining network analytics with machine learning, we developed specific non-linear classification models that could successfully predict CM recurrence and metastasis, based on two newly identified miRNA signatures. Subsequent unbiased analyses and independent test sets (i.e., a dataset not used for training, as a validation cohort) using our prediction models resulted in 73.85% and 82.09% accuracy in predicting CM recurrence and metastasis, respectively. Overall, our approach combines detailed analysis of miRNA profiles with heuristic optimization and machine learning, which facilitates dimensionality reduction and optimization of the prediction models. Our approach provides an improved prediction strategy that could serve as an auxiliary tool towards precision treatment.
Collapse
Affiliation(s)
- Aigli Korfiati
- Department of Medical Physics, School of Medicine, University of Patras, 26504 Patras, Greece; (A.K.); (G.S.)
| | - Katerina Grafanaki
- Department of Dermatology, School of Medicine, University of Patras, 26504 Patras, Greece;
| | | | - Ilias Skeparnias
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD 20892, USA;
| | - Sophia Georgiou
- Department of Dermatology, School of Medicine, University of Patras, 26504 Patras, Greece;
| | - George Sakellaropoulos
- Department of Medical Physics, School of Medicine, University of Patras, 26504 Patras, Greece; (A.K.); (G.S.)
| | | |
Collapse
|
18
|
Li T, Huang S, Yan W, Zhang Y, Guo Q. PRUNE2 inhibits progression of colorectal cancer in vitro and in vivo. Exp Ther Med 2021; 23:169. [PMID: 35069850 PMCID: PMC8764654 DOI: 10.3892/etm.2021.11092] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 12/09/2021] [Indexed: 12/24/2022] Open
Abstract
Prune homolog 2 with BCH domain (PRUNE2) is associated with prostate cancer, neuroblastoma, glioblastoma and melanoma; however, the function of PRUNE2 in colorectal cancer (CRC) remains unknown. The present study aimed to evaluate the effects of PRUNE2 on the development of CRC. The biological function of PRUNE2 in CRC cell lines was investigated by using Cell Counting Kit-8, colony formation, flow cytometry and Transwell assay. Additionally, a mouse model was established to investigate the effect of PRUNE2 on metastasis of CRC cells. The expression levels of PRUNE2 were lower in CRC compared with adjacent normal tissue and this expression pattern was associated with poor relapse-free survival probability. PRUNE2 overexpression significantly decreased cell proliferation and invasion, increased cell apoptosis and arrested the cell cycle. Consistently, it increased the protein expression levels of pro-apoptosis genes and decreased the expression of antiapoptotic proteins. PRUNE2 knockdown had the opposite effects. Furthermore, PRUNE2 overexpression decreased the tumorigenicity of CRC cells. In conclusion, PRUNE2 decreased cell survival, proliferation, invasion and tumorigenicity and promoted apoptosis, suggesting that PRUNE2 may function as a tumor-suppressive gene in CRC.
Collapse
Affiliation(s)
- Ting Li
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, Yunnan 650500, P.R. China
| | - Silin Huang
- Medical School, Kunming University of Science and Technology, Kunming, Yunnan 650500, P.R. China
| | - Wei Yan
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, Yunnan 650500, P.R. China
| | - Yu Zhang
- Department of Gastroenterology, The First People's Hospital of Yunnan Province, Kunming, Yunnan 650032, P.R. China
| | - Qiang Guo
- Department of Gastroenterology, The First People's Hospital of Yunnan Province, Kunming, Yunnan 650032, P.R. China
| |
Collapse
|
19
|
Xu J, Liao M. Long noncoding RNA SNHG6 promotes papillary thyroid cancer cells proliferation via regulating miR-186/CDK6 axis. Gland Surg 2021; 10:2935-2944. [PMID: 34804881 DOI: 10.21037/gs-21-586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 09/16/2021] [Indexed: 11/06/2022]
Abstract
Background Papillary thyroid cancer (PTC) is a common endocrine malignancy, and its incidence rate has been increasing in recent years. Long noncoding RNAs (lncRNAs) participate in cell biological processes through a variety of regulatory ways, and play an essential role in tumor development. Methods This study explored the expression of lncRNA small nucleolar RNA host gene 6 (SNHG6) in PTC by bioinformatics analysis, and quantitative real-time PCR (qRT-PCR). Cell counting kit-8 (CCK-8) assay, colony formation assay, and 5-ethynyl-2'-deoxyuridine (EdU) assay were used to study the effect of SNHG6 on the proliferation of PTC cells. Luciferase reporter gene assay and western blot were used to study the mechanism. Results SNHG6 was highly expressed in PTC tissue samples and cell lines. In vitro, overexpression of SNHG6 promoted the proliferation of PTC cells, while silencing SNHG6 inhibited the proliferation of PTC cells. miR-186 is the downstream target of SNHG6. SNHG6 regulates the proliferation of PTC cells through miR-186. In addition, CDK6 is the target gene of miR-186, which can inhibit the expression of CDK6 protein. SNHG6 can promote the expression of CDK6 by regulating miR-186. Conclusions SNHG6 is highly expressed in PTC and can promote the proliferation of PTC cells by regulating the miR-186/CDK6 axis, which is expected to become a potential therapeutic target for PTC.
Collapse
Affiliation(s)
- Jian Xu
- Department of General Surgery, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
| | - Miaomiao Liao
- Department of General Surgery, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
| |
Collapse
|