1
|
Lai CY, Tsai IJ, Chiu PC, Ascher DB, Chien YH, Huang YH, Lin YL, Hwu WL, Lee NC. A novel deep intronic variant strongly associates with Alkaptonuria. NPJ Genom Med 2021; 6:89. [PMID: 34686677 PMCID: PMC8536767 DOI: 10.1038/s41525-021-00252-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Accepted: 10/04/2021] [Indexed: 11/08/2022] Open
Abstract
Alkaptonuria is a rare autosomal recessive inherited disorder of tyrosine metabolism, which causes ochronosis, arthropathy, cardiac valvular calcification, and urolithiasis. The epidemiology of alkaptonuria in East Asia is not clear. In this study, patients diagnosed with alkaptonuria from January 2010 to June 2020 were reviewed. Their clinical and molecular features were further compared with those of patients from other countries. Three patients were found to have alkaptonuria. Mutation analyses of the homogentisate 1,2-dioxygenase gene (HGD) showed four novel variants c.16-2063 A > C, p.(Thr196Ile), p.(Gly344AspfsTer25), and p.(Gly362Arg) in six mutated alleles (83.3%). RNA sequencing revealed that c.16-2063 A > C activates a cryptic exon, causing protein truncation p.(Tyr5_Ile6insValTer17). A literature search identified another 6 patients with alkaptonuria in East Asia; including our cases, 13 of the 18 mutated alleles have not been reported elsewhere in the world. Alkaptonuria is rare in Taiwan and East Asia, with HGD variants being mostly novel and private.
Collapse
Affiliation(s)
- Chien-Yi Lai
- Department of Medical Genetics, National Taiwan University Hospital, Taipei, Taiwan
- Department of Pediatrics, National Taiwan University Children Hospital, Taipei, Taiwan
- Department of Pediatrics, National Taiwan University Hospital Hsin-Chu Branch, Hsin-Chu, Taiwan
| | - I-Jung Tsai
- Department of Pediatrics, National Taiwan University Children Hospital, Taipei, Taiwan
| | - Pao-Chin Chiu
- Department of Pediatrics, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan
| | - David B Ascher
- Computational Biology and Clinical Informatics, Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
- Structural Biology and Bioinformatics, Department of Biochemistry and Pharmacology, University of Melbourne, Melbourne, VIC, Australia
- Systems and Computational Biology, Bio21 Institute, University of Melbourne, Melbourne, VIC, Australia
- Department of Biochemistry, Bio21 Institute, University of Cambridge, Cambridge, UK
| | - Yin-Hsiu Chien
- Department of Medical Genetics, National Taiwan University Hospital, Taipei, Taiwan
- Department of Pediatrics, National Taiwan University Children Hospital, Taipei, Taiwan
| | - Yu-Hsuan Huang
- Department of Medical Genetics, National Taiwan University Hospital, Taipei, Taiwan
| | - Yi-Lin Lin
- Department of Medical Genetics, National Taiwan University Hospital, Taipei, Taiwan
| | - Wuh-Liang Hwu
- Department of Medical Genetics, National Taiwan University Hospital, Taipei, Taiwan
- Department of Pediatrics, National Taiwan University Children Hospital, Taipei, Taiwan
| | - Ni-Chung Lee
- Department of Medical Genetics, National Taiwan University Hospital, Taipei, Taiwan.
- Department of Pediatrics, National Taiwan University Children Hospital, Taipei, Taiwan.
| |
Collapse
|
2
|
Braconi D, Millucci L, Bernardini G, Santucci A. Oxidative stress and mechanisms of ochronosis in alkaptonuria. Free Radic Biol Med 2015; 88:70-80. [PMID: 25733348 DOI: 10.1016/j.freeradbiomed.2015.02.021] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2014] [Revised: 01/29/2015] [Accepted: 02/19/2015] [Indexed: 12/16/2022]
Abstract
Alkaptonuria (AKU) is a rare metabolic disease due to a deficient activity of the enzyme homogentisate 1,2-dioxygenase (HGD), involved in Phe and Tyr catabolism. Due to such a deficiency, AKU patients undergo accumulation of the metabolite homogentisic acid (HGA), which is prone to oxidation/polymerization reactions causing the production of a melanin-like pigment. Once the pigment is deposited onto connective tissues (mainly in joints, spine, and cardiac valves), a classical bluish-brown discoloration is imparted, leading to a phenomenon known as "ochronosis", the hallmark of AKU. A clarification of the molecular mechanisms for the production and deposition of the ochronotic pigment in AKU started only recently with a range of in vitro and ex vivo human models used for the study of HGA-induced effects. Thanks to redox-proteomic analyses, it was found that HGA could induce significant oxidation of a number of serum and chondrocyte proteins. Further investigations allowed highlighting how HGA-induced proteome alteration, lipid peroxidation, thiol depletion, and amyloid production could contribute to oxidative stress generation and protein oxidation in AKU. This review briefly summarizes the most recent findings on HGA-induced oxidative stress in AKU, helping in the clarification of the molecular mechanisms of ochronosis and potentially providing the basis for its pharmacological treatment. Future work should be undertaken in order to validate in vivo the results so far obtained in in vitro AKU models.
Collapse
Affiliation(s)
- Daniela Braconi
- Dipartimento di Biotecnologie, Chimica e Farmacia, Università degli Studi di Siena, Siena, Italy
| | - Lia Millucci
- Dipartimento di Biotecnologie, Chimica e Farmacia, Università degli Studi di Siena, Siena, Italy
| | - Giulia Bernardini
- Dipartimento di Biotecnologie, Chimica e Farmacia, Università degli Studi di Siena, Siena, Italy
| | - Annalisa Santucci
- Dipartimento di Biotecnologie, Chimica e Farmacia, Università degli Studi di Siena, Siena, Italy.
| |
Collapse
|