1
|
Idowu OK, Oremosu AA, Dosumu OO, Mohammed AA. Ribose-cysteine and levodopa abrogate Parkinsonism via the regulation of neurochemical and redox activities in alpha-synuclein transgenic Drosophila melanogaster models. Fly (Austin) 2024; 18:2306687. [PMID: 38286464 PMCID: PMC10826630 DOI: 10.1080/19336934.2024.2306687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 01/12/2024] [Indexed: 01/31/2024] Open
Abstract
Parkinson's disease (PD), the most prevalent type of parkinsonism, is a progressive neurodegenerative condition marked by several non-motor and motor symptoms. PD is thought to have a complex aetiology that includes a combination of age, genetic predisposition, and environmental factors. Increased expression of α-synuclein (α-Syn) protein is central to the evolvement of neuropathology in this devastating disorder, but the potential of ribose-cysteine and levodopa in abating pathophysiologic changes in PD model is unknown. Crosses were set up between flies conditionally expressing a pathological variant of human α-Syn (UAS-α-Syn) and those expressing GAL4 in neurons (elav-GAL4) to generate offspring referred to as PD flies. Flies were randomly assigned to five groups (n = 40) from the total population of flies, with each group having five replicates. Groups of PD flies were treated with either 500 mg/kg ribose-cysteine diet, 250 mg/kg levodopa diet, or a combination of the two compounds for 21 days, whereas the control group (w1118) and the PD group were exposed to a diet without ribose-cysteine or levodopa. In addition to various biochemical and neurochemical assays, longevity, larval motility, and gravitaxis assays were carried out. Locomotive capability, lifespan, fecundity, antioxidant state, and neurotransmitter systems were all significantly (p < 0.05) compromised by overexpression of α-Syn. However, flies treated both ribose cysteine and levodopa showed an overall marked improvement in motor functions, lifespan, fecundity, antioxidant status, and neurotransmitter system functions. In conclusion, ribose-cysteine and levodopa, both singly and in combination, potentiated a therapeutic effect on alpha-synuclein transgenic Drosophila melanogaster models of Parkinsonism.
Collapse
Affiliation(s)
- Olumayowa K. Idowu
- Department of Anatomy, College of Medicine, University of Lagos, Lagos, Nigeria
- Department of Anatomy, College of Health Sciences, Osun State University, Osogbo, Nigeria
| | - Ademola A. Oremosu
- Department of Anatomy, College of Medicine, University of Lagos, Lagos, Nigeria
| | - Olufunke O. Dosumu
- Department of Anatomy, College of Medicine, University of Lagos, Lagos, Nigeria
| | - Abdullahi A. Mohammed
- Department of Human Anatomy, School of Medicine and Pharmacy, College of Medicine and Health Sciences, University of Rwanda, Rwanda
| |
Collapse
|
2
|
Idowu OK, Dosumu OO, Boboye AS, Oremosu AA, Mohammed AA. Lauric acid with or without levodopa ameliorates Parkinsonism in genetically modified model of Drosophila melanogaster via the oxidative-inflammatory-apoptotic pathway. Brain Behav 2024; 14:e70001. [PMID: 39245995 PMCID: PMC11381577 DOI: 10.1002/brb3.70001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 06/10/2024] [Accepted: 07/08/2024] [Indexed: 09/10/2024] Open
Abstract
BACKGROUND Parkinson's disease (PD), the most prevalent type of Parkinsonism, is a progressive neurological condition characterized by a range of motor and non-motor symptoms. The complicated etiology of PD is thought to involve a summation of aging, genetic predisposition, and environmental variables. However, the α-synuclein protein plays a significant role in the disease's pathophysiology. MATERIALS AND METHODS The UAS-α-Syn and Ddc-Gal4 strains were crossed to produce offspring referred to as PD flies. The entire population of flies was divided into five groups, each having about 100 flies and five replicates. The control group (w1118) and the PD group not receiving treatment were exposed to lauric acid (LA)/levodopa (LD)-free diet, while the PD groups that received treatments were fed with either a 250 mg/kg LA diet, a 250 mg/kg LD diet, or a combination of the two for 21 days. Longevity, geotaxis, and olfactory assays were performed in addition to other biochemical tests. RESULTS As a result of the overexpression of α-synuclein, the locomotive capacity, lifespan, and antioxidant status were all significantly (p < .05) reduced, and the apoptotic and neuroinflammatory activities were increased. Nevertheless, the majority of the treated flies improved significantly (p < .05). CONCLUSION LA, whether combined with LD or not, elicited a significant response in α-synuclein/dopa decarboxylase genetically modified Drosophila melanogaster Parkinsonism models.
Collapse
Affiliation(s)
- Olumayowa K Idowu
- Department of Anatomy, College of Medicine, University of Lagos, Lagos, Nigeria
- Department of Anatomy, College of Health Sciences, Osun State University, Osogbo, Nigeria
| | - Olufunke O Dosumu
- Department of Anatomy, College of Medicine, University of Lagos, Lagos, Nigeria
| | - Ayodeji S Boboye
- Department of Anatomy, College of Health Sciences, Federal University of Technology, Akure, Nigeria
| | - Ademola A Oremosu
- Department of Anatomy, College of Medicine, University of Lagos, Lagos, Nigeria
| | - Abdullahi A Mohammed
- Department of Human Anatomy, School of Medicine and Pharmacy, College of Medicine and Health Sciences, University of Rwanda, Butare, Rwanda
| |
Collapse
|
3
|
Rafiei Y, Salmani B, Mirzaei-Behbahani B, Taleb M, Meratan AA, Ramezani M, Nikfarjam N, Becker S, Rezaei-Ghaleh N. Polyphenols-Based Nanosheets of Propolis Modulate Cytotoxic Amyloid Fibril Assembly of α-Synuclein. ACS Chem Neurosci 2022; 13:3168-3179. [PMID: 36314062 DOI: 10.1021/acschemneuro.2c00465] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Natural compounds with anti-aggregation capacity are increasingly recognized as viable candidates against neurodegenerative diseases. Recently, the polyphenolic fraction of propolis (PFP), a complex bee product, has been shown to inhibit amyloid aggregation of a model protein especially in the nanosheet form. Here, we examine the aggregation-modulating effects of the PFP nanosheets on α-synuclein (α-syn), an intrinsically disordered protein involved in the pathogenesis of Parkinson's disease. Based on a range of biophysical data including intrinsic and extrinsic fluorescence, circular dichroism (CD) data, and nuclear magnetic resonance spectroscopy, we propose a model for the interaction of α-syn with PFP nanosheets, where the positively charged N-terminal and the middle non-amyloid component regions of α-syn act as the main binding sites with the negatively charged PFP nanosheets. The Thioflavin T (ThT) fluorescence, Congo red absorbance, and CD data reveal a prominent dose-dependent inhibitory effect of PFP nanosheets on α-syn amyloid aggregation, and the microscopy images and MTT assay data suggest that the PFP nanosheets redirect α-syn aggregation toward nontoxic off-pathway oligomers. When preformed α-syn amyloid fibrils are present, fluorescence images show co-localization of PFP nanosheets and ThT, further confirming the binding of PFP nanosheets with α-syn amyloid fibrils. Taken together, our results demonstrate the binding and anti-aggregation activity of PFP nanosheets in a disease-related protein system and propose them as potential nature-based tools for probing and targeting pathological protein aggregates in neurodegenerative diseases.
Collapse
Affiliation(s)
- Yasin Rafiei
- Department of Biological Sciences, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan 45137-66731, Iran
| | - Bahram Salmani
- Department of Biological Sciences, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan 45137-66731, Iran
| | - Behnaz Mirzaei-Behbahani
- Department of Biological Sciences, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan 45137-66731, Iran
| | - Mahshid Taleb
- Department of Biological Sciences, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan 45137-66731, Iran
| | - Ali Akbar Meratan
- Department of Biological Sciences, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan 45137-66731, Iran
| | - Mohammad Ramezani
- Department of Biological Sciences, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan 45137-66731, Iran
| | - Nasser Nikfarjam
- Department of Chemistry, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan 45137-66731, Iran
| | - Stefan Becker
- Department of NMR-Based Structural Biology, Max Planck Institute for Multidisciplinary Sciences, Am Faßberg 11, Göttingen D-37077, Germany
| | - Nasrollah Rezaei-Ghaleh
- Department of NMR-Based Structural Biology, Max Planck Institute for Multidisciplinary Sciences, Am Faßberg 11, Göttingen D-37077, Germany.,Institute of Physical Biology, Heinrich Heine University Düsseldorf, Universitätsstrasse 1, Düsseldorf D-40225, Germany.,Institute of Biological Information Processing (IBI-7): Structural Biochemistry, Forschungszentrum Jülich, Wilhelm-Johnen-Strasse, Jülich D-52428, Germany
| |
Collapse
|
4
|
Hossain S, Yousaf M, Liu Y, Chang D, Zhou X. An Overview of the Evidence and Mechanism of Drug-Herb Interactions Between Propolis and Pharmaceutical Drugs. Front Pharmacol 2022; 13:876183. [PMID: 35444531 PMCID: PMC9015648 DOI: 10.3389/fphar.2022.876183] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 02/28/2022] [Indexed: 12/18/2022] Open
Abstract
With the growing interest in the medicinal use of propolis, numerous studies have reported significant interactions between propolis extract and pharmaceutical drugs which may result in great clinical benefits or risks. The present study aims to review the drug-herb interactions of the full-spectrum propolis extract and main pharmaceutical drugs from the pharmacodynamic and pharmacokinetic aspects and elucidate the underlying pharmacological mechanisms. A literature search was conducted between June 2021 and February 2022 in Google Scholar, PubMed, MEDLINE, and EMBASE databases to include English studies from years 2000 to 2022 that evaluated the interaction of full-spectrum propolis extract and standard pharmaceutical drugs/cytochromes P450s. Studies that looked into geopropolis, propolis fractions, and isolated compounds, or interaction of propolis with foods, bioactive molecules, or receptors other than standard pharmaceutical drugs were excluded. From a pharmacodynamic perspective, propolis extract exhibited positive or synergistic interaction with several chemotherapeutic drugs by enhancing antitumor activity, sensitizing the chemoresistance cell lines, and attenuating multi-organ toxicity. The molecular mechanisms were associated with upregulating the apoptotic signal and immunomodulatory activity and attenuating oxidative damage. Propolis extract also enhanced the anti-bacterial and antifungal activities of many antimicrobial drugs against sensitive and resistant organisms, with an effect against the gram-positive bacteria stronger than that of the gram-negative bacteria. The synergistic action was related to strengthened action on interfering cell wall integrity and protein synthesis. The strong antioxidant activity of propolis also strengthened the therapeutic effect of metformin in attenuating hyperglycemia and pancreatic damage, as well as mitigating oxidative stress in the liver, kidney, and testis. In addition, propolis showed a potential capacity to enhance short-term and long-term memory function together with donepezil and improve motor function with levodopa and parasite killing activity with praziquantel. Pharmacokinetic studies showed inhibitory activities of propolis extracts on several CYP450 enzymes in vitro and in vivo. However, the effects on those CYP450 were deemed insignificant in humans, which may be attributed to the low bioavailability of the contributing bioactive compounds when administered in the body. The enhanced bioactivities of propolis and main pharmaceutical drugs support using propolis in integrative medicine in anti-cancer, anti-microbial, antidiabetic, and neurological disorders, with a low risk of altered pharmacokinetic activities.
Collapse
Affiliation(s)
- Sanowar Hossain
- Department of Pharmacy, Pabna University of Science and Technology, Pabna, Bangladesh
| | - Muhammad Yousaf
- Department of Bioinformatics and Biotechnology, Government College University, Faisalabad, Pakistan
| | - Yang Liu
- NICM Health Research Institute, Western Sydney University, Penrith, NSW, Australia
| | - Dennis Chang
- NICM Health Research Institute, Western Sydney University, Penrith, NSW, Australia
| | - Xian Zhou
- NICM Health Research Institute, Western Sydney University, Penrith, NSW, Australia
| |
Collapse
|
5
|
Zulhendri F, Perera CO, Tandean S. Can Propolis Be a Useful Adjuvant in Brain and Neurological Disorders and Injuries? A Systematic Scoping Review of the Latest Experimental Evidence. Biomedicines 2021; 9:1227. [PMID: 34572413 PMCID: PMC8470086 DOI: 10.3390/biomedicines9091227] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 09/12/2021] [Accepted: 09/14/2021] [Indexed: 11/29/2022] Open
Abstract
Propolis has been used therapeutically for centuries. In recent years, research has demonstrated its efficacy as a potential raw material for pharmaceuticals and nutraceuticals. The aim of the present scoping review is to examine the latest experimental evidence regarding the potential use of propolis in protecting the brain and treating neurological disorders and injuries. A systematic scoping review methodology was implemented. Identification of the research themes and knowledge gap was performed. After applying the exclusion criteria, a total of 66 research publications were identified and retrieved from Scopus, Web of Science, Pubmed, and Google Scholar. Several key themes where propolis is potentially useful were subsequently identified, namely detoxification, neuroinflammation, ischemia/ischemia-reperfusion injury/traumatic brain injury, Alzheimer's disease, Parkinson's disease, and epilepsy models, depression, cytotoxicity, cognitive improvement, regenerative medicine, brain infection, and adverse effects. In conclusion, propolis is shown to have protective and therapeutic benefits in alleviating symptoms of brain and neurological disorders and injuries, demonstrated by various in vitro studies, animal models, and human clinical trials. Further clinical research into this area is needed.
Collapse
Affiliation(s)
| | - Conrad O Perera
- Food Science Program, School of Chemical Sciences, University of Auckland, 23 Symonds Street, Auckland CBD, Auckland 1010, New Zealand
| | - Steven Tandean
- Department of Neurosurgery, Faculty of Medicine, Universitas Sumatera Utara, Medan 20222, Sumatera Utara, Indonesia
| |
Collapse
|