1
|
Zamri NFI, Mohd Shafri MA, Zamli Z, Mamat S. A Scoping Review on Medicinal Properties of Piper betle ( Sirih) Based on Malay Medical Manuscripts and Scientific Literatures. Malays J Med Sci 2023; 30:23-39. [PMID: 37928797 PMCID: PMC10624437 DOI: 10.21315/mjms2023.30.5.3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 03/25/2022] [Indexed: 11/07/2023] Open
Abstract
Background Malay medical manuscripts have deciphered the medicinal value of Piper betle (sirih) enormously. In this review, an effort was made to explore the medicinal use of P. betle and correlate this information with the scientific evidence. Methods The information regarding the use of P. betle was retrieved from the books consisting of a Malay medical manuscript with an identification number MSS 2219 from the National Library of Malaysia. PubMed, ScienceDirect and Scopus databases were used to collect information regarding the scientific evidence for the medicinal use of P. betle. This review was written following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. The keywords used for searching the articles included P. betle, antimicrobial, analgaesic, haepatic and gastric. Results MSS 2219 showed that P. betle has varied medicinal uses and based on that, it can be grouped into six categories. P. betle application method was different in different conditions. In terms of the literature search, 226 articles were found, 75 articles were extracted for detailed analysis and only 23 met the inclusion criteria. The information was related to the chemical assays, in vivo and in vitro studies. Conclusion In summary, P. betle has the potential to treat medical conditions in various types of categories as recorded in the Malay medical manuscripts and also based on scientific publications. For clinical purposes, more information is required, such as the specific mechanism involved, the best extraction method and the best dosage for treatment.
Collapse
Affiliation(s)
- Nur Fatin Idayu Zamri
- Department of Biomedical Science, Kullliyyah of Allied Health Sciences, International Islamic University Malaysia, Pahang, Malaysia
| | - Mohd Affendi Mohd Shafri
- Department of Biomedical Science, Kullliyyah of Allied Health Sciences, International Islamic University Malaysia, Pahang, Malaysia
| | - Zaitunnatakhin Zamli
- Department of Biomedical Science, Kullliyyah of Allied Health Sciences, International Islamic University Malaysia, Pahang, Malaysia
| | - Suhana Mamat
- Department of Biomedical Science, Kullliyyah of Allied Health Sciences, International Islamic University Malaysia, Pahang, Malaysia
| |
Collapse
|
2
|
Patra B, Deep SK, Rosalin R, Pradhan SN. Flavored Food Additives on the Leaves of Piper betle L.: A Human Health Perspective. Appl Biochem Biotechnol 2022; 194:4439-4461. [PMID: 35386064 DOI: 10.1007/s12010-022-03912-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 03/14/2022] [Indexed: 02/08/2023]
Abstract
Natural products and traditional ethnomedicines are of great effect in therapeutics. Such types of medicine have been practiced in certain areas of the world to treat different health conditions. This pilot investigation aims to review the cumulative health effect of addendums used in betel quid such as areca nut, lime, and tobacco-associated betel quid chewing and without tobacco-associated chewing. This review shows that betel leaf extract and its essential oil could inhibit growth of microbes and damage different gram-positive and gram-negative bacteria as well as various fungus species. Some studies concluded that the combination of Piper leaves essential oil with antibiotics have potential effect on oral microorganisms. Long-term consumption of betel quid with tobacco is known to cause cancer, chromosomal aberrations, and pharynx tumors. However, consumption of betel leaf without tobacco has health benefits because of ethnomedicinal properties. Its essential is oil utilized as raw material for perfumes and mouth fresheners manufacturing. Scientific researches on this plant revealed that it possesses many beneficial activities to be used for developing novel drugs. However, compounds of betel leaves have beneficial natural antioxidant. Chewing and intake of leaves have effect on moving parts of salivary gland which is the main step of digestion. Its components also act as heartbeat regulators in relaxing the blood vessels to reduce hypertension. So this review discussed the natural compounds of betel leaves which is used as traditional medicine to further develop drug discovery.
Collapse
Affiliation(s)
- Biswajit Patra
- School of Life Sciences, Sambalpur University, Sambalpur, Odisha, India
| | - Saroj Kumar Deep
- School of Life Sciences, Sambalpur University, Sambalpur, Odisha, India
| | - Rosina Rosalin
- Department of Botany, Baruneswar Mohavidyalaya, Jajpur, Odisha, India
| | | |
Collapse
|
3
|
Biswas P, Anand U, Saha SC, Kant N, Mishra T, Masih H, Bar A, Pandey DK, Jha NK, Majumder M, Das N, Gadekar VS, Shekhawat MS, Kumar M, Radha, Proćków J, Lastra JMPDL, Dey A. Betelvine (Piper betle L.): A comprehensive insight into its ethnopharmacology, phytochemistry, and pharmacological, biomedical and therapeutic attributes. J Cell Mol Med 2022; 26:3083-3119. [PMID: 35502487 PMCID: PMC9170825 DOI: 10.1111/jcmm.17323] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 02/28/2022] [Accepted: 03/24/2022] [Indexed: 12/11/2022] Open
Abstract
Piper betle L. (synonym: Piper betel Blanco), or betel vine, an economically and medicinally important cash crop, belongs to the family Piperaceae, often known as the green gold. The plant can be found all over the world and is cultivatedprimarily in South East Asian countries for its beautiful glossy heart-shaped leaves, which are chewed or consumed as betelquidand widely used in Chinese and Indian folk medicine, as carminative, stimulant,astringent, against parasitic worms, conjunctivitis, rheumatism, wound, etc., andis also used for religious purposes. Hydroxychavicol is the most important bioactive compound among the wide range of phytoconstituents found in essential oil and extracts. The pharmacological attributes of P. betle are antiproliferation, anticancer, neuropharmacological, analgesic, antioxidant, antiulcerogenic, hepatoprotective, antifertility, antibacterial, antifungal and many more. Immense attention has been paid to nanoformulations and their applications. The application of P. betle did not show cytotoxicity in preclinical experiments, suggesting that it could serve as a promising therapeutic candidate for different diseases. The present review comprehensively summarizes the botanical description, geographical distribution, economic value and cultivation, ethnobotanical uses, preclinical pharmacological properties with insights of toxicological, clinical efficacy, and safety of P. betle. The findings suggest that P. betle represents an orally active and safe natural agent that exhibits great therapeutic potential for managing various human medical conditions. However, further research is needed to elucidate its underlying molecular mechanisms of action, clinical aspects, structure-activity relationships, bioavailability and synergistic interactions with other drugs.
Collapse
Affiliation(s)
- Protha Biswas
- Department of Life Sciences, Presidency University, Kolkata, West Bengal, India
| | - Uttpal Anand
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Suchismita Chatterjee Saha
- Department of Zoology, Nabadwip Vidyasagar College (Affiliated to the University of Kalyani), Nabadwip, West Bengal, India
| | - Nishi Kant
- Department of Biotechnology, School of Health and Allied Science, ARKA Jain University, Jamshedpur, Jharkhand, India
| | - Tulika Mishra
- Department of Botany, Deen Dayal Upadhyay Gorakhpur University, Gorakhpur, Uttar Pradesh, India
| | - Harison Masih
- Department of Industrial Microbiology, Jacob Institute of Biotechnology and Bioengineering, Sam Higginbottom University of Agriculture, Technology and Sciences, Prayagraj, Uttar Pradesh, India
| | - Ananya Bar
- Department of Zoology, Wilson College (Affiliated to University of Mumbai), Mumbai, Maharashtra, India
| | - Devendra Kumar Pandey
- Department of Biotechnology, Lovely Professional University, Phagwara, Punjab, India
| | - Niraj Kumar Jha
- Department of Biotechnology, School of Engineering & Technology, Sharda University, Greater Noida, Uttar Pradesh, India
| | - Madhumita Majumder
- Department of Botany, Raidighi College (Affiliated to University of Calcutta), Raidighi, West Bengal, India
| | - Neela Das
- Department of Botany, Rishi Bankim Chandra College (Affiliated to the West Bengal State University), Naihati, West Bengal, India
| | - Vijaykumar Shivaji Gadekar
- Zoology Department, Sangola College (Affiliated to Punyashlok Ahilyadevi Holkar Solapur University), Solapur, Maharashtra, India
| | - Mahipal S Shekhawat
- Plant Biotechnology Unit, Kanchi Mamunivar Government Institute for Postgraduate Studies and Research, Puducherry, India
| | - Manoj Kumar
- Chemical and Biochemical Processing Division, ICAR - Central Institute for Research on Cotton Technology, Mumbai, Maharashtra, India
| | - Radha
- School of Biological and Environmental Sciences, Shoolini University of Biotechnology and Management Sciences, Solan, Himachal Pradesh, India
| | - Jarosław Proćków
- Department of Plant Biology, Institute of Environmental Biology, Wrocław University of Environmental and Life Sciences, Wrocław, Poland
| | - José M Pérez de la Lastra
- Instituto de Productos Naturales y Agrobiología (IPNA), Consejo Superior de Investigaciones científicas (CSIS), Santa Cruz de Tenerife, Spain
| | - Abhijit Dey
- Department of Life Sciences, Presidency University, Kolkata, West Bengal, India
| |
Collapse
|
4
|
Kaya E, Yılmaz S, Ceribasi S. Protective Role of Propolis on Low and High Dose Furan-induced Hepatotoxicity and Oxidative Stress in Rats. J Vet Res 2019; 63:423-431. [PMID: 31572824 PMCID: PMC6749730 DOI: 10.2478/jvetres-2019-0054] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Accepted: 08/12/2019] [Indexed: 01/13/2023] Open
Abstract
INTRODUCTION The aim of this study was to evaluate potential protective effects of propolis on furan-induced hepatic damage by assessing the levels of malondialdehyde (MDA) and reduced glutathione (GSH), antioxidant enzyme activities, and histopathological changes in the liver. MATERIAL AND METHODS Albino Wistar rats were divided into six groups: a control, propolis-treated (100 mg/kg b.w./day), low-dose furan-treated (furan-L group; 2 mg/kg b.w./day), high-dose furan-treated (furan-H group; 16 mg/kg b.w./day), furan-L+propolis treated, and furan-H+propolis treated group. Propolis and furan were applied by gavage; propolis for 8 days, and furan for 20 days in furan-L groups and 10 days in furan-H groups. RESULTS While MDA levels were elevated in furan-treated groups, levels of GSH and activities of antioxidant enzymes decreased (p < 0.001). The levels of MDA and GSH and activities of antioxidant enzymes were normal in the furan+propolis groups, especially in the furan-L+propolis group (p < 0.001). While the aspartate transaminase, alanine transaminase, alkaline phosphatase, and lactate pdehydrogenase activities were elevated in the furan-H treated group (p < 0.05 and p < 0.001), they were unchanged in the furan-L treated group. Histopathologically, several lesions were observed in the liver tissues of the furan-treated groups, especially in the higher-dose group. It was determined that these changes were milder in both of the furan+propolis groups. CONCLUSION The results indicate that propolis exhibits good hepatoprotective and antioxidant potential against furan-induced hepatocellular damage in rats.
Collapse
Affiliation(s)
- Emre Kaya
- Department of Biochemistry, Elaziğ, Turkey
| | | | - Songul Ceribasi
- Department of Pathology, Faculty of Veterinary Medicine, Firat University, 23119, Elaziğ, Turkey
| |
Collapse
|
5
|
Sujarwo W, Keim AP, Savo V, Guarrera PM, Caneva G. Ethnobotanical study of Loloh: Traditional herbal drinks from Bali (Indonesia). JOURNAL OF ETHNOPHARMACOLOGY 2015; 169:34-48. [PMID: 25861955 DOI: 10.1016/j.jep.2015.03.079] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2015] [Revised: 03/11/2015] [Accepted: 03/12/2015] [Indexed: 06/04/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Loloh are herbal drinks produced and consumed exclusively in Bali (Indonesia) to prevent and treat different ailments. This is the first study to document plants species used as Loloh, reporting the phytochemical components and pharmacological properties of the most cited plants. Documenting the plants used in herbal drinks in Bali by local communities to treat various ailments (providing some information on phytochemistry and pharmacology of the most interesting plants). MATERIALS AND METHODS Ethnobotanical data were obtained through semi-structured interviews (individual and group discussions) and questionnaires. Plant specimens were collected, identified and made into herbarium vouchers. RESULTS A total of 51 plants species (belonging to 32 families) have been documented for their use in the various preparation of Loloh. Different plants and plant parts are used to prepare Loloh to treat heartburn, fever, diarrhea, hypertension, aphthous stomatitis (canker sores), and other minor health problems. These plants are mainly prepared as decoctions, are juiced or simply added to the preparation. The most cited plants (>30 informants) are Alstonia scholaris (L.) R. Br., Blumea balsamifera (L.) DC., Cinnamomum burmanni Nees ex Bl., and Piper betle L. These plants are well studied with multiple demonstrated pharmacological activities (e.g., antimicrobial, anticancer, antidiabetic). CONCLUSION The Balinese communities still preserve a rich ethnobotanical knowledge. Several species are well known for their pharmacological properties, but some [such as Pneumatopteris callosa (Blume) Nakai and Dendrocnide stimulans (L. f.) Chew] are understudied and could be promising candidates for further research.
Collapse
Affiliation(s)
- Wawan Sujarwo
- Bali Botanical Gardens, Indonesian Institute of Sciences (LIPI), Candikuning Baturiti, Tabanan 82191, Bali, Indonesia; Department of Science, University Roma Tre, Viale G. Marconi 446, 00146 Rome, Italy.
| | - Ary Prihardhyanto Keim
- Research Center for Biology, Indonesian Institute of Sciences (LIPI), Cibinong Science Center, Cibinong 16911, West Java, Indonesia.
| | - Valentina Savo
- Hakai Institute, Simon Fraser University, 8888 University Drive, Burnaby, BC V5A 1S6, Canada.
| | - Paolo Maria Guarrera
- Istituto Centrale per la Demoetnoantropologia, MiBACT, Piazza Marconi 8-10, I-00144 Rome, Italy.
| | - Giulia Caneva
- Department of Science, University Roma Tre, Viale G. Marconi 446, 00146 Rome, Italy.
| |
Collapse
|
6
|
Ganai AA, Khan AA, Malik ZA, Farooqi H. Genistein modulates the expression of NF-κB and MAPK (p-38 and ERK1/2), thereby attenuating d-Galactosamine induced fulminant hepatic failure in Wistar rats. Toxicol Appl Pharmacol 2015; 283:139-46. [DOI: 10.1016/j.taap.2015.01.012] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2014] [Revised: 01/04/2015] [Accepted: 01/13/2015] [Indexed: 12/27/2022]
|
7
|
Fazal F, Mane PP, Rai MP, Thilakchand KR, Bhat HP, Kamble PS, Palatty PL, Baliga MS. The phytochemistry, traditional uses and pharmacology of Piper Betel. linn (Betel Leaf): A pan-asiatic medicinal plant. Chin J Integr Med 2014. [PMID: 25159859 DOI: 10.1007/s11655-013-1334-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2011] [Indexed: 11/24/2022]
Abstract
Since antiquity, Piper betel. Linn, commonly known as betel vine, has been used as a religious, recreational and medicinal plant in Southeast Asia. The leaves, which are the most commonly used plant part, are pungent with aromatic flavor and are widely consumed as a mouth freshener. It is carminative, stimulant, astringent and is effective against parasitic worms. Experimental studies have shown that it possess diverse biological and pharmacological effects, which includes antibacterial, antifungal, larvicidal, antiprotozal, anticaries, gastroprotective effects, free radical scavenging, antioxidant, anti-inflammatory hepatoprotective, immunomodulatory, antiulcer and chemopreventive activities. The active principles hydroxychavicol, allylpyrocatechol and eugenol with their plethora of pharmacological properties may also have the potential to develop as bioactive lead molecule. In this review, an attempt is made to summarize the religious, traditional uses, phytochemical composition and experimentally validated pharmacological properties of Piper betel. Emphasis is also placed on aspects warranting detail studies for it to be of pharmaceutical/clinical use to humans.
Collapse
Affiliation(s)
- Farhan Fazal
- Research and Development, Father Muller Medical College, Father Muller Road, Mangalore, Karnataka, 575002, India
| | | | | | | | | | | | | | | |
Collapse
|
8
|
Ganai AA, Jahan S, Ahad A, Abdin MZ, Farooqi H. Glycine propionyl l-carnitine attenuates d-Galactosamine induced fulminant hepatic failure in wistar rats. Chem Biol Interact 2014; 214:33-40. [PMID: 24565947 DOI: 10.1016/j.cbi.2014.02.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2013] [Revised: 01/21/2014] [Accepted: 02/13/2014] [Indexed: 10/25/2022]
Abstract
Glycine propionyl l-carnitine (GPLC) is a propionyl ester of carnitine that includes an additional glycine component. The present study evaluated hepatoprotective effect of GPLC in d-Galactosamine (d-GalN) induced fulminant hepatic failure. Rats were intraperitonially administered d-GalN (700mg/kgBW). GPLC was given as a pre-treatment (35mg/kgBW/day) for 1month followed by a single dose of d-GalN on the 31st day. d-GalN administration resulted in increased mortality and serum ALT and AST activities. These increases were significantly attenuated by GPLC. d-GalN treatment increased hepatic lipid peroxidation and a decrease in reduced glutathione content was observed. GPLC pre-treatment significantly decreased lipid peroxidation and augmented the level of GSH. d-GalN increased the circulating level of TNF-α and ATM-Kinase and MAP-Kinase expression. GPLC supplementation inhibited the increase in serum TNF-α and ATM-Kinase and MAP-Kinase expression. d-GalN treatment increased the level of Bax and Caspase-3 m-RNA while as a decline was observed in Bcl2 m-RNA. GPLC prevented the increase in Caspase-3 and Bax m-RNA and at the same time augmented the expression of Bcl2 m-RNA. Our findings suggest that GPLC alleviates d-GalN induced liver injury by strengthening antioxidative defense system and reducing apoptotic signalling pathways.
Collapse
Affiliation(s)
- Ajaz A Ganai
- Department of Biotechnology, Jamia Hamdard, New Delhi 110062, India.
| | - Sadaf Jahan
- Developmental Toxicology Division, Indian Institute of Toxicology Research, Lucknow 226001, Uttar Pradesh, India.
| | - Amjid Ahad
- Department of Biochemistry, Jamia Hamdard, New Delhi 110062, India.
| | - M Z Abdin
- Department of Biotechnology, Jamia Hamdard, New Delhi 110062, India.
| | - Humaira Farooqi
- Department of Biotechnology, Jamia Hamdard, New Delhi 110062, India.
| |
Collapse
|
9
|
Türkez H, Yousef MI, Geyikoglu F. Propolis prevents aluminium-induced genetic and hepatic damages in rat liver. Food Chem Toxicol 2010; 48:2741-6. [PMID: 20637254 DOI: 10.1016/j.fct.2010.06.049] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2010] [Revised: 06/22/2010] [Accepted: 06/30/2010] [Indexed: 01/12/2023]
Abstract
Aluminium is present in several manufactured foods and medicines and is also used in water purification. Therefore, the present experiment was undertaken to determine the effectiveness of propolis in modulating the aluminium chloride (AlCl(3)) induced genotoxicity and hepatotoxicity in liver of rats. Animals were assigned to 1 of 4 groups: control; 34 mg AlCl(3)/kg bw; 50mg propolis/kg bw; AlCl(3) (34 mg/kg bw) plus propolis (50mg/kg bw), respectively. Rats were orally administered their respective doses daily for 30 days. At the end of the experiment, rats were anesthetized and hepatocytes (HEP) were isolated for counting the number of micronucleated hepatocytes (MNHEPs). In addition, the levels of serum enzymes and histological alterations in liver were investigated. AlCl(3) caused a significant increase in MNHEPs, alkaline phosphatase, transaminases (AST and ALT) and lactate dehydrogenase (LDH). Furthermore, severe pathological damages such as: sinusoidal dilatation, congestion of central vein, lipid accumulation and lymphocyte infiltration were established in liver. On the contrary, treatment with propolis alone did not cause any adverse effect on above parameters. Moreover, simultaneous treatments with propolis significantly modulated the toxic effects of AlCl(3). It can be concluded that propolis has beneficial influences and could be able to antagonize AlCl(3) toxicity.
Collapse
Affiliation(s)
- Hasan Türkez
- Department of Biology, Faculty of Sciences, Atatürk University, 25240 Erzurum, Turkey
| | | | | |
Collapse
|