1
|
Kırmızıbekmez H, Kendir Demirkol Y, Akgün Doğan Ö, Seymen G, İnan Balcı E, Atla P, Dursun F. Familial early-onset obesity in Turkish children: variants and polymorphisms in the melanocortin-4 receptor (MC4R) gene. J Pediatr Endocrinol Metab 2022; 35:657-662. [PMID: 35355494 DOI: 10.1515/jpem-2021-0756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 03/11/2022] [Indexed: 11/15/2022]
Abstract
OBJECTIVES Genetic factors have a key role in childhood obesity with higher rates in children than adults. Among the monogenic types of non-syndromic obesity, melanocortin-4 receptor (MC4R) deficiency is the most frequent cause. Beside pathogenic variants, single-nucleotide polymorphisms in MC4R gene are also associated with lower energy expenditure. The aim of this study was to estimate the frequency of MC4R variants and polymorphisms in a cohort of Turkish children and adolescents with severe early-onset obesity, and to understand the clinical features of patients. METHODS Patients, 1-17 years of age, with the onset of obesity before 10 years of age and a body mass index (BMI) standard deviation score (SDS) of >2.3, and who had a family history of early-onset obesity in at least one of their first-degree relatives were included in the study. Beside routine blood tests genetic analyses for MC4R gene were performed. RESULTS Analyses of MC4R revealed previously known variations in three (3.5%) patients, and pathogenic polymorphisms related with obesity in four (4.7%) patients. BMI SDS values were between 2.8 and 5.5 SDS in the pathogenic variant carrier group, and 2.8-4.9 SDS in the polymorphism group. Mean BMI SDS in variant-negative group was 3.4 ± 0.82. CONCLUSIONS Investigation of the MC4R in individuals with early-onset obesity and presence of obesity first-degree relatives is important. Hypertension is a rare comorbidity compared to other causes. Contrary to studies reporting that insulin resistance was absent or very rare, we found it as a frequent finding in both pathogenic variants and polymorphisms of MC4R.
Collapse
Affiliation(s)
- Heves Kırmızıbekmez
- Department of Pediatric Endocrinology, University of Health Sciences, Ümraniye Training and Research Hospital, Istanbul, Turkey
| | - Yasemin Kendir Demirkol
- Department of Pediatric Genetics, University of Health Sciences, Ümraniye Training and Research Hospital, Istanbul, Turkey
| | - Özlem Akgün Doğan
- Department of Pediatric Genetics, University of Health Sciences, Ümraniye Training and Research Hospital, Istanbul, Turkey
| | - Gülcan Seymen
- Department of Pediatric Endocrinology, University of Health Sciences, Ümraniye Training and Research Hospital, Istanbul, Turkey
| | - Elif İnan Balcı
- Department of Pediatric Endocrinology, University of Health Sciences, Ümraniye Training and Research Hospital, Istanbul, Turkey
| | - Pınar Atla
- Department of Pediatric Endocrinology, University of Health Sciences, Ümraniye Training and Research Hospital, Istanbul, Turkey
| | - Fatma Dursun
- Department of Pediatric Endocrinology, University of Health Sciences, Ümraniye Training and Research Hospital, Istanbul, Turkey
| |
Collapse
|
2
|
Czogała W, Czogała M, Strojny W, Wątor G, Wołkow P, Wójcik M, Bik Multanowski M, Tomasik P, Wędrychowicz A, Kowalczyk W, Miklusiak K, Łazarczyk A, Hałubiec P, Skoczeń S. Methylation and Expression of FTO and PLAG1 Genes in Childhood Obesity: Insight into Anthropometric Parameters and Glucose-Lipid Metabolism. Nutrients 2021; 13:1683. [PMID: 34063412 PMCID: PMC8155878 DOI: 10.3390/nu13051683] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Revised: 04/23/2021] [Accepted: 05/11/2021] [Indexed: 12/18/2022] Open
Abstract
The occurrence of childhood obesity is influenced by both genetic and epigenetic factors. FTO (FTO alpha-ketoglutarate dependent dioxygenase) is a gene of well-established connection with adiposity, while a protooncogene PLAG1 (PLAG1 zinc finger) has been only recently linked to this condition. We performed a cross-sectional study on a cohort of 16 obese (aged 6.6-17.7) and 10 healthy (aged 11.4-16.9) children. The aim was to evaluate the relationship between methylation and expression of the aforementioned genes and the presence of obesity as well as alterations in anthropometric measurements (including waist circumference (WC), body fat (BF_kg) and body fat percent (BF_%)), metabolic parameters (lipid profile, blood glucose and insulin levels, presence of insulin resistance) and blood pressure. Expression and methylation were measured in peripheral blood mononuclear cells using a microarray technique and a method based on restriction enzymes, respectively. Multiple regression models were constructed to adjust for the possible influence of age and sex on the investigated associations. We showed significantly increased expression of the FTO gene in obese children and in patients with documented insulin resistance. Higher FTO expression was also associated with an increase in WC, BF_kg, and BF_% as well as higher fasting concentration of free fatty acids (FFA). FTO methylation correlated positively with WC and BF_kg. Increase in PLAG1 expression was associated with higher BF%. Our results indicate that the FTO gene is likely to play an important role in the development of childhood adiposity together with coexisting impairment of glucose-lipid metabolism.
Collapse
Affiliation(s)
- Wojciech Czogała
- Department of Pediatric Oncology and Hematology, University Children’s Hospital of Krakow, 30-663 Krakow, Poland; (W.C.); (M.C.); (W.S.)
| | - Małgorzata Czogała
- Department of Pediatric Oncology and Hematology, University Children’s Hospital of Krakow, 30-663 Krakow, Poland; (W.C.); (M.C.); (W.S.)
- Department of Pediatric Oncology and Hematology, Faculty of Medicine, Jagiellonian University Medical College, 30-663 Krakow, Poland
| | - Wojciech Strojny
- Department of Pediatric Oncology and Hematology, University Children’s Hospital of Krakow, 30-663 Krakow, Poland; (W.C.); (M.C.); (W.S.)
| | - Gracjan Wątor
- Center for Medical Genomics—OMICRON, Jagiellonian University Medical College, 30-663 Krakow, Poland; (G.W.); (P.W.)
| | - Paweł Wołkow
- Center for Medical Genomics—OMICRON, Jagiellonian University Medical College, 30-663 Krakow, Poland; (G.W.); (P.W.)
| | - Małgorzata Wójcik
- Department of Pediatric and Adolescent Endocrinology, Faculty of Medicine, Jagiellonian University Medical College, 30-663 Krakow, Poland;
| | - Mirosław Bik Multanowski
- Department of Medical Genetics, Faculty of Medicine, Jagiellonian University Medical College, 30-663 Krakow, Poland;
| | - Przemysław Tomasik
- Department of Clinical Biochemistry, Faculty of Medicine, Jagiellonian University Medical College, 30-663 Krakow, Poland;
| | - Andrzej Wędrychowicz
- Department of Pediatrics, Gastroenterology and Nutrition, Faculty of Medicine, Jagiellonian University Medical College, 30-663 Krakow, Poland;
| | - Wojciech Kowalczyk
- Student Scientific Group of Pediatric Oncology and Hematology, Jagiellonian University Medical College, 30-663 Krakow, Poland; (W.K.); (K.M.); (A.Ł.); (P.H.)
| | - Karol Miklusiak
- Student Scientific Group of Pediatric Oncology and Hematology, Jagiellonian University Medical College, 30-663 Krakow, Poland; (W.K.); (K.M.); (A.Ł.); (P.H.)
| | - Agnieszka Łazarczyk
- Student Scientific Group of Pediatric Oncology and Hematology, Jagiellonian University Medical College, 30-663 Krakow, Poland; (W.K.); (K.M.); (A.Ł.); (P.H.)
| | - Przemysław Hałubiec
- Student Scientific Group of Pediatric Oncology and Hematology, Jagiellonian University Medical College, 30-663 Krakow, Poland; (W.K.); (K.M.); (A.Ł.); (P.H.)
| | - Szymon Skoczeń
- Department of Pediatric Oncology and Hematology, University Children’s Hospital of Krakow, 30-663 Krakow, Poland; (W.C.); (M.C.); (W.S.)
- Department of Pediatric Oncology and Hematology, Faculty of Medicine, Jagiellonian University Medical College, 30-663 Krakow, Poland
| |
Collapse
|
3
|
Mǎrginean CO, Mǎrginean C, Meliţ LE. New Insights Regarding Genetic Aspects of Childhood Obesity: A Minireview. Front Pediatr 2018; 6:271. [PMID: 30338250 PMCID: PMC6180186 DOI: 10.3389/fped.2018.00271] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Accepted: 09/10/2018] [Indexed: 01/26/2023] Open
Abstract
Introduction: Childhood obesity is occurring at alarming rates in both developed and developing countries. "Obesogenic" environmental factors must be associated with variants of different risk alleles to determine polygenic or common obesity, and their impact depends on different developmental stages.The interaction between obesogenic environment and genetic susceptibility results in the so-called polygenic forms of obesity. In contrast, monogenic and syndromic obesity are not influenced by environmental events. Therefore, this review aimed to underline the roles of some of the most studied genes in the development of monogenic and polygenic obesity in children. Results: Among the most common obesity related genes, we chose the fat mass and obesity-associated (FTO) gene, leptin gene and its receptor, tumor necrosis factor alpha (TNF-α), the melanocortin 4 receptor gene (MC4R), Ectoenzyme nucleotide pyrophosphate phosphodiesterase 1 (ENPP1), and others, such as peroxisome proliferator-activated receptor gamma (PPARG), angiotensin-converting enzyme (ACE), glutathione S-transferase (GST), and interleukin-6 (IL-6) genes. The roles of these genes are complex and interdependent, being linked to different cornerstones in obesity development, such as appetite behavior, control of food intake and energy balance, insulin signaling, lipid and glucose metabolism, metabolic disorders, adipocyte differentiation, and so on. Conclusions: Genetic predisposition is mandatory, but not enough to trigger obesity.Dietary interventions and proper lifestyle changes can prevent obesity development in genetically predisposed children. Further studies are needed to identify the precise role of both genetic and obesogenic factors in the development of childhood obesity in order to design effective preventive methods.
Collapse
Affiliation(s)
- Cristina Oana Mǎrginean
- Department of Pediatrics, University of Medicine and Pharmacy Târgu Mureş, Târgu Mureş, Romania
| | - Claudiu Mǎrginean
- Department of Obstetrics and Gynecology, University of Medicine and Pharmacy Târgu Mureş, Târgu Mureş, Romania
| | - Lorena Elena Meliţ
- Department of Pediatrics, University of Medicine and Pharmacy Târgu Mureş, Târgu Mureş, Romania
| |
Collapse
|