1
|
Selke P, Strauss C, Horstkorte R, Scheer M. Effect of Different Glucose Levels and Glycation on Meningioma Cell Migration and Invasion. Int J Mol Sci 2024; 25:10075. [PMID: 39337558 PMCID: PMC11432498 DOI: 10.3390/ijms251810075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 09/15/2024] [Accepted: 09/17/2024] [Indexed: 09/30/2024] Open
Abstract
Meningiomas are predominantly benign tumors, but there are also malignant forms that are associated with a poor prognosis. Like almost all tumors, meningiomas metabolize glucose as part of aerobic glycolysis (Warburg effect) for energy supply, so there are attempts to influence the prognosis of tumor diseases using a glucose-reduced diet. This altered metabolism leads to so called hallmarks of cancer, such as glycation and glycosylation. In this study, we investigated the influence of low (3 mM), normal (5.5 mM) and high glucose (15 mM) on a malignant meningioma cell line (IOMM-Lee, WHO grade 3). In addition, the influence of methylglyoxal, a by-product of glycolysis and a precursor for glycation, was investigated. Impedance-based methods (ECIS and RTCA) were used to study migration and invasion, and immunoblotting was used to analyze the expression of proteins relevant to these processes, such as focal adhesion kinase (FAK), merlin or integrin ß1. We were able to show that low glucose reduced the invasive potential of the cells, which was associated with a reduced amount of sialic acid. Under high glucose, barrier function was impaired and adhesion decreased, which correlated with a decreased expression of FAK.
Collapse
Affiliation(s)
- Philipp Selke
- Institute for Physiological Chemistry, Medical Faculty, Martin-Luther-University Halle-Wittenberg, 06114 Halle (Saale), Germany
| | - Christian Strauss
- Department of Neurosurgery, Medical Faculty, Martin-Luther-University Halle-Wittenberg, Ernst-Grube-Str. 40, 06120 Halle (Saale), Germany
| | - Rüdiger Horstkorte
- Institute for Physiological Chemistry, Medical Faculty, Martin-Luther-University Halle-Wittenberg, 06114 Halle (Saale), Germany
| | - Maximilian Scheer
- Department of Neurosurgery, Medical Faculty, Martin-Luther-University Halle-Wittenberg, Ernst-Grube-Str. 40, 06120 Halle (Saale), Germany
| |
Collapse
|
2
|
Orešković D, Madero Pohlen A, Cvitković I, Alen JF, Raguž M, Álvarez-Sala de la Cuadra A, Bazarra Castro GJ, Bušić Z, Konstantinović I, Ledenko V, Martínez Macho C, Müller D, Žarak M, Jovanov-Milosevic N, Chudy D, Marinović T. Chronic hyperglycemia and intracranial meningiomas. BMC Cancer 2024; 24:488. [PMID: 38632533 PMCID: PMC11022447 DOI: 10.1186/s12885-024-12243-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Accepted: 04/09/2024] [Indexed: 04/19/2024] Open
Abstract
Meningiomas are among the most common primary tumors of the central nervous system. Previous research into the meningioma histological appearance, genetic markers, transcriptome and epigenetic landscape has revealed that benign meningiomas significantly differ in their glucose metabolism compared to aggressive lesions. However, a correlation between the systemic glucose metabolism and the metabolism of the tumor hasn't yet been found. We hypothesized that chronic levels of glycaemia (approximated with glycated hemoglobin (HbA1c)) are different in patients with aggressive and benign meningiomas. The study encompassed 71 patients with de novo intracranial meningiomas, operated on in three European hospitals, two in Croatia and one in Spain. Our results show that patients with WHO grade 2 meningiomas had significantly higher HbA1c values compared to patients with grade 1 lesions (P = 0.0290). We also found a significant number of patients (19/71; 26.7%) being hyperglycemic, harboring all the risks that such a condition entails. Finally, we found a significant correlation between our patients' age and their preoperative HbA1c levels (P = 0.0008, ρ(rho) = 0.388), suggesting that older meningioma patients are at a higher risk of having their glycaemia severely dysregulated. These findings are especially important considering the current routine and wide-spread use of corticosteroids as anti-edematous treatment. Further research in this area could lead to better understanding of meningiomas and have immediate clinical impact.
Collapse
Affiliation(s)
- D Orešković
- Department of Neurosurgery, Clinical Hospital Dubrava, Zagreb, Croatia.
| | - A Madero Pohlen
- Department of Neurosurgery, University Hospital de la Princesa, Madrid, Spain
| | - I Cvitković
- Department of Neurosurgery, University Hospital Center Split, Split, Croatia
| | - J F Alen
- Department of Neurosurgery, University Hospital de la Princesa, Madrid, Spain
| | - M Raguž
- Department of Neurosurgery, Clinical Hospital Dubrava, Zagreb, Croatia
| | | | - G J Bazarra Castro
- Department of Neurosurgery, University Hospital de la Princesa, Madrid, Spain
| | - Z Bušić
- Department of Neurosurgery, University Hospital Center Split, Split, Croatia
| | - I Konstantinović
- Department of Neurosurgery, University Hospital Center Split, Split, Croatia
| | - V Ledenko
- Department of Neurosurgery, University Hospital Center Split, Split, Croatia
| | - C Martínez Macho
- Department of Neurosurgery, University Hospital de la Princesa, Madrid, Spain
| | - D Müller
- Department of Pathology, Clinical Hospital Dubrava, Zagreb, Croatia
| | - M Žarak
- Clinical Department of Laboratory Diagnostics, Clinical Hospital Dubrava, Zagreb, Croatia
- Faculty of Pharmacy and Biochemistry, University of Zagreb, Zagreb, Croatia
| | - N Jovanov-Milosevic
- Department of Biology, School of Medicine, University of Zagreb, Zagreb, Croatia
- Scientific Centre of Excellence for Basic, Clinical and Translational Neuroscience, School of Medicine, Croatian Institute for Brain Research, University of Zagreb, Zagreb, Croatia
| | - D Chudy
- Department of Neurosurgery, Clinical Hospital Dubrava, Zagreb, Croatia
- Scientific Centre of Excellence for Basic, Clinical and Translational Neuroscience, School of Medicine, Croatian Institute for Brain Research, University of Zagreb, Zagreb, Croatia
| | - T Marinović
- Department of Neurosurgery, Clinical Hospital Dubrava, Zagreb, Croatia
- Department of Neurology and Neurosurgery, Faculty of Dental Medicine and Health, Josip Juraj Strossmayer University of Osijek, Osijek, Croatia
| |
Collapse
|
3
|
Talabnin C, Trasaktaweesakul T, Jaturutthaweechot P, Asavaritikrai P, Kongnawakun D, Silsirivanit A, Araki N, Talabnin K. Altered O-linked glycosylation in benign and malignant meningiomas. PeerJ 2024; 12:e16785. [PMID: 38274327 PMCID: PMC10809981 DOI: 10.7717/peerj.16785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Accepted: 12/19/2023] [Indexed: 01/27/2024] Open
Abstract
Background Changes in protein glycosylation have been reported in various diseases, including cancer; however, the consequences of altered glycosylation in meningiomas remains undefined. We established two benign meningioma cell lines-SUT-MG12 and SUT-MG14, WHO grade I-and demonstrated the glycan and glycosyltransferase profiles of the mucin-type O-linked glycosylation in the primary benign meningioma cells compared with two malignant meningioma cell lines-HKBMM and IOMM-Lee, WHO grade III. Changes in O-linked glycosylation profiles in malignant meningiomas were proposed. Methods Primary culture technique, morphological analysis, and immunocytochemistry were used to establish and characterize two benign meningioma cell lines. The glycan profiles of the primary benign and malignant meningiomas cell lines were then analyzed using lectin cytochemistry. The gene expression of O-linked glycosyltransferases, mucins, sialyltransferases, and fucosyltransferases were analyzed in benign and malignant meningioma using the GEO database (GEO series GSE16581) and quantitative-PCR (qPCR). Results Lectin cytochemistry revealed that the terminal galactose (Gal) and N-acetyl galactosamine (GalNAc) were highly expressed in primary benign meningioma cells (WHO grade I) compared to malignant meningioma cell lines (WHO grade III). The expression profile of mucin types O-glycosyltransferases in meningiomas were observed through the GEO database and gene expression experiment in meningioma cell lines. In the GEO database, C1GALT1-specific chaperone (COSMC) and mucin 1 (MUC1) were significantly increased in malignant meningiomas (Grade II and III) compared with benign meningiomas (Grade I). Meanwhile, in the cell lines, Core 2 β1,6-N-acetylglucosaminyltransferase-2 (C2GNT2) was highly expressed in malignant meningiomas. We then investigated the complex mucin-type O-glycans structures by determination of sialyltransferases and fucosyltransferases. We found ST3 β-galactoside α-2,3-sialyltransferase 4 (ST3GAL4) was significantly decreased in the GEO database, while ST3GAL1, ST3GAL3, α1,3 fucosyltransferases 1 and 8 (FUT1 and FUT8) were highly expressed in malignant meningioma cell lines-(HKBMM)-compared to primary benign meningioma cells-(SUT-MG12 and SUT-MG14). Conclusion Our findings are the first to demonstrate the potential glycosylation changes in the O-linked glycans of malignant meningiomas compared with benign meningiomas, which may play an essential role in the progression, tumorigenesis, and malignancy of meningiomas.
Collapse
Affiliation(s)
- Chutima Talabnin
- School of Chemistry, Institute of Science, Suranaree University of Technology, Nakhon Ratchasima, Thailand
| | - Thanawat Trasaktaweesakul
- School of Translational Medicine, Institute of Medicine, Suranaree University of Technology, Nakhon Ratchasima, Thailand
| | | | - Pundit Asavaritikrai
- School of Surgery, Institute of Medicine, Suranaree University of Technology, Nakhon Ratchasima, Thailand
| | - Dusit Kongnawakun
- School of Pathology, Institute of Medicine, Suranaree University of Technology, Nakhon Ratchasima, Thailand
| | - Atit Silsirivanit
- Department of Biochemistry, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Norie Araki
- Department of Tumor Genetics and Biology, Graduate School of Medical Sciences, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Krajang Talabnin
- School of Pathology, Institute of Medicine, Suranaree University of Technology, Nakhon Ratchasima, Thailand
| |
Collapse
|
4
|
Schildhauer P, Selke P, Staege MS, Harder A, Scheller C, Strauss C, Horstkorte R, Scheer M, Leisz S. Glycation Interferes with the Expression of Sialyltransferases and Leads to Increased Polysialylation in Glioblastoma Cells. Cells 2023; 12:2758. [PMID: 38067186 PMCID: PMC10706364 DOI: 10.3390/cells12232758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 11/27/2023] [Accepted: 11/30/2023] [Indexed: 12/18/2023] Open
Abstract
Glioblastoma (GBM) is a highly aggressive brain tumor that often utilizes aerobic glycolysis for energy production (Warburg effect), resulting in increased methylglyoxal (MGO) production. MGO, a reactive dicarbonyl compound, causes protein alterations and cellular dysfunction via glycation. In this study, we investigated the effect of glycation on sialylation, a common post-translational modification implicated in cancer. Our experiments using glioma cell lines, human astrocytes (hA), and primary glioma samples revealed different gene expressions of sialyltransferases among cells, highlighting the complexity of the system. Glycation has a differential effect on sialyltransferase expression, upregulating ST8SIA4 in the LN229 and U251 cell lines and decreasing the expression in normal hA. Subsequently, polysialylation increased in the LN229 and U251 cell lines and decreased in hA. This increase in polysialylation could lead to a more aggressive phenotype due to its involvement in cancer hallmark processes such as immune evasion, resistance to apoptosis, and enhancing invasion. Our findings provide insights into the mechanisms underlying GBM aggressiveness and suggest that targeting glycation and sialylation could be a potential therapeutic strategy.
Collapse
Affiliation(s)
- Paola Schildhauer
- Department of Neurosurgery, Medical Faculty, Martin Luther University Halle-Wittenberg, Ernst-Grube-Str. 40, 06120 Halle (Saale), Germany; (P.S.); (M.S.)
| | - Philipp Selke
- Institute for Physiological Chemistry, Medical Faculty, Martin Luther University Halle-Wittenberg, 06114 Halle (Saale), Germany
| | - Martin S. Staege
- Department of Surgical and Conservative Pediatrics and Adolescent Medicine, Medical Faculty, Martin Luther University Halle-Wittenberg, 06120 Halle (Saale), Germany
| | - Anja Harder
- Institute of Neuropathology, University Medical Center, Johannes Gutenberg University Mainz, 55131 Mainz, Germany
- CURE-NF Research Group, Medical Faculty, Martin Luther University Halle-Wittenberg, 06112 Halle (Saale), Germany
| | - Christian Scheller
- Department of Neurosurgery, Medical Faculty, Martin Luther University Halle-Wittenberg, Ernst-Grube-Str. 40, 06120 Halle (Saale), Germany; (P.S.); (M.S.)
| | - Christian Strauss
- Department of Neurosurgery, Medical Faculty, Martin Luther University Halle-Wittenberg, Ernst-Grube-Str. 40, 06120 Halle (Saale), Germany; (P.S.); (M.S.)
| | - Rüdiger Horstkorte
- Institute for Physiological Chemistry, Medical Faculty, Martin Luther University Halle-Wittenberg, 06114 Halle (Saale), Germany
| | - Maximilian Scheer
- Department of Neurosurgery, Medical Faculty, Martin Luther University Halle-Wittenberg, Ernst-Grube-Str. 40, 06120 Halle (Saale), Germany; (P.S.); (M.S.)
| | - Sandra Leisz
- Department of Neurosurgery, Medical Faculty, Martin Luther University Halle-Wittenberg, Ernst-Grube-Str. 40, 06120 Halle (Saale), Germany; (P.S.); (M.S.)
| |
Collapse
|
5
|
Sescu D, Chansiriwongs A, Minta KJ, Vasudevan J, Kaliaperumal C. Early Preventive Strategies and CNS Meningioma - Is This Feasible? A Comprehensive Review of the Literature. World Neurosurg 2023; 180:123-133. [PMID: 37774783 DOI: 10.1016/j.wneu.2023.09.075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 09/18/2023] [Accepted: 09/20/2023] [Indexed: 10/01/2023]
Abstract
BACKGROUND Meningiomas are one of the most common benign primary brain tumors; however, there is a paucity of literature on potential preventability. This comprehensive review aimed to explore the existing evidence for the potential risk factors that may contribute to meningioma development and to discuss early prevention strategies. METHODS Literature search was conducted via MEDLINE, Embase, Web of Science, and Cochrane Database to retrieve existing literature on various environmental exposures and lifestyle behaviors that are potential risk factors for the development of meningiomas. RESULTS Significant risk factors included exposure to ionizing radiation and certain environmental chemicals. Notably, this study also identified that cigarette smoking and obesity are associated with the development of meningiomas. To date, wireless phone usage, hormonal exposures, dietary factors, and traumatic brain injury remain inconclusive. Early prevention strategies should primarily be family-driven, community-based, and public health-endorsed strategies. Targeting unhealthy behaviors through healthcare organizations could execute a pivotal role in the maintenance of an optimum lifestyle, reducing the development of risk factors pertinent to meningiomas. CONCLUSIONS To our knowledge, this is the first study that offers a perspective on prevention of meningiomas. A causal relationship of risk factors in developing meningiomas cannot be directly established with the current evidence. We are aware of the limitations of the hypothesis, but we believe that this study will raise more awareness and our findings could potentially be endorsed by organizations promoting health across the globe. Further prospective and retrospective studies will shed more light on this topic and help establish a definitive relationship.
Collapse
Affiliation(s)
- Daniel Sescu
- School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Aberdeen, United Kingdom.
| | - Aminta Chansiriwongs
- School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Aberdeen, United Kingdom
| | - Katarzyna Julia Minta
- School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Aberdeen, United Kingdom
| | - Jyothi Vasudevan
- Department of Community Medicine, Mahatma Gandhi Medical College and Research Institute, Sri Balaji Vidyapeeth, Bahour, Puducherry, India
| | | |
Collapse
|
6
|
Schildhauer P, Selke P, Scheller C, Strauss C, Horstkorte R, Leisz S, Scheer M. Glycation Leads to Increased Invasion of Glioblastoma Cells. Cells 2023; 12:cells12091219. [PMID: 37174618 PMCID: PMC10177211 DOI: 10.3390/cells12091219] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 04/11/2023] [Accepted: 04/20/2023] [Indexed: 05/15/2023] Open
Abstract
Glioblastoma (GBM) is a highly aggressive and invasive brain tumor with a poor prognosis despite extensive treatment. The switch to aerobic glycolysis, known as the Warburg effect, in cancer cells leads to an increased production of methylglyoxal (MGO), a potent glycation agent with pro-tumorigenic characteristics. MGO non-enzymatically reacts with proteins, DNA, and lipids, leading to alterations in the signaling pathways, genomic instability, and cellular dysfunction. In this study, we investigated the impact of MGO on the LN229 and U251 (WHO grade IV, GBM) cell lines and the U343 (WHO grade III) glioma cell line, along with primary human astrocytes (hA). The results showed that increasing concentrations of MGO led to glycation, the accumulation of advanced glycation end-products, and decreasing cell viability in all cell lines. The invasiveness of the GBM cell lines increased under the influence of physiological MGO concentrations (0.3 mmol/L), resulting in a more aggressive phenotype, whereas glycation decreased the invasion potential of hA. In addition, glycation had differential effects on the ECM components that are involved in the invasion progress, upregulating TGFβ, brevican, and tenascin C in the GBM cell lines LN229 and U251. These findings highlight the importance of further studies on the prevention of glycation through MGO scavengers or glyoxalase 1 activators as a potential therapeutic strategy against glioma and GBM.
Collapse
Affiliation(s)
- Paola Schildhauer
- Department of Neurosurgery, Medical Faculty, Martin-Luther-University Halle-Wittenberg, Ernst-Grube-Str. 40, 06120 Halle (Saale), Germany
| | - Philipp Selke
- Institute for Physiological Chemistry, Medical Faculty, Martin-Luther-University Halle-Wittenberg, 06114 Halle (Saale), Germany
| | - Christian Scheller
- Department of Neurosurgery, Medical Faculty, Martin-Luther-University Halle-Wittenberg, Ernst-Grube-Str. 40, 06120 Halle (Saale), Germany
| | - Christian Strauss
- Department of Neurosurgery, Medical Faculty, Martin-Luther-University Halle-Wittenberg, Ernst-Grube-Str. 40, 06120 Halle (Saale), Germany
| | - Rüdiger Horstkorte
- Institute for Physiological Chemistry, Medical Faculty, Martin-Luther-University Halle-Wittenberg, 06114 Halle (Saale), Germany
| | - Sandra Leisz
- Department of Neurosurgery, Medical Faculty, Martin-Luther-University Halle-Wittenberg, Ernst-Grube-Str. 40, 06120 Halle (Saale), Germany
| | - Maximilian Scheer
- Department of Neurosurgery, Medical Faculty, Martin-Luther-University Halle-Wittenberg, Ernst-Grube-Str. 40, 06120 Halle (Saale), Germany
| |
Collapse
|
7
|
Glycation Interferes with the Expression of Sialyltransferases in Meningiomas. Cells 2021; 10:cells10123298. [PMID: 34943806 PMCID: PMC8699175 DOI: 10.3390/cells10123298] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 11/19/2021] [Accepted: 11/22/2021] [Indexed: 11/16/2022] Open
Abstract
Meningiomas are the most common non-malignant intracranial tumors and prefer, like most tumors, anaerobic glycolysis for energy production (Warburg effect). This anaerobic glycolysis leads to an increased synthesis of the metabolite methylglyoxal (MGO) or glyoxal (GO), which is known to react with amino groups of proteins. This reaction is called glycation, thereby building advanced glycation end products (AGEs). In this study, we investigated the influence of glycation on sialylation in two meningioma cell lines, representing the WHO grade I (BEN-MEN-1) and the WHO grade III (IOMM-Lee). In the benign meningioma cell line, glycation led to differences in expression of sialyltransferases (ST3GAL1/2/3/5/6, ST6GAL1/2, ST6GALNAC2/6, and ST8SIA1/2), which are known to play a role in tumor progression. We could show that glycation of BEN-MEN-1 cells led to decreased expression of ST3Gal5. This resulted in decreased synthesis of the ganglioside GM3, the product of ST3Gal5. In the malignant meningioma cell line, we observed changes in expression of sialyltransferases (ST3GAL1/2/3, ST6GALNAC5, and ST8SIA1) after glycation, which correlates with less aggressive behavior.
Collapse
|