1
|
Çakır M, Saçmacı H. The relationship of salusins with Parkinson's Disease, Alzheimer's Disease, and acute ischemic stroke: A preliminary study. Neurosci Lett 2024; 824:137683. [PMID: 38350537 DOI: 10.1016/j.neulet.2024.137683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 02/05/2024] [Accepted: 02/09/2024] [Indexed: 02/15/2024]
Abstract
Neuroinflammation, oxidative stress, and apoptosis play important roles in the pathophysiology of Alzheimer's Disease (AD), Parkinson's Disease (PD), and Acute Ischemic Stroke (AIS). Salusin-α and salusin-β peptides, which were shown to be present in many tissues, including the central nervous system, were also shown to be associated with apoptosis, inflammation, and oxidative stress. In the present study, the relationship between Salusin-α and salusin-β peptides and AD, PD, and AIS were investigated. A total of 179 people were included in the present study, including 46 AD, 44 PD, 42 AIS, and 47 controls. Plasma Salusin-α and salusin-β levels were measured with the ELISA Method. The plasma salusin-β levels of AD, PD, and AIS patients were lower than the control group at significant levels (p < 0.05). It was also found that there were correlations between salusin-α and salusin-β levels and age, triglyceride, LDL-c, total cholesterol, and hemoglobin levels. In this study, we found that salusin- β, an endogenous neuropeptide, was associated with AD, PD and AIS. The low level of salusin-β in these diseases in which neuronal damage occurs may be related to the neuroprotective properties of this endogenous peptide. Further studies are needed to fully understand the relationship between salusin-β and the pathophysiology of these diseases.
Collapse
Affiliation(s)
- Murat Çakır
- Department of Physiology, Faculty of Medicine, University of Yozgat Bozok, Yozgat, 66200, Turkey.
| | - Hikmet Saçmacı
- Department of Neurology, Faculty of Medicine, University of Yozgat Bozok, Yozgat, 66200, Turkey.
| |
Collapse
|
2
|
Algul FE, Koc E, Kaya HT. Serum salusin-α and -β levels in patients with parkinson's disease. Neurol Sci 2024; 45:585-590. [PMID: 37668828 DOI: 10.1007/s10072-023-07031-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 08/19/2023] [Indexed: 09/06/2023]
Abstract
BACKGROUND The etiology of Parkinson's disease (PD) is not well known and there is increasing evidence that oxidative stress also plays an important role in its pathogenesis. Salusins alpha (salusin-α) and beta (salusin-β) affect the central nervous system, vasculature, and kidneys to increase the inflammatory response in endothelial cells, stimulate oxidative stress, and increase monocyte-endothelial adhesion. Neuroinflammation and oxidative stress play roles in the etiopathogenesis of PD. PURPOSE To investigate whether salusin-α and -β are related to PD and whether they are correlated with the development of atherosclerosis, body mass index, disease duration, and the Parkinson's Hoehn and Yahr stage. RESULTS The low-density lipoprotein cholesterol (LDL-C), total cholesterol, and salusin-β levels were significantly lower and age was significantly higher in Parkinson patients compared to healthy controls (ρ < 0.005). We found a negative linear correlation between salusin-β and the Hoehn and Yahr stage (ρ < 0.001, r = -0.515) in the patients. CONCLUSIONS There was a relationship between salusin-β and PD and a correlation between the salusin-β levels and Parkinson's stage. A possible underlying disease mechanism is an increase in oxidative stress and decrease in neuroprotective effects due to low salusin-β levels. Therefore, the effects of salusin-β in treating Parkinson disease should be evaluated. Further studies are needed to understand the effects of salusin-β treatment on preventing or slowing the course of PD.
Collapse
Affiliation(s)
- Fatma Ebru Algul
- Department of Neurology, Inonu University Faculty of Medicine, Malatya, Turkey.
| | - Emine Koc
- Department of Medical Biochemistry, Inonu University Institute of Health Sciences, Malatya, Turkey
| | | |
Collapse
|
3
|
Demir I, Tekin S, Vardi N, Sandal S. Intracerebroventricular salusin-β infusion to rats increases hypothalamus-pituitary-testicular axis hormones. Gen Comp Endocrinol 2021; 310:113820. [PMID: 34015344 DOI: 10.1016/j.ygcen.2021.113820] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 04/30/2021] [Accepted: 05/13/2021] [Indexed: 12/15/2022]
Abstract
Salusin-β (Sal-β), which originates from preprosalusin, is a multifunctional hormone with a peptide structure. Sal-β exists in the hypothalamus and can stimulate the pituitary gland. The present study was conducted to determine the effects of Sal-β on hormones that play roles in the male reproductive system. Forty male Wistar Albino rats were used in the study. No infusions were performed on the control group, and infusions were applied to the infusion groups (artificial cerebrospinal fluid to the sham group, 2 and 20 nM Sal-β to the experimental group) through intracerebroventricular infusion for 7 days at 10 μl/hour rate. The animals were decapitated after 7 days of infusion; and the hypothalamus, testicles, and blood tissue samples were collected. The gonadotropin-releasing hormone (GnRH) mRNA levels were determined from the hypothalamus tissues by using the Real Time-PCR Method, and the serum luteinizing hormone (LH), follicle-stimulating hormone (FSH) and testosterone levels were determined using the ELISA method. Also, Hematoxylin-Eosin Staining Method was used for histopathological evaluations in the testicle tissues. As a result, Sal-β infusion increased GnRH mRNA levels in hypothalamus tissues (p < 0.05) besides, serum LH, FSH, and testosterone levels of the rats were higher at significant levels following Sal-β infusion compared to the control and sham group (p < 0.05). In the histological examination of the testicle tissues, Sal-β application was found to decrease the seminiferous tubule diameter and germinal epithelial thickness (p < 0.05). This evidence is the first, indicating that Sal-β, which is administered to male rats with central infusion, stimulates hypothalamus and pituitary tissues, and causes increased secretion of male reproductive hormones.
Collapse
Affiliation(s)
- Ilker Demir
- Department of Physiology, Faculty of Medicine, Inonu University, Malatya 44280, Turkey.
| | - Suat Tekin
- Department of Physiology, Faculty of Medicine, Inonu University, Malatya 44280, Turkey.
| | - Nigar Vardi
- Department of Histology and Embryology, Faculty of Medicine, Inonu University, Malatya 44280, Turkey.
| | - Suleyman Sandal
- Department of Physiology, Faculty of Medicine, Inonu University, Malatya 44280, Turkey.
| |
Collapse
|
4
|
Identifying the active compounds and mechanism of action of Banxia Xiexin decoction for treating ethanol-induced chronic gastritis using network pharmacology combined with UPLC-LTQ-Orbitrap MS. Comput Biol Chem 2021; 93:107535. [PMID: 34217946 DOI: 10.1016/j.compbiolchem.2021.107535] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 06/18/2021] [Accepted: 06/22/2021] [Indexed: 12/23/2022]
Abstract
BACKGROUND Banxia Xiexin decoction (BXD), a traditionally prescribed Chinese medicine, has been used to treat chronic gastritis for many years. However, the underlying mechanism and targets for its effects remain unknown. In the present study, we predicted the targets and active compounds of BXD in the treatment of chronic gastritis through network pharmacology and ultra-performance liquid chromatography coupled with linear trap quadrupole-Orbitrap mass spectrometry (UPLC-LTQ-Orbitrap MS). METHOD A chronic gastritis model was established in rats by oral administration of 56 % ethanol. BXD was orally administered for 7 days. Stomach tissues were collected for histopathological analysis, and tumour necrosis factor (TNF)-α, interleukin (IL)-2, IL-8, and lactate dehydrogenase (LDH) levels were measured by enzyme-linked immunosorbent assay. UPLC-LTQ-Orbitrap MS was established to analyse compounds in rat plasma following oral BXD administration. The absorbed ingredients were selected as candidate active compounds. The chronic gastritis-related targets were screened using multiple databases. The potential targets for the treatment of chronic gastritis were used to construct a protein-protein interaction (PPI) network and were also analysed using the Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) databases. Finally, molecular docking was used to uncover the interaction between multi-components and putative targets, and the results were verified by surface plasmon resonance (SPR). RESULTS Intragastric administration of BXD ameliorated stomach injury resulting from chronic gastritis in rats and decreased the levels of TNF-α, IL-2, IL-8, and LDH. A comprehensive systematic strategy was used to successfully identify 38 candidate targets and 14 active compounds in BXD. Based on the network of compounds-targets and PPI, three hub genes that were associated with BXD therapy for chronic gastritis were selected and included intercellular adhesion molecule-1, peroxisome proliferator-activated receptor gamma and mitogen-activated protein kinase 14. The results of molecular docking and SPR demonstrated that the active compounds in BXD demonstrate affinity for these targets. Additionally, an enrichment analysis revealed that treatment of chronic gastritis with BXD primarily involves cytokine activation, the inflammatory response and nuclear factor-kappa B, hypoxia-inducible factor-1, phosphatidylinositol-3-kinase-protein-serine-threonine kinase and Janus kinase-signal transducer and activator of transcription signalling pathways, which may mediate the effects of BXD in the treatment of chronic gastritis. CONCLUSION BXD exhibits a therapeutic effect in ethanol-induced gastritis through multi-compound, multi-target and multi-pathway mechanisms. A strategy of network pharmacology combined with SPR may provide a feasible approach to explore the targets of herbal medicine and uncover novel bioactive components.
Collapse
|
5
|
Caffeic acid attenuates gastric mucosal damage induced by ethanol in rats via nitric oxide modulation. Chem Biol Interact 2020; 334:109351. [PMID: 33301711 DOI: 10.1016/j.cbi.2020.109351] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 11/10/2020] [Accepted: 12/02/2020] [Indexed: 02/07/2023]
Abstract
Anti-oxidant and anti-inflammatory properties of caffeic acid (CA) have been reported recently. In this study, the therapeutic effects of CA on ethanol-induced ulcer and the roles of nitric oxide and cholinergic pathways in these effects were investigated. Ulcer was induced by ethanol via oral gavage. Ulcer induced rats were treated with either vehicle (ulcer group) or CA (100, 250 or 500 mg/kg, per oral gavage). Macroscopic evaluation showed that 250 mg/kg CA was the effective dose. To elucidate the action mechanism of CA, 10 mg/kg l-NAME or 1 mg/kg atropine sulfate was administered to 250 mg/kg CA treated groups. All rats were decapitated 1 h after ulcer induction and gastric samples were scored macroscopically and microscopically, and analyzed for myeloperoxidase (MPO), malondialdehyde (MDA), and glutathione (GSH) levels. ANOVA test was used for statistical analyses. Macroscopic and microscopic damage scores, MDA levels and MPO activity were increased while GSH levels were decreased in ulcer group. Treatment with 250 mg/kg and 500 mg/kg CA reduced macroscopic and microscopic damage scores, decreased MPO activity and MDA levels, and preserved the depleted glutathione significantly. l-NAME administration before CA treatment elevated MDA levels, MPO activity and depleted glutathione. However, atropine sulfate had no effect on biochemical parameters. We conclude that CA ameliorates ethanol-induced gastric mucosal damage, and NO pathway contributes to this effect. On the other hand, there is a lack of evidence for the contribution of the muscarinic cholinergic system.
Collapse
|
6
|
Chemical constituents and gastro-protective potential of Pachira glabra leaves against ethanol-induced gastric ulcer in experimental rat model. Inflammopharmacology 2020; 29:317-332. [PMID: 32914383 DOI: 10.1007/s10787-020-00749-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Accepted: 08/25/2020] [Indexed: 12/18/2022]
Abstract
Gastric ulcer is a very common illness that adversely affects a significant number of people all over the globe. Phytochemical investigation of P. glabra leaf alcohol extract (PGLE) resulted in the isolation and Characterization of a new nature compound, quercetin-3- O-α -L-rhamnosyl-(1'''-6'')-(4''- O -acetyl)-β -D-galactoside (4), in addition to seven known compounds. They are ferulic acid (1), p- coumaric acid (2), quercetin 3-O-α-L-rhamnoside-3'-O-β-D-glucoside (3), quercetin-3- O-α -L-rhamnosyl-(1'''-6'')-(4''- O -acetyl)- β -Dgalactoside (4), quercetin-3- O-β -D-galactoside (5), 7-hydroxy maltol-3-O-β-D-glucoside (6), maltol-3- O-β -D-glucoside (7), and methyl coumarate (8) that were first to be isolated from the genus Pachira. PGLE demonstrated in vitro anti-Helicobacter pylori activity. Moreover, the in vivo gastroprotective assessment of PGLE at different dosses, 100, 200, and 400 mg/kg against ethanol induced ulceration revealed a dose-dependent gastroprotection comparable to omeprazole. PGLE attenuated gastric lesions and histopathological changes triggered by ethanol. Interestingly, PGLE exhibited an anti-inflammatory effect through down-regulating the expression of nuclear factor-ĸB and pro-inflammatory enzyme cyclooxygenase-2 in the ulcer group. It also hindered apoptosis through decreasing Bax and increasing Bcl-2 expression hence decreasing Bax/Bcl2 ratio with a subsequent reduction in caspase 3 expression. Collectively, P. glabra is a rich reservoir of various phytochemicals reflecting a promising potential for alleviation of gastric ulcer through the mediation of inflammatory and apoptotic cascades.
Collapse
|
7
|
Wang WJ, Jiang X, Gao CC, Chen ZW. Salusin-α mitigates diabetic nephropathy via inhibition of the Akt/mTORC1/p70S6K signaling pathway in diabetic rats. Drug Chem Toxicol 2019; 45:283-290. [PMID: 31665937 DOI: 10.1080/01480545.2019.1683572] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Salusin-α is a bioactive peptide that protects against atherosclerosis and hepatosteatosis. Serum salusin-α level is declined in patients suffering with renal insufficiency. However, it is still undefined whether salusin-α plays a role in diabetic nephropathy. The present study was designed to investigate the potential roles of salusin-α in diabetic renal disease. Herein, we demonstrated that the salusin-α levels in both plasma and kidney tissues from diabetic rats were obviously downregulated. Exogenous administration of salusin-α eliminated the typical characteristics of diabetic nephropathy. Salusin-α treatment decreased renal fibrosis, which was related with reduced epithelial-mesenchymal transition (EMT) of renal tubular epithelial cells. Injection of salusin-α suppressed the production of reactive oxygen species (ROS) via attenuation of NADPH oxidase subunits protein expressions and recovery of the antioxidant system. Mechanistically, the activated Akt/mTORC1/p70S6K signaling pathway in diabetic nephropathy was counteracted by salusin-α treatment. Our results demonstrated that salusin-α exerted protective effect against diabetic nephropathy via reduced oxidative stress and fibrosis, dependent on inactivation of the Akt/mTORC1/p70S6K signaling cascade. Salusin-α may be considered as a promising target for the treatment of diabetic nephropathy.
Collapse
Affiliation(s)
- Wen-Juan Wang
- Department of Nephrology, Center of Blood Purification, The Second People's Hospital of Nantong, Nantong, China
| | - Xia Jiang
- Department of Nephrology, Center of Blood Purification, The Second People's Hospital of Nantong, Nantong, China
| | - Chang-Chun Gao
- Department of Nephrology, Center of Blood Purification, The Second People's Hospital of Nantong, Nantong, China
| | - Zhi-Wei Chen
- Department of Nephrology, Center of Blood Purification, The Second People's Hospital of Nantong, Nantong, China
| |
Collapse
|
8
|
Çakır M, Sabah-Özcan S, Saçmacı H. Increased level of plasma salusin-α and salusin-β in patients with multiple sclerosis. Mult Scler Relat Disord 2019; 30:76-80. [DOI: 10.1016/j.msard.2019.02.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Revised: 01/28/2019] [Accepted: 02/03/2019] [Indexed: 11/16/2022]
|
9
|
Safranal, a constituent of saffron, exerts gastro-protective effects against indomethacin-induced gastric ulcer. Life Sci 2019; 224:88-94. [PMID: 30914317 DOI: 10.1016/j.lfs.2019.03.054] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Revised: 03/14/2019] [Accepted: 03/22/2019] [Indexed: 02/06/2023]
Abstract
AIMS Several natural products have been evaluated for management of gastric ulcer induced by non-steroidal anti-inflammatory drugs. Safranal, a plant-derived chemical, has a potent antioxidant and anti-inflammatory properties. The present study was aimed to evaluate possible gastro-protective effects of safranal against indomethacin-induced gastric ulcer in rats. Lansoprazole (a proton pump inhibitor) was used as a reference drug. MATERIALS AND METHODS Thirty rats were divided into five groups. Groups 1 and 2 received vehicle. Groups 3, 4 and 5 treated with 0.063, 0.25 and 1 mg/kg safranal. Group 6 received 30 mg/kg lansoprazole. All groups except of group 1 received indomethacin (50 mg/kg) ingestion. Six hours later, animals were euthanized and their stomachs were removed. Gastric contents volume and pH were measured. Gastric ulcer area and protective index were evaluated using image J software. Histological changes were evaluated by light microscope. Malondialdehyde (MDA) level, superoxide dismutase (SOD) activity, total antioxidant capacity (TAC) content, tumor necrosis factor-alpha (TNF-α) and Caspase-3 levels were determined in the gastric tissue. KEY FINDINGS Safranal and lansoprazole normalized gastric volume and pH, reduced gastric ulcer area and produced gastric protection. Indomethacin-induced histological changes and tissue biochemical alterations were ameliorated by the above-mentioned treatments. SIGNIFICANCE The results of the present study suggest the involvement of anti-secretory, anti-oxidant, anti-inflammatory and anti-apoptotic mechanisms in gastro-protective effect of safranal. In addition, gastro-protective effect of safranal was comparable to lansoprazole.
Collapse
|
10
|
Qian K, Feng L, Sun Y, Xiong B, Ding Y, Han P, Chen H, Chen X, Du L, Wang Y. Overexpression of Salusin- α Inhibits Vascular Intimal Hyperplasia in an Atherosclerotic Rabbit Model. BIOMED RESEARCH INTERNATIONAL 2018; 2018:8973986. [PMID: 30105261 PMCID: PMC6076935 DOI: 10.1155/2018/8973986] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/03/2018] [Accepted: 06/27/2018] [Indexed: 11/18/2022]
Abstract
Inhibiting vascular endothelial foam is the focus of clinical attention. Using SonoVue (an ultrasound contrast agent), the salusin-α gene was transfected into the arterial intima of an atherosclerotic rabbit model induced by a high-fat diet in this study. Subsequently the model of blood lipid indexes, the pathological structure of the intima, and changes in molecules regulating atherosclerosis were investigated. The high-density lipoprotein C and apolipoprotein A values in the salusin-α gene overexpression (P) group were higher than those in the salusin-α gene interference (RP) group (P < 0.05), whereas the total cholesterol, low-density lipoprotein C, and apolipoprotein B values were reversed. Rabbits in the P group showed significantly thinner vascular intimal thickness than that of other experimental groups (P < 0.05). The expression of positive regulators of atherosclerosis (ABCA1, ABCG1) was higher in the P group than that in the RP group (P < 0.05), and the opposite effect was observed for negative regulators (ACAT1, CD36). Thus, our results showed that the overexpression of salusin-α gene inhibited the proliferation of the vascular intima, thereby throwing some light on understanding the mechanism how salusin-α gene expression interfered with the foaming of vascular intimal cells.
Collapse
Affiliation(s)
- Kun Qian
- Department of Laboratory Medicine, Hubei University of Chinese Medicine, Wuhan, Hubei, China
| | - Li Feng
- Endoscopy Center, Minhang Branch of Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yujie Sun
- Department of Laboratory Medicine, Hubei University of Chinese Medicine, Wuhan, Hubei, China
| | - Bowen Xiong
- Department of Laboratory Medicine, Hubei University of Chinese Medicine, Wuhan, Hubei, China
| | - Yi Ding
- Department of Laboratory Medicine, Hubei University of Chinese Medicine, Wuhan, Hubei, China
| | - Panting Han
- Department of Laboratory Medicine, Hubei University of Chinese Medicine, Wuhan, Hubei, China
| | - Hailun Chen
- Department of Laboratory Medicine, Hubei University of Chinese Medicine, Wuhan, Hubei, China
| | - Xiao Chen
- Department of Laboratory Medicine, Hubei University of Chinese Medicine, Wuhan, Hubei, China
| | - Ling Du
- Endoscopy Center, Minhang Branch of Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yuxue Wang
- Department of Laboratory Medicine, Hubei University of Chinese Medicine, Wuhan, Hubei, China
| |
Collapse
|