1
|
Lee JW, Jo AH, Kang YJ, Lee D, Choi CY, Kang JC, Kim JH. Review of Cadmium Bioaccumulation in Fish Exposed to Cadmium. TOXICS 2024; 13:7. [PMID: 39853007 PMCID: PMC11769446 DOI: 10.3390/toxics13010007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 12/09/2024] [Accepted: 12/18/2024] [Indexed: 01/26/2025]
Abstract
Cadmium (Cd) is a highly toxic substance in the aquatic ecosystem, which can represent a high risk to fish. Fish are exposed to heavy metals through waterborne and dietary pathways, some of which are absorbed by the body and can accumulate in specific tissues without being eliminated. The accumulation varies depending on several factors such as dose, exposure route, exposure time, metal types, and biological status of the fish, and environmental parameters such as DO, salinity, pH, and metal speciation. As Cd speciation occurs in the water, the amount accumulated in the fish can vary, and consuming Cd-accumulated fish can pose a risk to human health. Cd introduced into the body of fish can directly affect blood properties through the circulatory system. Cd introduced into the circulatory system of fish can reach all tissues through the blood flow, and the accumulation of specific tissues is different depending on the blood flow by the energy and oxygen demand of each tissue. Therefore, this review aimed to determine the toxic effects of Cd exposure in fish and identify indicators to assess the extent of Cd bioaccumulation toxicity in fish induced by Cd exposure.
Collapse
Affiliation(s)
- Ju-Wook Lee
- Incheon Regional Office of National Fishery Products Quality Management Service, Incheon 22346, Republic of Korea;
| | - A-Hyun Jo
- Department of Marine Life Science, Jeju National University, Jeju 63243, Republic of Korea;
| | - Yue-Jai Kang
- Department of Aquatic Life Medicine, Kunsan National University, Gunsan 54150, Republic of Korea;
| | - Dain Lee
- Fish Genetics and Breeding Research Center, National Institute of Fisheries Science, Geoje 53334, Republic of Korea;
| | - Cheol-Young Choi
- Division of Marine BioScience, National Korea Maritime and Ocean University, Busan 49112, Republic of Korea
| | - Ju-Chan Kang
- Department of Aquatic Life Medicine, Pukyong National University, Busan 48513, Republic of Korea;
| | - Jun-Hwan Kim
- Department of Marine Life Science, Jeju National University, Jeju 63243, Republic of Korea;
- Department of Aquatic Life Medicine, Jeju National University, Jeju 63243, Republic of Korea
| |
Collapse
|
2
|
Pal S, Firdous SM. Unraveling the role of heavy metals xenobiotics in cancer: a critical review. Discov Oncol 2024; 15:615. [PMID: 39495398 PMCID: PMC11535144 DOI: 10.1007/s12672-024-01417-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Accepted: 10/01/2024] [Indexed: 11/05/2024] Open
Abstract
Cancer is a multifaceted disease characterized by the gradual accumulation of genetic and epigenetic alterations within cells, leading to uncontrolled cell growth and invasive behavior. The intricate interplay between environmental factors, such as exposure to carcinogens, and the molecular cascades governing cell growth, differentiation, and survival contributes to cancer's development and progression. This review offers a comprehensive overview of key molecular targets and their roles in cancer development. Peroxisome proliferator-activated receptors are implicated in various cancers due to their role in regulating lipid metabolism, inflammation, and cell proliferation. Nuclear factor erythroid 2-related factor 2 protects cells from oxidative damage but can also promote tumor cell survival. Cytochrome P450 1B1 metabolizes exogenous and endogenous substances, and its increased expression is observed in several cancers. The constitutive androstane receptor regulates gene expression, and its dysregulation can lead to liver cancer. Transforming growth factor-beta 2 is involved in the development and progression of various cancers by dysregulating cell proliferation, differentiation, and migration. Chelation treatment has been investigated for removing heavy metals, while genetically altered immune cells show promise in treating specific cancers. Metal-organic frameworks and fibronectin targeting represent new directions in cancer treatment. While some heavy metals, such as arsenic, chromium, nickel, and cadmium, are known to have carcinogenic properties, others, like zinc, Copper, gold, bismuth, and silver, have many uses that highlight their potential as effective cancer control tactics. There are a variety of heavy metal-based technologies that show potential for improving cancer treatment methods, including targeted drug delivery, improved radiation, and diagnostic tools.
Collapse
Affiliation(s)
- Sourav Pal
- Department of Pharmacology, Seacom Pharmacy College, Jaladhulagori, Sankrail, Howrah, West Bengal, 711302, India
| | - Sayed Mohammed Firdous
- Department of Pharmacology, Calcutta Institute of Pharmaceutical Technology & AHS, Uluberia, Howrah, West Bengal, 711316, India.
| |
Collapse
|
3
|
Li C, Lin K, Xiao L, Dilixiati Y, Huo Y, Zhang Z. Evaluation of cadmium effects on the glucose metabolism on insulin resistance HepG2 cells. Heliyon 2024; 10:e37325. [PMID: 39296152 PMCID: PMC11408151 DOI: 10.1016/j.heliyon.2024.e37325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 08/11/2024] [Accepted: 09/01/2024] [Indexed: 09/21/2024] Open
Abstract
Cadmium (Cd) is an environmental endocrine disruptor. Despite increasing research about the metabolic effects of Cd on HepG2 cells, information about the metabolic effects of Cd on insulin resistance HepG2 (IR-HepG2) cells is limited. Currently, most individuals with diabetes are exposed to Cd due to pollution. Previously, we reported that Cd exposure resulted in decreased blood glucose levels in diabetic mice, the underlying mechanism deserves further study. Therefore, we used palmitic acid (0.25 mM) to treat HepG2 cells to establish IR-HepG2 model. IR-HepG2 cells were exposed to CdCl2 (1 μM and 2 μM). Commercial kits were used to measure glucose production, glucose consumption, ROS and mitochondrial membrane potential. Western blot and qRT-PCR were used to measure the proteins and genes of glucose metabolism. In the current study setting, we found no significant changes in glucose metabolism in Cd-exposed HepG2 cells, but Cd enhanced glucose uptake, inhibited gluconeogenesis and activated the insulin signaling pathway in IR-HepG2 cells. Meanwhile, we observed that Cd caused oxidative stress and increased the intracellular calcium concentration and inhibited mitochondrial membrane potential in IR-HepG2 cells. Cd compensatingly increased glycolysis in IR-HepG2 cells. Collectively, we found Cd ameliorated glucose metabolism disorders in IR-HepG2 cells. Furthermore, Cd exacerbated mitochondrial damage and compensatory increased glycolysis in IR-HepG2 cells. These findings will provide novel insights for Cd exposure in insulin resistant individuals.
Collapse
Affiliation(s)
- Changhao Li
- School of Public Health, Soochow University, Suzhou, 215123, China
| | - Ke Lin
- Center for Disease Control and Prevention of Xishan District, Wuxi, 214000, Jiangsu, China
| | - Liang Xiao
- School of Public Health, Soochow University, Suzhou, 215123, China
| | | | - Yuan Huo
- School of Public Health, Soochow University, Suzhou, 215123, China
| | - Zengli Zhang
- School of Public Health, Soochow University, Suzhou, 215123, China
| |
Collapse
|
4
|
Bhattacharyya K, Bhattacharjee N, Sen D, Lai TK, Ghosh AK, Pal RR, Ganguly S. Unlocking Cd(II) biosorption potential of Candida tropicalis XTA 1874 for sustainable wastewater treatment. Sci Rep 2024; 14:15690. [PMID: 38977801 PMCID: PMC11231346 DOI: 10.1038/s41598-024-66336-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 07/01/2024] [Indexed: 07/10/2024] Open
Abstract
Cd(II) is a potentially toxic heavy metal having carcinogenic activity. It is becoming widespread in the soil and groundwater by various natural and anthropological activities. This is inviting its immediate removal. The present study is aimed at developing a Cd(II) resistant strain isolated from contaminated water body and testing its potency in biological remediation of Cd(II) from aqueous environment. The developed resistant strain was characterized by SEM, FESEM, TEM, EDAX, FT-IR, Raman Spectral, XRD and XPS analysis. The results depict considerable morphological changes had taken place on the cell surface and interaction of Cd(II) with the surface exposed functional groups along with intracellular accumulation. Molecular contribution of critical cell wall component has been evaluated. The developed resistant strain had undergone Cd(II) biosorption study by employing adsorption isotherms and kinetic modeling. Langmuir model best fitted the Cd(II) biosorption data compared to the Freundlich one. Cd(II) biosorption by the strain followed a pseudo second order kinetics. The physical parameters affecting biosorption were also optimized by employing response surface methodology using central composite design. The results depict remarkable removal capacity 75.682 ± 0.002% of Cd(II) by the developed resistant strain from contaminated aqueous medium using 500 ppm of Cd(II). Quantitatively, biosorption for Cd(II) by the newly developed resistant strain has been increased significantly (p < 0.0001) from 4.36 ppm (non-resistant strain) to 378.41 ppm (resistant strain). It has also shown quite effective desorption capacity 87.527 ± 0.023% at the first desorption cycle and can be reused effectively as a successful Cd(II) desorbent up to five cycles. The results suggest that the strain has considerable withstanding capacity of Cd(II) stress and can be employed effectively in the Cd(II) bioremediation from wastewater.
Collapse
Affiliation(s)
- Kaustav Bhattacharyya
- Department of Physiology, Vidyasagar College, 39, Sankar Ghosh Lane, Kolkata, West Bengal, 700006, India
| | - Neelanjan Bhattacharjee
- Department of Mechanical Engineering, University of Alberta, Room 4-31F9211 116 Street NW, Edmonton, AB, T6G 1H9, Canada
| | - Debrup Sen
- Department of Zoology, Vidyasagar College, 39, Sankar Ghosh Lane, Kolkata, West Bengal, 700006, India
| | - Tapan Kumar Lai
- Department of Chemistry, Vidyasagar Metropolitan College, 39, Sankar Ghosh Lane, Kolkata, West Bengal, 700006, India
| | - Ananyo K Ghosh
- School of Biological Sciences, Indian Association for the Cultivation of Science, 2A&2B Raja Subodh Chandra Mallick Road, Jadavpur, Kolkata, West Bengal, 700032, India
| | - Ritesh Ranjan Pal
- School of Biological Sciences, Indian Association for the Cultivation of Science, 2A&2B Raja Subodh Chandra Mallick Road, Jadavpur, Kolkata, West Bengal, 700032, India
| | - Subhadeep Ganguly
- Department of Physiology, Vidyasagar College, 39, Sankar Ghosh Lane, Kolkata, West Bengal, 700006, India.
| |
Collapse
|
5
|
Bhattacharyya K, Bhattacharjee N, Ganguly S. Evidences for the augmented Cd(II) biosorption by Cd(II) resistant strain Candida tropicalis XTA1874 from contaminated aqueous medium. Sci Rep 2023; 13:12034. [PMID: 37491499 PMCID: PMC10368703 DOI: 10.1038/s41598-023-38485-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 07/09/2023] [Indexed: 07/27/2023] Open
Abstract
Cadmium is one of the most dreadful heavy metals and is becoming a major toxicant in ground water with increasing concentration above the WHO Guidelines in drinking water (0.003 mg/L). The potential sources of cadmium include sewage sludge, phosphate fertilizers and ingredients like Ni-Cd batteries, pigments, plating and plastics. Cadmium levels are increased in water owing to the use and disposal of cadmium containing ingredients. Water draining from a landfill may contain higher cadmium levels. The authors have tried to evaluate the optimized nutritional conditions for the optimal growth and Cd(II) remediation capacity for a developed Cd(II) resistant yeast strain named Candida tropicalis XTA 1874 isolated from contaminated water-body in West Bengal. By analyzing the optimization conditions, a synthetic medium was developed and the composition has been given in the main text. The strain showed much better Cd(II) adsorption capacity under the optimized nutritional conditions (Mean removal = 88.077 ± 0.097%).
Collapse
Affiliation(s)
- Kaustav Bhattacharyya
- Department of Physiology, Vidyasagar College, 39-Sankar Ghosh Lane, Kolkata, West Bengal, 700006, India
| | - Neelanjan Bhattacharjee
- Department of Mechanical Engineering, University of Alberta, Room 4-31F, 9211 116 Street NW, Edmonton, AB, T6G 1H9, Canada
| | - Subhadeep Ganguly
- Department of Physiology, Vidyasagar College, 39-Sankar Ghosh Lane, Kolkata, West Bengal, 700006, India.
| |
Collapse
|
6
|
Hadavifar M, Mohammadnia E, Rasaeifar S, Heidarian Miri H, Rastakhiz M, Souvizi B, Mohammad-Zadeh M, Akrami R, Kazemi A. Determination of toxic metal burden and related risk factors in pregnant women: a biological monitoring in Sabzevar, Iran. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:78901-78912. [PMID: 35699879 DOI: 10.1007/s11356-022-20510-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2022] [Accepted: 04/25/2022] [Indexed: 06/15/2023]
Abstract
Nowadays, the adverse effect of toxic metals on humans is well known, especially in the fetal period such as preventing cognitive development and congenital abnormalities of the central nervous system. Hence, this study aims to evaluate the toxic metal burden in mothers and newborns in Sabzevar. Obtained data can be useful for authorities in public health issues. To determine heavy metals in placental blood and umbilical cord blood, one hundred eighty blood samples were taken from ninety mothers referred to Shahidan Mobini Hospital for delivery. The amount of metals in samples was analyzed using inductively coupled plasma optical emission spectrometry (ICP OES). The results of this study revealed that 21.52%, 26.19%, and 60.71% of maternal blood samples (placental blood) and 16.47%, 56.47%, and 20% of umbilical cord blood samples were higher than the US center for disease control (CDC) recommended levels for Pb, Cd, and As respectively. According to the multiple linear regression analysis, the Pb (p = 0.054), As (p < 0.001), and Se (p < 0.001) levels had an association with the mother's living area. Also, there was a significant association between Se (0.021) and the age of the mother. However, the Se values in its optimum concentrations in the blood (60-140 μg/L) can decrease the adverse effects of toxic metals, 72.5% of the pregnant women had Se values below the 60 μg/L and only 6% of pregnant women had Se levels higher than 140 μg/L. We concluded that the mothers inhabiting the rural areas need more Se sources in their diets.
Collapse
Affiliation(s)
- Mojtaba Hadavifar
- Environmental Sciences Department, Hakim Sabzevari University, Sabzevar, Iran
| | - Esmail Mohammadnia
- Environmental Sciences Department, Hakim Sabzevari University, Sabzevar, Iran
| | | | - Hamid Heidarian Miri
- Social Determinants of Health Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Behnaz Souvizi
- Department of Obstetrics and Gynecology, School of Medicine, Sabzevar University of Medical Sciences, Sabzevar, Iran
| | - Mohammad Mohammad-Zadeh
- Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Physiology and Pharmacology, Faculty of Medicine, Sabzevar University of Medical Sciences, Sabzevar, Iran
| | - Rahim Akrami
- Department of Epidemiology and Biostatistics, School of Public Health, Sabzevar University of Medical Sciences, Sabzevar, Iran.
- Department of Epidemiology & Biostatistics, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran.
| | - Ali Kazemi
- Department of Environmental Science and Engineering, Faculty of Agriculture and Environment, Arak University, Arak, Iran
| |
Collapse
|
7
|
Liu C, Mao W, You Z, Xu B, Chen S, Wu J, Sun C, Chen M. Associations between exposure to different heavy metals and self-reported erectile dysfunction: a population-based study using data from the 2001-2004 National Health and Nutrition Examination Survey. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:73946-73956. [PMID: 35643996 DOI: 10.1007/s11356-022-20910-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 05/13/2022] [Indexed: 06/15/2023]
Abstract
Heavy metals are ubiquitous and nonbiodegradable pollutants that are widely distributed in the environment. Heavy metal exposure can damage various biological tissues and cause several diseases. This study aimed to investigate the association between blood and urinary cadmium, lead, and mercury levels and erectile dysfunction (ED) based on data from the 2001-2004 National Health and Nutrition Examination Survey. In total, 3681 participants were included in the analysis. Results showed that participants with ED had high blood cadmium, mercury, creatinine, urinary lead, cadmium levels, low blood lead, serum cotinine, and urinary mercury levels. Multivariate logistic regression analysis showed that only blood cadmium level was an independent risk factor of ED (tertile [T]2 vs T1: odds ratio = 1.495, 95% confidence interval: 1.181-1.892, p = 0.001; T3 vs T1: odds ratio = 2.089, 95% confidence interval: 1.554-2.809, p < 0.001). The dose-response curve showed a positive nonlinear association between blood cadmium and lead levels and ED and a negative nonlinear association between blood and urinary mercury levels and ED after propensity score matching. In conclusion, heavy metal exposure is closely correlated with the development of ED, and a high blood cadmium level is an independent risk factor of ED.
Collapse
Affiliation(s)
- Chunhui Liu
- Department of Urology, Affiliated Zhongda Hospital of Southeast University, Nanjing, China
- Surgical Research Center, Institute of Urology, Southeast University Medical School, Nanjing, China
| | - Weipu Mao
- Department of Urology, Affiliated Zhongda Hospital of Southeast University, Nanjing, China
- Surgical Research Center, Institute of Urology, Southeast University Medical School, Nanjing, China
| | - Zonghao You
- Department of Urology, Affiliated Zhongda Hospital of Southeast University, Nanjing, China
- Surgical Research Center, Institute of Urology, Southeast University Medical School, Nanjing, China
| | - Bin Xu
- Department of Urology, Affiliated Zhongda Hospital of Southeast University, Nanjing, China
- Surgical Research Center, Institute of Urology, Southeast University Medical School, Nanjing, China
| | - Shuqiu Chen
- Department of Urology, Affiliated Zhongda Hospital of Southeast University, Nanjing, China
- Surgical Research Center, Institute of Urology, Southeast University Medical School, Nanjing, China
| | - Jianping Wu
- Department of Urology, Affiliated Zhongda Hospital of Southeast University, Nanjing, China
- Surgical Research Center, Institute of Urology, Southeast University Medical School, Nanjing, China
| | - Chao Sun
- Department of Urology, Affiliated Zhongda Hospital of Southeast University, Nanjing, China
- Surgical Research Center, Institute of Urology, Southeast University Medical School, Nanjing, China
| | - Ming Chen
- Department of Urology, Affiliated Zhongda Hospital of Southeast University, Nanjing, China.
- Surgical Research Center, Institute of Urology, Southeast University Medical School, Nanjing, China.
| |
Collapse
|
8
|
Moraes PZ, Júnior JEGP, Martinez CS, Moro CR, da Silva GC, Rodriguez MD, Simões MR, Junior FB, Peçanha FM, Vassallo DV, Miguel M, Wiggers GA. Multi-functional egg white hydrolysate prevent hypertension and vascular dysfunction induced by cadmium in rats. J Funct Foods 2022. [DOI: 10.1016/j.jff.2022.105131] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
|
9
|
Bhattacharyya K, Sen D, Dey BB, De A, Bhattacharjee N, Biswas AB, Ganguly S. Isolation and characterization of heavy metals and non-metallic pollutant-tolerant microorganism from wastewater of Tollygunge Canal (Kolkata) West Bengal, India. Biologia (Bratisl) 2022. [DOI: 10.1007/s11756-022-01086-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
10
|
Extraintestinal Pathogenic Escherichia coli: Beta-Lactam Antibiotic and Heavy Metal Resistance. Antibiotics (Basel) 2022; 11:antibiotics11030328. [PMID: 35326791 PMCID: PMC8944441 DOI: 10.3390/antibiotics11030328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 02/25/2022] [Accepted: 02/26/2022] [Indexed: 12/10/2022] Open
Abstract
Multiple-antibiotic-resistant (MAR) extra-intestinal pathogenic Escherichia coli (ExPEC) represents one of the most frequent causes of human nosocomial and community-acquired infections, whose eradication is of major concern for clinicians. ExPECs may inhabit indefinitely as commensal the gut of humans and other animals; from the intestine, they may move to colonize other tissues, where they are responsible for a number of diseases, including recurrent and uncomplicated UTIs, sepsis and neonatal meningitis. In the pre-antibiotic era, heavy metals were largely used as chemotherapeutics and/or as antimicrobials in human and animal healthcare. As with antibiotics, the global incidence of heavy metal tolerance in commensal, as well as in ExPEC, has increased following the ban in several countries of antibiotics as promoters of animal growth. Furthermore, it is believed that extensive bacterial exposure to heavy metals present in soil and water might have favored the increase in heavy-metal-tolerant microorganisms. The isolation of ExPEC strains with combined resistance to both antibiotics and heavy metals has become quite common and, remarkably, it has been recently shown that heavy metal resistance genes may co-select antibiotic-resistance genes. Despite their clinical relevance, the mechanisms underlining the development and spread of heavy metal tolerance have not been fully elucidated. The aim of this review is to present data regarding the development and spread of resistance to first-line antibiotics, such as beta-lactams, as well as tolerance to heavy metals in ExPEC strains.
Collapse
|