1
|
Yazğan B, Yazğan Y, Nazıroğlu M. Alpha-lipoic acid modulates the diabetes mellitus-mediated neuropathic pain via inhibition of the TRPV1 channel, apoptosis, and oxidative stress in rats. J Bioenerg Biomembr 2023:10.1007/s10863-023-09971-w. [PMID: 37357235 DOI: 10.1007/s10863-023-09971-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 06/16/2023] [Indexed: 06/27/2023]
Abstract
Diabetes mellitus (DM) is a chronic syndrome involving neuropathic pain. Increased oxidative stress in DM is assumed to increase free reactive oxygen radicals (ROS) and causes diabetic damage. The sciatic nerve (ScN) and dorsal root ganglion (DRG) both contain high levels of the TRPV1 channel, which is triggered by capsaicin and ROSs and results in increased Ca2+ entry into the neurons. Alpha-lipoic acid (ALA) is considered an important part of the antioxidant system. To better characterize the protective effects of ALA on the DM-induced neuronal through TRPV1 modulation, we investigated the role of ALA on DM-induced neuropathic pain, oxidative ScN, and DRG damage in diabetic rats. Forty adult Wistar albino female rats were divided into four groups as control, ALA (50 mg/kg for 14 days), streptozotocin (STZ and 45 mg/kg and single dose), and STZ + ALA. Rats were used for the pain tests. After obtaining the DRGs and ScN, they were used for plate reader, patch-clamp, and laser confocal microscope analyses. We observed the modulator role of ALA on the thresholds of mechanical withdrawal pain (von Frey test) and hot sensitivity pain (hot plate test) in the STZ + ALA group. The treatment of ALA decreased STZ-induced increase of TRPV1 current densities, intracellular free Ca2+ concentrations (Fura-2 and Fluo - 3/AM), ROS, caspase 3, caspase 9, mitochondrial membrane potential, and apoptosis values in the ScN and DRG neurons, although its treatment induced the increase of cell viability and body weight gain. The treatment of ALA acted a neuroprotective role on the TRPV1 channel stimulation-mediated Ca2+ influx, neuropathic pain, and neuronal damage in diabetic rats. The neuroprotective role of ALA treatment can be explained by its modulating the TRPV1 channel activity, intracellular Ca2+ increase-induced oxidative stress, and apoptosis.
Collapse
Affiliation(s)
- Betül Yazğan
- Department of Physiology, Medical Faculty, Kastamonu University, Kastamonu, Türkiye, Turkey
| | - Yener Yazğan
- Department of Biophysics, Medical Faculty, Kastamonu University, Kastamonu, Türkiye, Turkey
| | - Mustafa Nazıroğlu
- Neuroscience Research Center, Suleyman Demirel University, Isparta, Türkiye, Turkey.
- Department of Neuroscience, Health Science Institute, Suleyman Demirel University, Isparta, Türkiye, Turkey.
- Departments of Biophysics and Neuroscience, Faculty of Medicine, Suleyman Demirel University, Isparta, Türkiye, Turkey.
| |
Collapse
|
2
|
Bell DSH. Detecting and treating the protean manifestations of diabetic autonomic neuropathy. Diabetes Obes Metab 2023; 25:1162-1173. [PMID: 36748121 DOI: 10.1111/dom.15004] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 01/17/2023] [Accepted: 02/02/2023] [Indexed: 02/08/2023]
Abstract
The manifestations of diabetic autonomic neuropathy (DAN) are protean and clinically involve multiple systems, including the cardiovascular system, the gastrointestinal system, the genitourinary system as well as the sweat glands (sudomotor dysfunction) and the gallbladder. In addition, cardiac autonomic neuropathy (CAN) is associated with a correctible inability to appreciate and correct hypoglycaemia. While not a clinical problem, pupillary involvement should be the clue and the catalyst to investigate for other manifestations of DAN. This review outlines a practical approach to detecting and investigating the manifestations of DAN. Of particular importance is early detection of cardiovascular involvement where prompt therapy through glycaemic control can decrease the severity of CAN and decelerate the frequency and severity of retinopathy and nephropathy in addition to decreasing cardiovascular events and mortality. CAN also plays a role in accelerating other diabetic complications such as acute ischaemic stroke, heart failure, medial artery calcinosis, foot ulcers, peripheral artery disease and Charcot joints. Many therapies of DAN are available, which should not only decrease morbidity and mortality from DAN, but also improve the patient's quality of life. However, the therapies available are largely symptomatic.
Collapse
|
3
|
Zhang D, Tu H, Hu W, Duan B, Zimmerman MC, Li YL. Hydrogen Peroxide Scavenging Restores N-Type Calcium Channels in Cardiac Vagal Postganglionic Neurons and Mitigates Myocardial Infarction-Evoked Ventricular Arrhythmias in Type 2 Diabetes Mellitus. Front Cardiovasc Med 2022; 9:871852. [PMID: 35548411 PMCID: PMC9082497 DOI: 10.3389/fcvm.2022.871852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 03/31/2022] [Indexed: 11/13/2022] Open
Abstract
ObjectiveWithdrawal of cardiac vagal activity is associated with ventricular arrhythmia-related high mortality in patients with type 2 diabetes mellitus (T2DM). Our recent study found that reduced cell excitability of cardiac vagal postganglionic (CVP) neurons is involved in cardiac vagal dysfunction and further exacerbates myocardial infarction (MI)-evoked ventricular arrhythmias and mortality in T2DM. However, the mechanisms responsible for T2DM-impaired cell excitability of CVP neurons remain unclear. This study tested if and how elevation of hydrogen peroxide (H2O2) inactivates CVP neurons and contributes to cardiac vagal dysfunction and ventricular arrhythmogenesis in T2DM.Methods and ResultsRat T2DM was induced by a high-fat diet plus streptozotocin injection. Local in vivo transfection of adenoviral catalase gene (Ad.CAT) successfully induced overexpression of catalase and subsequently reduced cytosolic H2O2 levels in CVP neurons in T2DM rats. Ad.CAT restored protein expression and ion currents of N-type Ca2+ channels and increased cell excitability of CVP neurons in T2DM. Ad.CAT normalized T2DM-impaired cardiac vagal activation, vagal control of ventricular function, and heterogeneity of ventricular electrical activity. Additionally, Ad.CAT not only reduced the susceptibility to ventricular arrhythmias, but also suppressed MI-evoked lethal ventricular arrhythmias such as VT/VF in T2DM.ConclusionsWe concluded that endogenous H2O2 elevation inhibited protein expression and activation of N-type Ca2+ channels and reduced cell excitability of CVP neurons, which further contributed to the withdrawal of cardiac vagal activity and ventricular arrhythmogenesis in T2DM. Our current study suggests that the H2O2-N-type Ca2+ channel signaling axis might be an effective therapeutic target to suppress ventricular arrhythmias in T2DM patients with MI.
Collapse
Affiliation(s)
- Dongze Zhang
- Department of Emergency Medicine, University of Nebraska Medical Center, Omaha, NE, United States
| | - Huiyin Tu
- Department of Emergency Medicine, University of Nebraska Medical Center, Omaha, NE, United States
| | - Wenfeng Hu
- Department of Emergency Medicine, University of Nebraska Medical Center, Omaha, NE, United States
| | - Bin Duan
- Mary and Dick Holland Regenerative Medicine Program, Division of Cardiology, Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE, United States
| | - Matthew C. Zimmerman
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, NE, United States
| | - Yu-Long Li
- Department of Emergency Medicine, University of Nebraska Medical Center, Omaha, NE, United States
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, NE, United States
- *Correspondence: Yu-Long Li
| |
Collapse
|
4
|
Hu W, Zhang D, Tu H, Li YL. Reduced Cell Excitability of Cardiac Postganglionic Parasympathetic Neurons Correlates With Myocardial Infarction-Induced Fatal Ventricular Arrhythmias in Type 2 Diabetes Mellitus. Front Neurosci 2021; 15:721364. [PMID: 34483832 PMCID: PMC8416412 DOI: 10.3389/fnins.2021.721364] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Accepted: 07/30/2021] [Indexed: 01/09/2023] Open
Abstract
Objective Withdrawal of cardiac vagal activity is considered as one of the important triggers for acute myocardial infarction (MI)-induced ventricular arrhythmias in type 2 diabetes mellitus (T2DM). Our previous study demonstrated that cell excitability of cardiac parasympathetic postganglionic (CPP) neurons was reduced in T2DM rats. This study investigated whether cell excitability of CPP neurons is associated with cardiac vagal activity and MI-induced ventricular arrhythmias in T2DM rats. Methods Rat T2DM was induced by a high-fat diet plus streptozotocin injection. MI-evoked ventricular arrhythmia was achieved by surgical ligation of the left anterior descending coronary artery. Twenty-four-hour, continuous ECG recording was used to quantify ventricular arrhythmic events and heart rate variability (HRV) in conscious rats. The power spectral analysis of HRV was used to evaluate autonomic function. Cell excitability of CPP neurons was measured by the whole-cell patch-clamp technique. Results Twenty-four-hour ECG data demonstrated that MI-evoked fatal ventricular arrhythmias are more severe in T2DM rats than that in sham rats. In addition, the Kaplan-Meier analysis demonstrated that the survival rate over 2 weeks after MI is significantly lower in T2DM rats (15% in T2DM+MI) compared to sham rats (75% in sham+MI). The susceptibility to ventricular tachyarrhythmia elicited by programmed electrical stimulation was higher in anesthetized T2DM+MI rats than that in rats with MI or T2DM alone (7.0 ± 0.58 in T2DM+MI group vs. 3.5 ± 0.76 in sham+MI). Moreover, as an index for vagal control of ventricular function, changes of left ventricular systolic pressure (LVSP) and the maximum rate of increase of left ventricular pressure (LV dP/dtmax) in response to vagal efferent nerve stimulation were blunted in T2DM rats. Furthermore, T2DM increased heterogeneity of ventricular electrical activities and reduced cardiac parasympathetic activity and cell excitability of CPP neurons (current threshold-inducing action potentials being 62 ± 3.3 pA in T2DM rats without MI vs. 27 ± 1.9 pA in sham rats without MI). However, MI did not alter vagal control of the ventricular function and CPP neuronal excitability, although it also induced cardiac autonomic dysfunction and enhanced heterogeneity of ventricular electrical activities. Conclusion The reduction of CPP neuron excitability is involved in decreased cardiac vagal function, including cardiac parasympathetic activity and vagal control of ventricular function, which is associated with MI-induced high mortality and malignant ventricular arrhythmias in T2DM.
Collapse
Affiliation(s)
- Wenfeng Hu
- Department of Emergency Medicine, University of Nebraska Medical Center, Omaha, NE, United States
| | - Dongze Zhang
- Department of Emergency Medicine, University of Nebraska Medical Center, Omaha, NE, United States
| | - Huiyin Tu
- Department of Emergency Medicine, University of Nebraska Medical Center, Omaha, NE, United States
| | - Yu-Long Li
- Department of Emergency Medicine, University of Nebraska Medical Center, Omaha, NE, United States.,Department of Cellular & Integrative Physiology, University of Nebraska Medical Center, Omaha, NE, United States
| |
Collapse
|
5
|
Syed MUS, Khan Z, Zulfiqar A, Basham MA, Abdul Haseeb H, Azizullah S, Ismail H, Elbahnasawy M, Nadeem Z, Karimi S. Electrocardiographic Abnormalities in Patients With Spinal Cord Injury With Deranged Lipid Profile. Cureus 2021; 13:e18246. [PMID: 34722039 PMCID: PMC8544921 DOI: 10.7759/cureus.18246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/24/2021] [Indexed: 11/05/2022] Open
Abstract
Introduction Spinal cord injury (SCI) can lead to severe disability and neurogenic shock, arrhythmias, autonomic dysfunction, pressure ulcers, etc., of the autonomic nervous system. Therefore, in these patients, cardiovascular problems should be investigated frequently. This study was conducted to evaluate the electrocardiographic (ECG) abnormalities in patients with spinal cord injury having inappropriate lipid profiles and their relationship with each other. Materials and methods This cross-sectional study was held in the Internal Medicine Department of Mayo Hospital, Lahore, for a one-year duration from May 2020 to May 2021. It included 58 patients with spinal cord injury, 35 of whom had paraplegia, and 23 had tetraplegia. Fasting blood samples were taken for lipid profile analysis. Twelve-lead ECGs three times a day for one month were taken and analyzed in the context of previously available ECGs. Results Out of 58, the lipid profiles were found abnormal in 47 patients, 18 of whom had a normal ECG. The lipid profile was normal in 12, of which only one patient had ECG abnormalities. Cholesterol levels were found normal in 39 patients and deranged in 19 patients; low-density lipoproteins in nine patients, triglycerides in 18 patients, and high-density lipoprotein values in one patient were abnormal. Conclusions Sinus bradycardia was the most common ECG abnormality found in SCI patients with deranged lipid profiles. Further studies are needed in the future to validate the findings of this study.
Collapse
Affiliation(s)
| | - Zunaira Khan
- Accident and Emergency, Kingston Hospital, London, GBR
| | - Arif Zulfiqar
- Internal Medicine, Dow Medical College, Karachi, PAK
| | | | | | - Saad Azizullah
- Internal Medicine, Dow University of Health Sciences, Karachi, PAK
| | - Hebatalla Ismail
- Medicine and Surgery, Royal College of Surgeons in Ireland, Dublin, IRL
| | - Mohammad Elbahnasawy
- Internal Medicine, Alexandria Faculty of Medicine, Alexandria University, Alexandria, EGY
| | - Zubia Nadeem
- Internal Medicine, Dow University of Health Sciences, Karachi, PAK
| | - Sundas Karimi
- Orthopedic Surgery, Dow University of Health Sciences, Karachi, PAK
| |
Collapse
|