1
|
Gallego-Durán R, Hadjihambi A, Ampuero J, Rose CF, Jalan R, Romero-Gómez M. Ammonia-induced stress response in liver disease progression and hepatic encephalopathy. Nat Rev Gastroenterol Hepatol 2024; 21:774-791. [PMID: 39251708 DOI: 10.1038/s41575-024-00970-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/24/2024] [Indexed: 09/11/2024]
Abstract
Ammonia levels are orchestrated by a series of complex interrelated pathways in which the urea cycle has a central role. Liver dysfunction leads to an accumulation of ammonia, which is toxic and is strongly associated with disruption of potassium homeostasis, mitochondrial dysfunction, oxidative stress, inflammation, hypoxaemia and dysregulation of neurotransmission. Hyperammonaemia is a hallmark of hepatic encephalopathy and has been strongly associated with liver-related outcomes in patients with cirrhosis and liver failure. In addition to the established role of ammonia as a neurotoxin in the pathogenesis of hepatic encephalopathy, an increasing number of studies suggest that it can lead to hepatic fibrosis progression, sarcopenia, immune dysfunction and cancer. However, elevated systemic ammonia levels are uncommon in patients with metabolic dysfunction-associated steatotic liver disease. A clear causal relationship between ammonia-induced immune dysfunction and risk of infection has not yet been definitively proven. In this Review, we discuss the mechanisms by which ammonia produces its diverse deleterious effects and their clinical relevance in liver diseases, the importance of measuring ammonia levels for the diagnosis of hepatic encephalopathy, the prognosis of patients with cirrhosis and liver failure, and how our knowledge of inter-organ ammonia metabolism is leading to the development of novel therapeutic approaches.
Collapse
Affiliation(s)
- Rocío Gallego-Durán
- UCM Digestive Diseases, Virgen del Rocío University Hospital. Instituto de Biomedicina de Sevilla (HUVR/CSIC/US), Department of Medicine, University of Seville, Seville, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Madrid, Spain
| | - Anna Hadjihambi
- The Roger Williams Institute of Hepatology, Foundation for Liver Research, London, UK
- Faculty of Life Sciences and Medicine, King's College London, London, UK
| | - Javier Ampuero
- UCM Digestive Diseases, Virgen del Rocío University Hospital. Instituto de Biomedicina de Sevilla (HUVR/CSIC/US), Department of Medicine, University of Seville, Seville, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Madrid, Spain
| | - Christopher F Rose
- Hepato-Neuro Laboratory, CRCHUM, Université de Montréal, Montreal, Canada
| | - Rajiv Jalan
- Institute for Liver and Digestive Health, Division of Medicine, UCL Medical School, Royal Free Hospital, London, UK
- European Foundation for the Study of Chronic Liver Failure, Barcelona, Spain
| | - Manuel Romero-Gómez
- UCM Digestive Diseases, Virgen del Rocío University Hospital. Instituto de Biomedicina de Sevilla (HUVR/CSIC/US), Department of Medicine, University of Seville, Seville, Spain.
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Madrid, Spain.
| |
Collapse
|
2
|
Ali SS, Hassan LHS, El-Sheekh M. Microalgae-mediated bioremediation: current trends and opportunities-a review. Arch Microbiol 2024; 206:343. [PMID: 38967670 DOI: 10.1007/s00203-024-04052-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 06/05/2024] [Accepted: 06/14/2024] [Indexed: 07/06/2024]
Abstract
Environmental pollution poses a critical global challenge, and traditional wastewater treatment methods often prove inadequate in addressing the complexity and scale of this issue. On the other hand, microalgae exhibit diverse metabolic capabilities that enable them to remediate a wide range of pollutants, including heavy metals, organic contaminants, and excess nutrients. By leveraging the unique metabolic pathways of microalgae, innovative strategies can be developed to effectively remediate polluted environments. Therefore, this review paper highlights the potential of microalgae-mediated bioremediation as a sustainable and cost-effective alternative to conventional methods. It also highlights the advantages of utilizing microalgae and algae-bacteria co-cultures for large-scale bioremediation applications, demonstrating impressive biomass production rates and enhanced pollutant removal efficiency. The promising potential of microalgae-mediated bioremediation is emphasized, presenting a viable and innovative alternative to traditional treatment methods in addressing the global challenge of environmental pollution. This review identifies the opportunities and challenges for microalgae-based technology and proposed suggestions for future studies to tackle challenges. The findings of this review advance our understanding of the potential of microalgae-based technology wastewater treatment.
Collapse
Affiliation(s)
- Sameh S Ali
- Botany Department, Faculty of Science, Tanta University, Tanta, 31527, Egypt.
| | - Lamiaa H S Hassan
- Faculty of Science, Menoufia University, Shebin El-kom, 32511, Egypt
| | - Mostafa El-Sheekh
- Botany Department, Faculty of Science, Tanta University, Tanta, 31527, Egypt.
| |
Collapse
|
3
|
Jia R, Hou Y, Zhang L, Li B, Zhu J. Effects of Berberine on Lipid Metabolism, Antioxidant Status, and Immune Response in Liver of Tilapia ( Oreochromis niloticus) under a High-Fat Diet Feeding. Antioxidants (Basel) 2024; 13:548. [PMID: 38790653 PMCID: PMC11117941 DOI: 10.3390/antiox13050548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 04/28/2024] [Accepted: 04/28/2024] [Indexed: 05/26/2024] Open
Abstract
Berberine, a natural alkaloid found abundantly in various medicinal plants, exhibits antioxidative, anti-inflammatory, and lipid metabolism-regulatory properties. Nonetheless, its protective effects and the molecular mechanisms underlying liver injury in fish have not been fully elucidated. The aims of this study were to investigate the antioxidative, anti-inflammatory, and lipid metabolism-regulating effects of berberine against high-fat diet (HFD)-induced liver damage and to clarify the underlying molecular mechanisms. Tilapia were fed diets containing two doses of berberine (50 and 100 mg/kg diet) alongside high fat for 60 days. The results showed that berberine treatments (50 and/or 100 mg/kg) significantly reduced elevated aminotransferases, triglycerides (TG), total cholesterol (TC), and low-density lipoprotein cholesterol (LDL-c) in the plasma. In the liver, berberine treatments significantly increased the expression of peroxisome proliferator-activated receptor α (pparα) and carnitine palmitoyltransferase 1 (cpt-1) genes, leading to a reduction in lipid accumulation. Meanwhile, berberine treatment suppressed lipid peroxidation formation and enhanced antioxidant capacity. Berberine upregulated the mRNA levels of erythroid 2-related factor 2 (nrf2) and its downstream genes including heme oxygenase 1 (ho-1) and glutathione-S-transferase (gstα). Additionally, berberine attenuated the inflammation by inhibiting the expression of toll-like receptor 2 (tlr2), myeloid differential protein-88 (myd88), relb, and inflammatory cytokines such as interleukin-1β (il-1β), tumor necrosis factor-α (tnf-α), and il-8. In summary, this study suggested that berberine offers protection against HFD-induced liver damage in tilapia via regulating lipid metabolism, antioxidant status, and immune response. This protective effect may be attributed to the modulation of the Nrf2, TLR2/MyD88/NF-κB, and PPARα signaling pathways.
Collapse
Affiliation(s)
- Rui Jia
- Key Laboratory of Integrated Rice-Fish Farming Ecology, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China; (R.J.); (Y.H.); (L.Z.)
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China
| | - Yiran Hou
- Key Laboratory of Integrated Rice-Fish Farming Ecology, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China; (R.J.); (Y.H.); (L.Z.)
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China
| | - Liqiang Zhang
- Key Laboratory of Integrated Rice-Fish Farming Ecology, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China; (R.J.); (Y.H.); (L.Z.)
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China
| | - Bing Li
- Key Laboratory of Integrated Rice-Fish Farming Ecology, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China; (R.J.); (Y.H.); (L.Z.)
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China
| | - Jian Zhu
- Key Laboratory of Integrated Rice-Fish Farming Ecology, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China; (R.J.); (Y.H.); (L.Z.)
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China
| |
Collapse
|
4
|
Weber FB, Santos CL, da Silva A, Schmitz I, Rezena E, Gonçalves CA, Quincozes-Santos A, Bobermin LD. Differences between cultured astrocytes from neonatal and adult Wistar rats: focus on in vitro aging experimental models. In Vitro Cell Dev Biol Anim 2024; 60:420-431. [PMID: 38546817 DOI: 10.1007/s11626-024-00896-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 03/07/2024] [Indexed: 05/07/2024]
Abstract
Astrocytes play key roles regulating brain homeostasis and accumulating evidence has suggested that glia are the first cells that undergo functional changes with aging, which can lead to a decline in brain function. In this context, in vitro models are relevant tools for studying aged astrocytes and, here, we investigated functional and molecular changes in cultured astrocytes obtained from neonatal or adult animals submitted to an in vitro model of aging by an additional period of cultivation of cells after confluence. In vitro aging induced different metabolic effects regarding glucose and glutamate uptake, as well as glutamine synthetase activity, in astrocytes obtained from adult animals compared to those obtained from neonatal animals. In vitro aging also modulated glutathione-related antioxidant defenses and increased reactive oxygen species and cytokine release especially in astrocytes from adult animals. Interestingly, in vitro aged astrocytes from adult animals exposed to pro-oxidant, inflammatory, and antioxidant stimuli showed enhanced oxidative and inflammatory responses. Moreover, these functional changes were correlated with the expression of the senescence marker p21, cytoskeleton markers, glutamate transporters, inflammatory mediators, and signaling pathways such as nuclear factor κB (NFκB)/nuclear factor erythroid 2-related factor 2 (Nrf2)/heme oxygenase 1 (HO-1). Alterations in these genes are remarkably associated with a potential neurotoxic astrocyte phenotype. Therefore, considering the experimental limitations due to the need for long-term maintenance of the animals for studying aging, astrocyte cultures obtained from adult animals further aged in vitro can provide an improved experimental model for understanding the mechanisms associated with aging-related astrocyte dysfunction.
Collapse
Affiliation(s)
- Fernanda Becker Weber
- Programa de Pós-Graduação Em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal Do Rio Grande Do Sul, Porto Alegre, RS, Brazil
| | - Camila Leite Santos
- Programa de Pós-Graduação Em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal Do Rio Grande Do Sul, Porto Alegre, RS, Brazil
| | - Amanda da Silva
- Programa de Pós-Graduação Em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal Do Rio Grande Do Sul, Porto Alegre, RS, Brazil
| | - Izaviany Schmitz
- Programa de Pós-Graduação Em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal Do Rio Grande Do Sul, Porto Alegre, RS, Brazil
| | - Ester Rezena
- Programa de Pós-Graduação Em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal Do Rio Grande Do Sul, Porto Alegre, RS, Brazil
| | - Carlos-Alberto Gonçalves
- Programa de Pós-Graduação Em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal Do Rio Grande Do Sul, Porto Alegre, RS, Brazil
- Programa de Pós-Graduação Em Neurociências, Instituto de Ciências Básicas da Saúde, Universidade Federal Do Rio Grande Do Sul, Ramiro Barcelos, 2600, Porto Alegre, RS, 90035-003, Brazil
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal Do Rio Grande Do Sul, Porto Alegre, RS, Brazil
| | - André Quincozes-Santos
- Programa de Pós-Graduação Em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal Do Rio Grande Do Sul, Porto Alegre, RS, Brazil
- Programa de Pós-Graduação Em Neurociências, Instituto de Ciências Básicas da Saúde, Universidade Federal Do Rio Grande Do Sul, Ramiro Barcelos, 2600, Porto Alegre, RS, 90035-003, Brazil
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal Do Rio Grande Do Sul, Porto Alegre, RS, Brazil
| | - Larissa Daniele Bobermin
- Programa de Pós-Graduação Em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal Do Rio Grande Do Sul, Porto Alegre, RS, Brazil.
- Programa de Pós-Graduação Em Neurociências, Instituto de Ciências Básicas da Saúde, Universidade Federal Do Rio Grande Do Sul, Ramiro Barcelos, 2600, Porto Alegre, RS, 90035-003, Brazil.
| |
Collapse
|
5
|
Moedas MF, Simões RJM, Silva MFB. Mitochondrial targets in hyperammonemia: Addressing urea cycle function to improve drug therapies. Biochem Pharmacol 2024; 222:116034. [PMID: 38307136 DOI: 10.1016/j.bcp.2024.116034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 12/27/2023] [Accepted: 01/25/2024] [Indexed: 02/04/2024]
Abstract
The urea cycle (UC) is a critically important metabolic process for the disposal of nitrogen (ammonia) produced by amino acids catabolism. The impairment of this liver-specific pathway induced either by primary genetic defects or by secondary causes, namely those associated with hepatic disease or drug administration, may result in serious clinical consequences. Urea cycle disorders (UCD) and certain organic acidurias are the major groups of inherited rare diseases manifested with hyperammonemia (HA) with UC dysregulation. Importantly, several commonly prescribed drugs, including antiepileptics in monotherapy or polytherapy from carbamazepine to valproic acid or specific antineoplastic agents such as asparaginase or 5-fluorouracil may be associated with HA by mechanisms not fully elucidated. HA, disclosing an imbalance between ammoniagenesis and ammonia disposal via the UC, can evolve to encephalopathy which may lead to significant morbidity and central nervous system damage. This review will focus on biochemical mechanisms related with HA emphasizing some poorly understood perspectives behind the disruption of the UC and mitochondrial energy metabolism, namely: i) changes in acetyl-CoA or NAD+ levels in subcellular compartments; ii) post-translational modifications of key UC-related enzymes, namely acetylation, potentially affecting their catalytic activity; iii) the mitochondrial sirtuins-mediated role in ureagenesis. Moreover, the main UCD associated with HA will be summarized to highlight the relevance of investigating possible genetic mutations to account for unexpected HA during certain pharmacological therapies. The ammonia-induced effects should be avoided or overcome as part of safer therapeutic strategies to protect patients under treatment with drugs that may be potentially associated with HA.
Collapse
Affiliation(s)
- Marco F Moedas
- Research Institute for Medicines-iMed.ULisboa, Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal; Centre for Inherited Metabolic Diseases, Karolinska University Hospital, Stockholm, Sweden; Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Ricardo J M Simões
- Research Institute for Medicines-iMed.ULisboa, Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal
| | - Margarida F B Silva
- Research Institute for Medicines-iMed.ULisboa, Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal.
| |
Collapse
|
6
|
Jiang Q, Li Y, Cai S, Shi X, Yang Y, Xing Z, He Z, Wang S, Su Y, Chen M, Chen Z, Shi Z. GLUL stabilizes N-Cadherin by antagonizing β-Catenin to inhibit the progresses of gastric cancer. Acta Pharm Sin B 2024; 14:698-711. [PMID: 38322340 PMCID: PMC10840430 DOI: 10.1016/j.apsb.2023.11.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Revised: 09/25/2023] [Accepted: 11/06/2023] [Indexed: 02/08/2024] Open
Abstract
Glutamate-ammonia ligase (GLUL, also known as glutamine synthetase) is a crucial enzyme that catalyzes ammonium and glutamate into glutamine in the ATP-dependent condensation. Although GLUL plays a critical role in multiple cancers, the expression and function of GLUL in gastric cancer remain unclear. In the present study, we have found that the expression level of GLUL was significantly lower in gastric cancer tissues compared with adjacent normal tissues, and correlated with N stage and TNM stage, and low GLUL expression predicted poor survival for gastric cancer patients. Knockdown of GLUL promoted the growth, migration, invasion and metastasis of gastric cancer cells in vitro and in vivo, and vice versa, which was independent of its enzyme activity. Mechanistically, GLUL competed with β-Catenin to bind to N-Cadherin, increased the stability of N-Cadherin and decreased the stability of β-Catenin by alerting their ubiquitination. Furthermore, there were lower N-Cadherin and higher β-Catenin expression levels in gastric cancer tissues compared with adjacent normal tissues. GLUL protein expression was correlated with that of N-Cadherin, and could be the independent prognostic factor in gastric cancer. Our findings reveal that GLUL stabilizes N-Cadherin by antagonizing β-Catenin to inhibit the progress of gastric cancer.
Collapse
Affiliation(s)
- Qiwei Jiang
- Department of Cell Biology & Institute of Biomedicine, National Engineering Research Center of Genetic Medicine, State Key Laboratory of Bioactive Molecules and Druggability Assessment, MOE Key Laboratory of Tumor Molecular Biology, Guangdong Provincial Key Laboratory of Bioengineering Medicine, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Yong Li
- Department of Gastrointestinal Surgery & General Surgery, the Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, China
| | - Songwang Cai
- Department of Thoracic Surgery, The First Affiliated Hospital of Jinan University, Guangzhou 510632, China
| | - Xingyuan Shi
- Department of Radiation Oncology, The Fifth Hospital of Guangzhou Medical University, Guangzhou 510150, China
| | - Yang Yang
- Department of Cell Biology & Institute of Biomedicine, National Engineering Research Center of Genetic Medicine, State Key Laboratory of Bioactive Molecules and Druggability Assessment, MOE Key Laboratory of Tumor Molecular Biology, Guangdong Provincial Key Laboratory of Bioengineering Medicine, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Zihao Xing
- Department of Cell Biology & Institute of Biomedicine, National Engineering Research Center of Genetic Medicine, State Key Laboratory of Bioactive Molecules and Druggability Assessment, MOE Key Laboratory of Tumor Molecular Biology, Guangdong Provincial Key Laboratory of Bioengineering Medicine, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Zhenjie He
- Department of Cell Biology & Institute of Biomedicine, National Engineering Research Center of Genetic Medicine, State Key Laboratory of Bioactive Molecules and Druggability Assessment, MOE Key Laboratory of Tumor Molecular Biology, Guangdong Provincial Key Laboratory of Bioengineering Medicine, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Shengte Wang
- Department of Cell Biology & Institute of Biomedicine, National Engineering Research Center of Genetic Medicine, State Key Laboratory of Bioactive Molecules and Druggability Assessment, MOE Key Laboratory of Tumor Molecular Biology, Guangdong Provincial Key Laboratory of Bioengineering Medicine, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Yubin Su
- Department of Cell Biology & Institute of Biomedicine, National Engineering Research Center of Genetic Medicine, State Key Laboratory of Bioactive Molecules and Druggability Assessment, MOE Key Laboratory of Tumor Molecular Biology, Guangdong Provincial Key Laboratory of Bioengineering Medicine, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Meiwan Chen
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau 519000, China
| | - Zhesheng Chen
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY 11439, USA
| | - Zhi Shi
- Department of Cell Biology & Institute of Biomedicine, National Engineering Research Center of Genetic Medicine, State Key Laboratory of Bioactive Molecules and Druggability Assessment, MOE Key Laboratory of Tumor Molecular Biology, Guangdong Provincial Key Laboratory of Bioengineering Medicine, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| |
Collapse
|
7
|
Morgan MB, Williams J, Breeze B, English N, Higdon N, Onthank K, Qualley DF. Synergistic and antagonistic interactions of oxybenzone and ocean acidification: new insight into vulnerable cellular processes in non-calcifying anthozoans. Front Physiol 2024; 14:1332446. [PMID: 38274044 PMCID: PMC10808722 DOI: 10.3389/fphys.2023.1332446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 12/28/2023] [Indexed: 01/27/2024] Open
Abstract
Cnidarians face significant threats from ocean acidification (OA) and anthropogenic pollutants such as oxybenzone (BP-3). The convergence of threats from multiple stressors is an important area to investigate because of potential significant synergistic or antagonistic interactions. Real-time quantitative PCR was performed to characterize the expression profiles of twenty-two genes of interest (GOI) in sea anemones (Exaiptasia diaphana) exposed to one of four treatments: 1) 96 h of OA conditions followed by a 4 h exposure to 20 ppb BP-3; 2) Exposure to 4 h 20 ppb BP-3 without 96 h of OA; 3) Exposure to 96 h of OA alone; or 4) laboratory conditions with no exposure to BP-3 and/or OA. These 22 GOIs represent cellular processes associated with proton-dependent transport, sodium-dependent transport, metal cation binding/transport, extracellular matrix, amino acid metabolism/transport, immunity, and/or steroidogenesis. These 22 GOIs provide new insight into vulnerable cellular processes in non-calcifying anthozoans exposed to OA and BP-3. Expression profiles were categorized as synergistic, antagonistic, or additive of BP-3 in the presence of OA. Two GOIs were synergistic. Fifteen GOIs were antagonistic and the remaining five GOIs were additive in response to BP-3 in acidified seawater. A subset of these GOIs appear to be candidate biomarkers for future in situ investigations. In human health, proton-dependent monocarboxylate transporters (MCTs) are promising pharmacological targets and recognized as potential biomarkers. By comparison, these same MCTs appear to be targets of xenobiotic chemical pollutants in cnidarian physiology. In the presence of BP-3, a network of collagen synthesis genes are upregulated and antagonistic in their expression profiles. Cytochrome b561 is a critical protein required for collagen synthesis and in silico modeling demonstrates BP-3 binds in the pocket of cytochrome b561. Understanding the underlying molecular mechanisms of "drug-like" compounds such as BP-3 may lead to a more comprehensive interpretation of transcriptional expression profiles. The collective antagonistic responses of GOIs associated with collagen synthesis strongly suggests these GOIs should be considered candidate biomarkers of effect. GOIs with synergistic and additive responses represent candidate biomarkers of exposure. Results show the effects of OA and BP-3 are interactive with respect to their impact on cnidarians. This investigation offers mechanistic data that supports the expression profiles and underpins higher order physiological responses.
Collapse
Affiliation(s)
- Michael B. Morgan
- Department of Biology, Berry College, Mount Berry, GA, United States
- Department of Chemistry and Biochemistry, Berry College, Mount Berry, GA, United States
| | - Jacob Williams
- Department of Biology, Berry College, Mount Berry, GA, United States
| | - Barrett Breeze
- Department of Biology, Berry College, Mount Berry, GA, United States
- Department of Chemistry and Biochemistry, Berry College, Mount Berry, GA, United States
| | - Nicholas English
- Department of Biology, Berry College, Mount Berry, GA, United States
| | - Nathaniel Higdon
- Department of Biology, Berry College, Mount Berry, GA, United States
| | - Kirt Onthank
- Department of Biology, Walla Walla University, College Place, WA, United States
| | - Dominic F. Qualley
- Department of Chemistry and Biochemistry, Berry College, Mount Berry, GA, United States
| |
Collapse
|
8
|
Yu J, Han T, Hou Y, Zhao J, Zhang H, Wang X, Ge S. Integrated transcriptomic, proteomic and metabolomic analysis provides new insights into tetracycline stress tolerance in pumpkin. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 340:122777. [PMID: 37863256 DOI: 10.1016/j.envpol.2023.122777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 10/15/2023] [Accepted: 10/17/2023] [Indexed: 10/22/2023]
Abstract
The aim of this study was to conduct transcriptomic, proteomic, and metabolomic analysis to provide a comprehensive view of plant response to tetracycline stress. Pumpkin seeds were cultured for 7 days without or with tetracycline at 10 mg/L. Pumpkin roots showed excessive growth inhibition, but not yet strong growth restraining in cotyledons. Tetracycline affected the abundance of metabolites related to flavonoid biosynthesis and amino acid metabolism. Main changes of metabolites in flavonoid biosynthesis were consistent with mRNA changes. Amino acid changes are mainly mediated by proteins or mRNAs. To be specific, tetracycline treatment increased the levels of rutin, caffeate, cinnamaldehyde, 4-hydroxycinnamic acid, ferulic acid, naringenin, apigenin, luteolin, (-)-epigallocatechin, astragalin, L-serine, and glutathione and the transcript levels related to these compounds; and decreased the levels of indole pyruvate, indole acetaldehyde, L-arginine, S-adenosylhomocysteine, L-glutamine, and gamma-glutamylcysteine and the transcript levels related to these compounds. Tetracycline treatment also increased the levels of oxoglutaric acid, L-glutamic acid, gamma-aminobutyric acid, and gamma-glutamylalanine and enzymes involved in their production; and decreased the levels of L-isoleucine, L-valine, and L-leucine and enzymes involved in their production. We elucidated several biological processes (e.g. phenylpropanoid/flavonoid biosynthesis pathways, amino acid metabolic pathways) that were altered by tetracycline, and provided a multi-omic perspective on the mechanisms underlying the response to tetracycline stress in pumpkin roots. We provide a useful reference for the development of environmental quality management methods.
Collapse
Affiliation(s)
- Jing Yu
- Department of Integrated Traditional Chinese and Western Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450000, China.
| | - Tao Han
- School of Horticulture and Landscape Architecture, Henan Institute of Science and Technology, Xinxiang, 453003, China
| | - Yingying Hou
- Department of Integrated Traditional Chinese and Western Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450000, China; Department of Integrated TCM & Western Medicine, The Academy of Medical Sciences of Zhengzhou University, Zhengzhou, 450000, China
| | - Jinjin Zhao
- The First Affiliated Hospital of Xinxiang Medical University, Weihui, 453100, China
| | - Haiguang Zhang
- The First Affiliated Hospital of Xinxiang Medical University, Weihui, 453100, China
| | - Xinjie Wang
- Department of Integrated Traditional Chinese and Western Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450000, China
| | - Shidong Ge
- College of Landscape Architecture and Art, Henan Agricultural University, Zhengzhou, 450002, China
| |
Collapse
|
9
|
Ling T, Li S, Chen H, Wang Q, Shi J, Li Y, Bao W, Liang K, Piao HL. Lysine-372-dependent SUMOylation inhibits the enzymatic activity of glutamine synthases. FASEB J 2023; 37:e23319. [PMID: 38010918 DOI: 10.1096/fj.202301462rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 10/20/2023] [Accepted: 11/06/2023] [Indexed: 11/29/2023]
Abstract
Glutamine synthetase (GS) is a crucial enzyme involved in de novo synthesis of glutamine and participates in several biological processes, including nitrogen metabolism, nucleotide synthesis, and amino acid synthesis. Post-translational modification makes GS more adaptable to the needs of cells, and acetylation modification of GS at double sites has attracted considerable attention. Despite very intensive research, how SUMOylation affects GS activity at a molecular level remains unclear. Here, we report that previously undiscovered GS SUMOylation which is deficient mutant K372R of GS exhibits more bluntness under glutamine starvation. Mechanistically, glutamine deprivation triggers the GS SUMOylation, and this SUMOylation impaired the protein stability of GS, within a concomitant decrease in enzymatic activity. In addition, we identified SAE1, Ubc9, and PIAS1 as the assembly enzymes of GS SUMOylation respectively. Furthermore, Senp1/2 functions as a SUMO-specific protease to reverse the SUMOylation of GS. This study provides the first evidence that SUMOylation serves as a regulatory mechanism for determining the GS enzymatic activity, contributing to understanding the GS regulation roles in various cellular and pathophysiological processes.
Collapse
Affiliation(s)
- Ting Ling
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
- Department of analytical chemistry, University of Chinese Academy of Sciences, Beijing, China
| | - Siyi Li
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
- Cancer Research Institute, Department of Thoracic Surgery, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Shenyang, China
| | - Huan Chen
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
| | - Qiuping Wang
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
| | - Jing Shi
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
- Department of Biochemistry & Molecular Biology, School of Life Sciences, China Medical University, Shenyang, China
| | - Yirong Li
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
- Department of analytical chemistry, University of Chinese Academy of Sciences, Beijing, China
| | - Wenjun Bao
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
- Department of analytical chemistry, University of Chinese Academy of Sciences, Beijing, China
| | - Kunming Liang
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
- Department of Biochemistry & Molecular Biology, School of Life Sciences, China Medical University, Shenyang, China
| | - Hai-Long Piao
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
- Department of analytical chemistry, University of Chinese Academy of Sciences, Beijing, China
- Cancer Research Institute, Department of Thoracic Surgery, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Shenyang, China
- Department of Biochemistry & Molecular Biology, School of Life Sciences, China Medical University, Shenyang, China
| |
Collapse
|
10
|
Kim MK, Jeong W, Jeon S, Kang HW. 3D bioprinting of dECM-incorporated hepatocyte spheroid for simultaneous promotion of cell-cell and -ECM interactions. Front Bioeng Biotechnol 2023; 11:1305023. [PMID: 38026892 PMCID: PMC10679743 DOI: 10.3389/fbioe.2023.1305023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Accepted: 10/30/2023] [Indexed: 12/01/2023] Open
Abstract
The cell spheroid technology, which greatly enhances cell-cell interactions, has gained significant attention in the development of in vitro liver models. However, existing cell spheroid technologies still have limitations in improving hepatocyte-extracellular matrix (ECM) interaction, which have a significant impact on hepatic function. In this study, we have developed a novel bioprinting technology for decellularized ECM (dECM)-incorporated hepatocyte spheroids that could enhance both cell-cell and -ECM interactions simultaneously. To provide a biomimetic environment, a porcine liver dECM-based cell bio-ink was developed, and a spheroid printing process using this bio-ink was established. As a result, we precisely printed the dECM-incorporated hepatocyte spheroids with a diameter of approximately 160-220 μm using primary mouse hepatocyte (PMHs). The dECM materials were uniformly distributed within the bio-printed spheroids, and even after more than 2 weeks of culture, the spheroids maintained their spherical shape and high viability. The incorporation of dECM also significantly improved the hepatic function of hepatocyte spheroids. Compared to hepatocyte-only spheroids, dECM-incorporated hepatocyte spheroids showed approximately 4.3- and 2.5-fold increased levels of albumin and urea secretion, respectively, and a 2.0-fold increase in CYP enzyme activity. These characteristics were also reflected in the hepatic gene expression levels of ALB, HNF4A, CPS1, and others. Furthermore, the dECM-incorporated hepatocyte spheroids exhibited up to a 1.8-fold enhanced drug responsiveness to representative hepatotoxic drugs such as acetaminophen, celecoxib, and amiodarone. Based on these results, it can be concluded that the dECM-incorporated spheroid printing technology has great potential for the development of highly functional in vitro liver tissue models for drug toxicity assessment.
Collapse
Affiliation(s)
- Min Kyeong Kim
- Department of Biomedical Engineering, Ulsan National Institute of Science and Technology, Ulsan, Republic of Korea
- Center for Scientific Instrumentation, Korea Basic Science Institute, Chungbuk, Republic of Korea
| | - Wonwoo Jeong
- Department of Biomedical Engineering, Ulsan National Institute of Science and Technology, Ulsan, Republic of Korea
- Wake Forest Institute for Regenerative Medicine, Wake Forest University School of Medicine, Winston-Salem, NC, United States
| | - Seunggyu Jeon
- Department of Biomedical Engineering, Ulsan National Institute of Science and Technology, Ulsan, Republic of Korea
- Wake Forest Institute for Regenerative Medicine, Wake Forest University School of Medicine, Winston-Salem, NC, United States
| | - Hyun-Wook Kang
- Department of Biomedical Engineering, Ulsan National Institute of Science and Technology, Ulsan, Republic of Korea
| |
Collapse
|
11
|
Yang P, Li J, Zhang T, Ren Y, Zhang Q, Liu R, Li H, Hua J, Wang WA, Wang J, Zhou H. Ionizing radiation-induced mitophagy promotes ferroptosis by increasing intracellular free fatty acids. Cell Death Differ 2023; 30:2432-2445. [PMID: 37828085 PMCID: PMC10657348 DOI: 10.1038/s41418-023-01230-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 09/23/2023] [Accepted: 10/02/2023] [Indexed: 10/14/2023] Open
Abstract
Ferroptosis is a type of cell death characterized by the accumulation of intracellular iron and an increase in hazardous lipid peroxides. Ferroptosis and autophagy are closely related. Ionizing radiation is a frequently used cancer therapy to kill malignancies. We found that ionizing radiation induces both ferroptosis and autophagy and that there is a form of mutualism between the two processes. Ionizing radiation also causes lipid droplets to form in proximity to damaged mitochondria, which, through the action of mitophagy, results in the degradation of the peridroplet mitochondria by lysosomes and the consequent release of free fatty acids and a significant increase in lipid peroxidation, thus promoting ferroptosis. Ionizing radiation has a stronger, fatal effect on cells with a high level of mitophagy, and this observation suggests a novel strategy for tumor treatment.
Collapse
Affiliation(s)
- Pengfei Yang
- Key Laboratory of Space Radiobiology of Gansu Province & Key Laboratory of Heavy Ion Radiation Biology and Medicine, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China
- School of Public Health, Yangzhou University, Yangzhou, China
| | - Jin Li
- Key Laboratory of Space Radiobiology of Gansu Province & Key Laboratory of Heavy Ion Radiation Biology and Medicine, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China
- Renmin Hospital of Wuhan Economic and Technological Development Zone, Wuhan, China
| | - Tianyi Zhang
- Key Laboratory of Space Radiobiology of Gansu Province & Key Laboratory of Heavy Ion Radiation Biology and Medicine, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China
- School of Public Health, Yangzhou University, Yangzhou, China
| | - Yanxian Ren
- Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou, China
| | - Qiuning Zhang
- Key Laboratory of Space Radiobiology of Gansu Province & Key Laboratory of Heavy Ion Radiation Biology and Medicine, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China
| | - Ruifeng Liu
- Key Laboratory of Space Radiobiology of Gansu Province & Key Laboratory of Heavy Ion Radiation Biology and Medicine, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China
| | - Haining Li
- Gansu Provincial Cancer Hospital, Gansu Provincial Academic Institute for Medical Sciences, Lanzhou, China
| | - Junrui Hua
- Key Laboratory of Space Radiobiology of Gansu Province & Key Laboratory of Heavy Ion Radiation Biology and Medicine, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China
| | - Wen-An Wang
- Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou, China
| | - Jufang Wang
- Key Laboratory of Space Radiobiology of Gansu Province & Key Laboratory of Heavy Ion Radiation Biology and Medicine, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China.
| | - Heng Zhou
- Key Laboratory of Space Radiobiology of Gansu Province & Key Laboratory of Heavy Ion Radiation Biology and Medicine, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China.
- School of Public Health, Yangzhou University, Yangzhou, China.
| |
Collapse
|
12
|
Wang Z, Su J, Ali A, Gao Z, Zhang R, Li Y, Yang W. Microbially induced calcium precipitation driven by denitrification: Performance, metabolites, and molecular mechanisms. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 338:117826. [PMID: 37001427 DOI: 10.1016/j.jenvman.2023.117826] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 02/25/2023] [Accepted: 03/26/2023] [Indexed: 06/19/2023]
Abstract
Microbially induced calcium precipitation (MICP) driven by denitrification has attracted extensive attention due to its application potential in nitrate removal from calcium-rich groundwater. However, little research has been conducted on this technique at the molecular level. Here, Pseudomonas WZ39 was used to explore the molecular mechanisms of nitrate-dependent MICP and the effects of Ca2+ on bacterial transcriptional regulation and metabolic response. The results exhibited that appropriate Ca2+ concentration (4.5 mM) can promote denitrification and the production of ATP, EPSs, and SMPs. Genome-wide analysis showed that the nitrate-dependent MICP was accomplished through heterotrophic denitrification and CO2 capture. During this process, EPS biosynthesis and Ca2+ signaling regulation were involved in the nucleation template supply and Ca2+ homeostasis balance. Untargeted transcriptome- and metabolome-association analyses revealed that the addition of Ca2+ triggered the significant up-regulation in several key pathways, such as transmembrane transporter and channel activities, amino acid metabolism, fatty acid biosynthesis, and carbon metabolism, which played a momentous role in the mineral nucleation and energy provision. The detailed information provided novel insights for understanding the active control of bacteria on MICP, and has great significance for deepening the cognition of groundwater remediation using nitrate-dependent MICP technique.
Collapse
Affiliation(s)
- Zhao Wang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Junfeng Su
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China.
| | - Amjad Ali
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Zhihong Gao
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Ruijie Zhang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Yifei Li
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Wenshuo Yang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| |
Collapse
|
13
|
Gu L, Yin X, Cheng Y, Wang X, Zhang M, Zou X, Wang L, Zhuge Y, Zhang F. Overweight/Obesity Increases the Risk of Overt Hepatic Encephalopathy after Transjugular Intrahepatic Portosystemic Shunt in Cirrhotic Patients. J Pers Med 2023; 13:jpm13040682. [PMID: 37109068 PMCID: PMC10141800 DOI: 10.3390/jpm13040682] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 04/12/2023] [Accepted: 04/17/2023] [Indexed: 04/29/2023] Open
Abstract
The purpose of this study was to investigate the effect of body mass index (BMI) on the prevalence of overt hepatic encephalopathy (OHE) after the transjugular intrahepatic portosystemic shunt (TIPS) procedure in decompensated cirrhotic patients. A retrospective observational cohort study of 145 cirrhotic patients receiving TIPS was carried out in our department from 2017 to 2020. The relationships between BMI and clinical outcomes including OHE, as well as risk factors of developing post-TIPS OHE, were analyzed. BMI was categorized as normal weight (18.5 ≤ BMI < 23.0 kg/m2), underweight (BMI < 18.5 kg/m2), and overweight/obese (BMI ≥ 23.0 kg/m2). Among the 145 patients, 52 (35.9%) were overweight/obese and 50 (34%) had post-TIPS OHE. Overweight/obese patients more frequently had OHE compared with normal weight patients (OR: 2.754, 95% CI: 1.236-6.140; p = 0.013). Overweight/obesity (p = 0.013) and older age (p = 0.030) were independent risk factors for post-TIPS OHE according to the logistic regression analysis. Kaplan-Meier curve analysis suggested that overweight/obese patients had the highest cumulative incidence of OHE (log-rank p = 0.0118). In conclusion, overweight/obesity and older age may raise the risk of post-TIPS OHE in cirrhotic patients.
Collapse
Affiliation(s)
- Lihong Gu
- Department of Gastroenterology, Affiliated Drum Tower Hospital, Medical School, Nanjing University, Nanjing 210008, China
| | - Xiaochun Yin
- Department of Gastroenterology, Affiliated Drum Tower Hospital, Medical School, Nanjing University, Nanjing 210008, China
| | - Yang Cheng
- Department of Gastroenterology, Affiliated Drum Tower Hospital, Medical School, Nanjing University, Nanjing 210008, China
| | - Xixuan Wang
- Department of Gastroenterology, Affiliated Drum Tower Hospital, Medical School, Nanjing University, Nanjing 210008, China
| | - Ming Zhang
- Department of Gastroenterology, Affiliated Drum Tower Hospital, Medical School, Nanjing University, Nanjing 210008, China
| | - Xiaoping Zou
- Department of Gastroenterology, Affiliated Drum Tower Hospital, Medical School, Nanjing University, Nanjing 210008, China
| | - Lei Wang
- Department of Gastroenterology, Affiliated Drum Tower Hospital, Medical School, Nanjing University, Nanjing 210008, China
| | - Yuzheng Zhuge
- Department of Gastroenterology, Affiliated Drum Tower Hospital, Medical School, Nanjing University, Nanjing 210008, China
| | - Feng Zhang
- Department of Gastroenterology, Affiliated Drum Tower Hospital, Medical School, Nanjing University, Nanjing 210008, China
| |
Collapse
|
14
|
Cellular Pathogenesis of Hepatic Encephalopathy: An Update. Biomolecules 2023; 13:biom13020396. [PMID: 36830765 PMCID: PMC9953810 DOI: 10.3390/biom13020396] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 01/01/2023] [Accepted: 02/17/2023] [Indexed: 02/22/2023] Open
Abstract
Hepatic encephalopathy (HE) is a neuropsychiatric syndrome derived from metabolic disorders due to various liver failures. Clinically, HE is characterized by hyperammonemia, EEG abnormalities, and different degrees of disturbance in sensory, motor, and cognitive functions. The molecular mechanism of HE has not been fully elucidated, although it is generally accepted that HE occurs under the influence of miscellaneous factors, especially the synergistic effect of toxin accumulation and severe metabolism disturbance. This review summarizes the recently discovered cellular mechanisms involved in the pathogenesis of HE. Among the existing hypotheses, ammonia poisoning and the subsequent oxidative/nitrosative stress remain the mainstream theories, and reducing blood ammonia is thus the main strategy for the treatment of HE. Other pathological mechanisms mainly include manganese toxicity, autophagy inhibition, mitochondrial damage, inflammation, and senescence, proposing new avenues for future therapeutic interventions.
Collapse
|
15
|
Kuchmerovska T, Yanitska L, Horkunenko O, Guzyk M, Tykhonenko T, Pryvrotska I. Nicotinamide prevention in diabetes-induced alterations in the rat liver. Endocr Regul 2023; 57:279-291. [PMID: 38127690 DOI: 10.2478/enr-2023-0031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2023] Open
Abstract
Objective. The study was performed to elucidate whether nicotinamide (NAm) can attenuate the diabetes-induced liver damage by correction of ammonia detoxifying function and disbalance of NAD-dependent processes in diabetic rats. Methods. After four weeks of streptozotocin-induced diabetes, Wistar male rats were treated for two weeks with or without NAm. Urea concentration, arginase, and glutamine synthetase activities, NAD+ levels, and NAD+/NADH ratio were measured in cytosolic liver extracts. Expression of parp-1 gene in the liver was estimated by quantitative polymerase chain reaction and PARP-1 cleavage evaluated by Western blotting. Results. Despite the blood plasma lipid peroxidation products in diabetic rats were increased by 60%, the activity of superoxide dismutase (SOD) was reduced. NAm attenuated the oxidative stress, but did not affect the enzyme activity in diabetic rats. In liver of the diabetic rats, urea concentration and arginase activity were significantly higher than in the controls. The glutamine synthetase activity was decreased. Decline in NAD+ level and cytosolic NAD+/NADH ratio in the liver of diabetic rats was observed. Western blot analysis demonstrated a significant up-regulation of PARP-1 expression accompanied by the enzyme cleavage in the diabetic rat liver. However, no correlation was seen between mRNA expression of parp-1 gene and PARP-1 protein in the liver of diabetic rats. NAm markedly attenuated PARP-1 cleavage induced by diabetes, but did not affect the parp-1 gene expression. Conclusions. NAm counteracts diabetes-induced impairments in the rat liver through improvement of its detoxifying function, partial restoration of oxidative stress, NAD+ level, normalization of redox state of free cytosolic NAD+/NADH-couples, and prevention of PARP-1 cleavage.
Collapse
Affiliation(s)
- Tamara Kuchmerovska
- 1Department of Vitamin and Coenzyme Biochemistry, Palladin Institute of Biochemistry, National Academy of Sciences of Ukraine, Kyiv, Ukraine
| | - Lesya Yanitska
- 2Department of Medical Biochemistry and Molecular Biology, Bogomolets National Medical University, Kyiv, Ukraine
| | - Oksana Horkunenko
- 2Department of Medical Biochemistry and Molecular Biology, Bogomolets National Medical University, Kyiv, Ukraine
| | - Mykhailo Guzyk
- 1Department of Vitamin and Coenzyme Biochemistry, Palladin Institute of Biochemistry, National Academy of Sciences of Ukraine, Kyiv, Ukraine
| | - Tetiana Tykhonenko
- 1Department of Vitamin and Coenzyme Biochemistry, Palladin Institute of Biochemistry, National Academy of Sciences of Ukraine, Kyiv, Ukraine
| | - Irina Pryvrotska
- 3Gorbachevsky Ternopil' State Medical University, Ministry of Public Health of Ukraine, Ternopil', Ukraine
| |
Collapse
|
16
|
Wu B, Feng J, Guo J, Wang J, Xiu G, Xu J, Ning K, Ling B, Fu Q, Xu J. ADSCs-derived exosomes ameliorate hepatic fibrosis by suppressing stellate cell activation and remodeling hepatocellular glutamine synthetase-mediated glutamine and ammonia homeostasis. Stem Cell Res Ther 2022; 13:494. [PMID: 36195966 PMCID: PMC9531400 DOI: 10.1186/s13287-022-03049-x] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 07/17/2022] [Indexed: 11/18/2022] Open
Abstract
Background Hepatic fibrosis is a common pathologic stage in chronic liver disease development, which might ultimately lead to liver cirrhosis. Accumulating evidence suggests that adipose-derived stromal cells (ADSCs)-based therapies show excellent therapeutic potential in liver injury disease owing to its superior properties, including tissue repair ability and immunomodulation effect. However, cell-based therapy still limits to several problems, such as engraftment efficiency and immunoreaction, which impede the ADSCs-based therapeutics development. So, ADSCs-derived extracellular vesicles (EVs), especially for exosomes (ADSC-EXO), emerge as a promise cell-free therapeutics to ameliorate liver fibrosis. The effect and underlying mechanisms of ADSC-EXO in liver fibrosis remains blurred. Methods Hepatic fibrosis murine model was established by intraperitoneal sequential injecting the diethylnitrosamine (DEN) for two weeks and then carbon tetrachloride (CCl4) for six weeks. Subsequently, hepatic fibrosis mice were administrated with ADSC-EXO (10 μg/g) or PBS through tail vein infusion for three times in two weeks. To evaluate the anti-fibrotic capacity of ADSC-EXO, we detected liver morphology by histopathological examination, ECM deposition by serology test and Sirius Red staining, profibrogenic markers by qRT-PCR assay. LX-2 cells treated with TGF-β (10 ng/ml) for 12 h were conducted for evaluating ADSC-EXO effect on activated hepatic stellate cells (HSCs). RNA-seq was performed for further analysis of the underlying regulatory mechanisms of ADSC-EXO in liver fibrosis. Results In this study, we obtained isolated ADSCs, collected and separated ADSCs-derived exosomes. We found that ADSC-EXO treatment could efficiently ameliorate DEN/CCl4-induced hepatic fibrosis by improving mice liver function and lessening hepatic ECM deposition. Moreover, ADSC-EXO intervention could reverse profibrogenic phenotypes both in vivo and in vitro, including HSCs activation depressed and profibrogenic markers inhibition. Additionally, RNA-seq analysis further determined that decreased glutamine synthetase (Glul) of perivenous hepatocytes in hepatic fibrosis mice could be dramatically up-regulated by ADSC-EXO treatment; meanwhile, glutamine and ammonia metabolism-associated key enzyme OAT was up-regulated and GLS2 was down-regulated by ADSC-EXO treatment in mice liver. In addition, glutamine synthetase inhibitor would erase ADSC-EXO therapeutic effect on hepatic fibrosis. Conclusions These findings demonstrated that ADSC-derived exosomes could efficiently alleviate hepatic fibrosis by suppressing HSCs activation and remodeling glutamine and ammonia metabolism mediated by hepatocellular glutamine synthetase, which might be a novel and promising anti-fibrotic therapeutics for hepatic fibrosis disease. Supplementary Information The online version contains supplementary material available at 10.1186/s13287-022-03049-x.
Collapse
Affiliation(s)
- Baitong Wu
- East Hospital, School of Medicine, Tongji University, Shanghai, 200120, People's Republic of China
| | - Jiuxing Feng
- Key Laboratory of Medical Epigenetics and Metabolism, Institutes of Biomedical Sciences, Fudan University, Shanghai, People's Republic of China
| | - Jingyi Guo
- East Hospital, School of Medicine, Tongji University, Shanghai, 200120, People's Republic of China
| | - Jian Wang
- East Hospital, School of Medicine, Tongji University, Shanghai, 200120, People's Republic of China
| | - Guanghui Xiu
- Department of Intensive Care Unit, Affiliated Hospital of Yunnan University (The Second People's Hospital of Yunnan Province), Yunnan University, Kunming, People's Republic of China
| | - Jiaqi Xu
- East Hospital, School of Medicine, Tongji University, Shanghai, 200120, People's Republic of China
| | - Ke Ning
- Department of Neuroscience, Sheffield Institute for Translational Neuroscience, University of Sheffield, Sheffield, UK
| | - Bin Ling
- Department of Intensive Care Unit, Affiliated Hospital of Yunnan University (The Second People's Hospital of Yunnan Province), Yunnan University, Kunming, People's Republic of China.
| | - Qingchun Fu
- Shanghai Public Health Clinical Center, Fudan University, Shanghai, People's Republic of China.
| | - Jun Xu
- East Hospital, School of Medicine, Tongji University, Shanghai, 200120, People's Republic of China.
| |
Collapse
|
17
|
Dynamic transcriptome and LC-MS/MS analysis revealed the important roles of taurine and glutamine metabolism in response to environmental salinity changes in gills of rainbow trout (Oncorhynchus mykiss). Int J Biol Macromol 2022; 221:1545-1557. [PMID: 36122778 DOI: 10.1016/j.ijbiomac.2022.09.124] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 08/17/2022] [Accepted: 09/08/2022] [Indexed: 11/22/2022]
Abstract
Recently, the frequent salinity fluctuation has become a growing threat to fishes. However, the dynamic patterns of gene expression in response to salinity changes remain largely unexplored. In the present study, 18 RNA-Seq datasets were generated from gills of rainbow trout at different salinities, including 0 ‰, 6 ‰, 12 ‰, 18 ‰, 24 ‰ and 30 ‰. Based on the strict thresholds, we have identified 63, 1411, 2096, 1031 and 1041 differentially expressed genes in gills of rainbow trout through pairwise comparisons. Additionally, weighted gene co-expression network analysis was performed to construct 18 independent modules with distinct expression patterns. Of them, green and tan modules were found to be tightly related to salinity changes, several hub genes of which are known as the important regulators in taurine and glutamine metabolism. To further investigate their potential roles in response to salinity changes, taurine, glutamine, and their metabolism-related glutamic acid and α-ketoglutaric acid were accurately quantitated using liquid chromatography-tandem mass spectrometry analysis. Results clearly showed that their concentrations were closely associated with salinity changes. These findings suggested that taurine and glutamine play important roles in response to salinity changes in gills of rainbow trout, providing new insights into the molecular mechanism of fishes in salinity adaptation.
Collapse
|
18
|
Häussinger D, Dhiman RK, Felipo V, Görg B, Jalan R, Kircheis G, Merli M, Montagnese S, Romero-Gomez M, Schnitzler A, Taylor-Robinson SD, Vilstrup H. Hepatic encephalopathy. Nat Rev Dis Primers 2022; 8:43. [PMID: 35739133 DOI: 10.1038/s41572-022-00366-6] [Citation(s) in RCA: 80] [Impact Index Per Article: 26.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/12/2022] [Indexed: 01/18/2023]
Abstract
Hepatic encephalopathy (HE) is a prognostically relevant neuropsychiatric syndrome that occurs in the course of acute or chronic liver disease. Besides ascites and variceal bleeding, it is the most serious complication of decompensated liver cirrhosis. Ammonia and inflammation are major triggers for the appearance of HE, which in patients with liver cirrhosis involves pathophysiologically low-grade cerebral oedema with oxidative/nitrosative stress, inflammation and disturbances of oscillatory networks in the brain. Severity classification and diagnostic approaches regarding mild forms of HE are still a matter of debate. Current medical treatment predominantly involves lactulose and rifaximin following rigorous treatment of so-called known HE precipitating factors. New treatments based on an improved pathophysiological understanding are emerging.
Collapse
Affiliation(s)
- Dieter Häussinger
- Department of Gastroenterology, Hepatology and Infectious Diseases, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany.
| | - Radha K Dhiman
- Department of Hepatology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, (Uttar Pradesh), India
| | - Vicente Felipo
- Laboratory of Neurobiology, Centro de Investigación Principe Felipe, Valencia, Spain
| | - Boris Görg
- Department of Gastroenterology, Hepatology and Infectious Diseases, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Rajiv Jalan
- Liver Failure Group ILDH, Division of Medicine, UCL Medical School, Royal Free Campus, London, UK.,European Foundation for the Study of Chronic Liver Failure, Barcelona, Spain
| | - Gerald Kircheis
- Department of Gastroenterology, Diabetology and Hepatology, University Hospital Brandenburg an der Havel, Brandenburg Medical School, Brandenburg an der Havel, Germany
| | - Manuela Merli
- Department of Translational and Precision Medicine, Universita' degli Studi di Roma - Sapienza, Roma, Italy
| | | | - Manuel Romero-Gomez
- UCM Digestive Diseases, Virgen del Rocío University Hospital, Institute of Biomedicine of Seville (HUVR/CSIC/US), University of Seville, Seville, Spain
| | - Alfons Schnitzler
- Institute of Clinical Neuroscience and Medical Psychology, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Simon D Taylor-Robinson
- Department of Surgery and Cancer, St. Mary's Hospital Campus, Imperial College London, London, UK
| | - Hendrik Vilstrup
- Department of Hepatology and Gastroenterology, Aarhus University Hospital, Aarhus, Denmark
| |
Collapse
|
19
|
León J. Protein Tyrosine Nitration in Plant Nitric Oxide Signaling. FRONTIERS IN PLANT SCIENCE 2022; 13:859374. [PMID: 35360296 PMCID: PMC8963475 DOI: 10.3389/fpls.2022.859374] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 02/21/2022] [Indexed: 05/09/2023]
Abstract
Nitric oxide (NO), which is ubiquitously present in living organisms, regulates many developmental and stress-activated processes in plants. Regulatory effects exerted by NO lies mostly in its chemical reactivity as a free radical. Proteins are main targets of NO action as several amino acids can undergo NO-related post-translational modifications (PTMs) that include mainly S-nitrosylation of cysteine, and nitration of tyrosine and tryptophan. This review is focused on the role of protein tyrosine nitration on NO signaling, making emphasis on the production of NO and peroxynitrite, which is the main physiological nitrating agent; the main metabolic and signaling pathways targeted by protein nitration; and the past, present, and future of methodological and strategic approaches to study this PTM. Available information on identification of nitrated plant proteins, the corresponding nitration sites, and the functional effects on the modified proteins will be summarized. However, due to the low proportion of in vivo nitrated peptides and their inherent instability, the identification of nitration sites by proteomic analyses is a difficult task. Artificial nitration procedures are likely not the best strategy for nitration site identification due to the lack of specificity. An alternative to get artificial site-specific nitration comes from the application of genetic code expansion technologies based on the use of orthogonal aminoacyl-tRNA synthetase/tRNA pairs engineered for specific noncanonical amino acids. This strategy permits the programmable site-specific installation of genetically encoded 3-nitrotyrosine sites in proteins expressed in Escherichia coli, thus allowing the study of the effects of specific site nitration on protein structure and function.
Collapse
|
20
|
Zimmermann M, Reichert AS. Rapid metabolic and bioenergetic adaptations of astrocytes under hyperammonemia - a novel perspective on hepatic encephalopathy. Biol Chem 2021; 402:1103-1113. [PMID: 34331848 DOI: 10.1515/hsz-2021-0172] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Accepted: 07/18/2021] [Indexed: 12/17/2022]
Abstract
Hepatic encephalopathy (HE) is a well-studied, neurological syndrome caused by liver dysfunctions. Ammonia, the major toxin during HE pathogenesis, impairs many cellular processes within astrocytes. Yet, the molecular mechanisms causing HE are not fully understood. Here we will recapitulate possible underlying mechanisms with a clear focus on studies revealing a link between altered energy metabolism and HE in cellular models and in vivo. The role of the mitochondrial glutamate dehydrogenase and its role in metabolic rewiring of the TCA cycle will be discussed. We propose an updated model of ammonia-induced toxicity that may also be exploited for therapeutic strategies in the future.
Collapse
Affiliation(s)
- Marcel Zimmermann
- Institute of Biochemistry and Molecular Biology I, Medical Faculty, University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Universitätsstraße 1, D-40225 Düsseldorf, Germany
| | - Andreas S Reichert
- Institute of Biochemistry and Molecular Biology I, Medical Faculty, University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Universitätsstraße 1, D-40225 Düsseldorf, Germany
| |
Collapse
|
21
|
Häussinger D, Butz M, Schnitzler A, Görg B. Pathomechanisms in hepatic encephalopathy. Biol Chem 2021; 402:1087-1102. [PMID: 34049427 DOI: 10.1515/hsz-2021-0168] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 05/12/2021] [Indexed: 02/06/2023]
Abstract
Hepatic encephalopathy (HE) is a frequent neuropsychiatric complication in patients with acute or chronic liver failure. Symptoms of HE in particular include disturbances of sensory and motor functions and cognition. HE is triggered by heterogeneous factors such as ammonia being a main toxin, benzodiazepines, proinflammatory cytokines and hyponatremia. HE in patients with liver cirrhosis is triggered by a low-grade cerebral edema and cerebral oxidative/nitrosative stress which bring about a number of functionally relevant alterations including posttranslational protein modifications, oxidation of RNA, gene expression changes and senescence. These alterations are suggested to impair astrocyte/neuronal functions and communication. On the system level, a global slowing of oscillatory brain activity and networks can be observed paralleling behavioral perceptual and motor impairments. Moreover, these changes are related to increased cerebral ammonia, alterations in neurometabolite and neurotransmitter concentrations and cortical excitability in HE patients.
Collapse
Affiliation(s)
- Dieter Häussinger
- Clinic for Gastroenterology, Hepatology, and Infectious Diseases, Heinrich Heine University, Moorenstr. 5, D-40225 Düsseldorf, Germany
| | - Markus Butz
- Department of Neurology/Institute of Clinical Neuroscience and Medical Psychology, Medical Faculty, Heinrich Heine University, Moorenstr. 5, D-40225 Düsseldorf, Germany
| | - Alfons Schnitzler
- Department of Neurology/Institute of Clinical Neuroscience and Medical Psychology, Medical Faculty, Heinrich Heine University, Moorenstr. 5, D-40225 Düsseldorf, Germany
| | - Boris Görg
- Clinic for Gastroenterology, Hepatology, and Infectious Diseases, Heinrich Heine University, Moorenstr. 5, D-40225 Düsseldorf, Germany
| |
Collapse
|
22
|
Paluschinski M, Jin CJ, Qvartskhava N, Görg B, Wammers M, Lang J, Lang K, Poschmann G, Stühler K, Häussinger D. Characterization of the scavenger cell proteome in mouse and rat liver. Biol Chem 2021; 402:1073-1085. [PMID: 34333885 DOI: 10.1515/hsz-2021-0123] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 07/04/2021] [Indexed: 01/20/2023]
Abstract
The structural-functional organization of ammonia and glutamine metabolism in the liver acinus involves highly specialized hepatocyte subpopulations like glutamine synthetase (GS) expressing perivenous hepatocytes (scavenger cells). However, this cell population has not yet been characterized extensively regarding expression of other genes and potential subpopulations. This was investigated in the present study by proteome profiling of periportal GS-negative and perivenous GS-expressing hepatocytes from mouse and rat. Apart from established markers of GS+ hepatocytes such as glutamate/aspartate transporter II (GLT1) or ammonium transporter Rh type B (RhBG), we identified novel scavenger cell-specific proteins like basal transcription factor 3 (BTF3) and heat-shock protein 25 (HSP25). Interestingly, BTF3 and HSP25 were heterogeneously distributed among GS+ hepatocytes in mouse liver slices. Feeding experiments showed that RhBG expression was increased in livers from mice fed with high protein diet compared to standard chow. While spatial distributions of GS and carbamoylphosphate synthetase 1 (CPS1) were unaffected, periportal areas constituted by glutaminase 2 (GLS2)-positive hepatocytes were enlarged or reduced in response to high or low protein diet, respectively. The data suggest that the population of perivenous GS+ scavenger cells is heterogeneous and not uniform as previously suggested which may reflect a functional heterogeneity, possibly relevant for liver regeneration.
Collapse
Affiliation(s)
- Martha Paluschinski
- Clinic for Gastroenterology, Hepatology and Infectiology, Heinrich Heine University, Universitätsstr. 1, 40225 Düsseldorf, Germany
| | - Cheng Jun Jin
- Clinic for Gastroenterology, Hepatology and Infectiology, Heinrich Heine University, Universitätsstr. 1, 40225 Düsseldorf, Germany
| | - Natalia Qvartskhava
- Clinic for Gastroenterology, Hepatology and Infectiology, Heinrich Heine University, Universitätsstr. 1, 40225 Düsseldorf, Germany
| | - Boris Görg
- Clinic for Gastroenterology, Hepatology and Infectiology, Heinrich Heine University, Universitätsstr. 1, 40225 Düsseldorf, Germany
| | - Marianne Wammers
- Clinic for Gastroenterology, Hepatology and Infectiology, Heinrich Heine University, Universitätsstr. 1, 40225 Düsseldorf, Germany
| | - Judith Lang
- Institute of Immunology, Medical Faculty, University of Duisburg-Essen, Hufelandstr. 55, 45122 Essen, Germany
| | - Karl Lang
- Institute of Immunology, Medical Faculty, University of Duisburg-Essen, Hufelandstr. 55, 45122 Essen, Germany
| | - Gereon Poschmann
- Institute of Molecular Medicine, Proteome Research, Medical Faculty, Heinrich Heine University, Universitätsstr. 1, 40225 Düsseldorf, Germany
| | - Kai Stühler
- Institute of Molecular Medicine, Proteome Research, Medical Faculty, Heinrich Heine University, Universitätsstr. 1, 40225 Düsseldorf, Germany
- Molecular Proteomics Laboratory (MPL), Biomedical Research Center (BMFZ), Heinrich Heine University, Universitätsstr. 1, 40225 Düsseldorf, Germany
| | - Dieter Häussinger
- Clinic for Gastroenterology, Hepatology and Infectiology, Heinrich Heine University, Universitätsstr. 1, 40225 Düsseldorf, Germany
| |
Collapse
|