1
|
Liao L, Wang T, Zhang L, Wei Y, Fan X. Protective Mechanisms of SGLTi in Ischemic Heart Disease. J Cardiovasc Transl Res 2024; 17:1018-1035. [PMID: 38767796 DOI: 10.1007/s12265-024-10513-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 04/11/2024] [Indexed: 05/22/2024]
Abstract
Ischemic heart disease (IHD) is a common clinical cardiovascular disease with high morbidity and mortality. Sodium glucose cotransporter protein inhibitor (SGLTi) is a novel hypoglycemic drug. To date, both clinical trials and animal experiments have shown that SGLTi play a protective role in IHD, including myocardial infarction (MI) and ischemia/reperfusion (I/R). The protective effects may be involved in mechanisms of energy metabolic conversion, anti-inflammation, anti-fibrosis, ionic homeostasis improvement, immune cell development, angiogenesis and functional regulation, gut microbiota regulation, and epicardial lipids. Thus, this review summarizes the above mechanisms and aims to provide theoretical evidence for therapeutic strategies for IHD.
Collapse
Affiliation(s)
- Lei Liao
- Department of Cardiology, the Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Tong Wang
- Key Laboratory of Medical Electrophysiology of Ministry of Education and Medical Electrophysiological Key Laboratory of Sichuan Province, Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Lu Zhang
- Department of Cardiology, the Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Yan Wei
- Key Laboratory of Medical Electrophysiology of Ministry of Education and Medical Electrophysiological Key Laboratory of Sichuan Province, Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, 646000, Sichuan, China.
| | - Xinrong Fan
- Department of Cardiology, the Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China.
- Key Laboratory of Medical Electrophysiology of Ministry of Education and Medical Electrophysiological Key Laboratory of Sichuan Province, Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, 646000, Sichuan, China.
| |
Collapse
|
2
|
Kong X, Jin G. Comprehensive analysis of macrophage-associated inflammatory genes in AMI based on bulk combined with single-cell sequencing data. PeerJ 2024; 12:e17981. [PMID: 39308815 PMCID: PMC11416078 DOI: 10.7717/peerj.17981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 08/06/2024] [Indexed: 09/25/2024] Open
Abstract
Background Previous studies have highlighted the crucial role of macrophages in the post-acute myocardial infarction (AMI) inflammatory response. This study specifically focused on investigating macrophage-related targets involved in the inflammatory response after AMI. Methods Bioinformatics methods were applied for identifying differentially expressed genes (DEGs) in datasets GSE163465, GSE236374, and GSE183272 obtained from the Gene Expression Omnibus (GEO) database. Communication analysis was conducted to analyze macrophages in AMI. Subsequent analyses encompassed functional enrichment analysis of Co-DEGs using Gene Ontology (GO) and Kyoto Encyclopaedia of Genes and Genomes (KEGG). Gene set variation analysis (GSVA) and immune infiltration analysis were carried out for screening key genes. Validation of the bioinformatics analysis results involved original and GSE114695 datasets, supported by quantitative real time polymerase chain reaction (qRT-PCR). Animal experiments confirmed the upregulation of Saa3, Acp5, and Fcgr4 genes in AMI mouse myocardial tissues. Results A total of 80 and 1,907 DEGs were respectively identified by analyzing scRNA-seq and bulk RNA-seq data. The overlapping Co-DEGs were found to be closely associated with inflammation-associated pathways, specifically the PI3K-Akt-mTOR pathway. Screening based on GSVA scores and macrophage-associated scores highlighted four key genes (Saa3, Ms4a4c, Acp5, and Fcgr4). Immunoinfiltration analysis revealed their close association with macrophages. Dataset validation corroborated these findings. Experimental validation focused on Saa3, Ms4a4c, Acp5, and Fcgr4, demonstrating the upregulation of their expression in cardiac macrophages in the AMI group, consistent with previous reports. Conclusion This study provides new perspectives on AMI treatment. In addition, Saa3, Acp5, and Fcgr4 exhibit potential as biomarkers for improving cardiac repair and slowing down the development of heart failure after AMI.
Collapse
Affiliation(s)
- Xugang Kong
- Department of Cardiology, Xiasha Campus, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Guangjun Jin
- Medical Department, The Second Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| |
Collapse
|
3
|
Hayashida T, Kuroko Y, Shimizu S, Akiyama T, Suezawa T, Kioka Y, Kotani Y, Shishido T, Kasahara S. Effects of dapagliflozin on myoglobin efflux from cardiomyocyte during myocardial ischemia/reperfusion in anesthetized rats. Sci Rep 2024; 14:16337. [PMID: 39014025 PMCID: PMC11253006 DOI: 10.1038/s41598-024-67195-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 07/09/2024] [Indexed: 07/18/2024] Open
Abstract
It has been suggested that sodium-glucose cotransporter 2 (SGLT2) inhibitors have cardioprotective effects during myocardial ischemia/reperfusion (I/R) independent of glucose-lowering action. However, the effects of SGLT2 inhibitors on structural damage to cardiomyocytes in the ischemic region during I/R remain unknown. We applied a microdialysis technique to the heart of anesthetized rats and investigated the effects of an SGLT2 inhibitor, dapagliflozin, on myocardial interstitial myoglobin levels in the ischemic region during coronary occlusion followed by reperfusion. Dapagliflozin was administered systemically (40 μg/body iv) or locally via a dialysis probe (100 μM and 1 mM) 30 min before coronary occlusion. In the vehicle group, coronary occlusion increased the dialysate myoglobin concentration in the ischemic region. Reperfusion further increased the dialysate myoglobin concentration. Intravenous administration of dapagliflozin reduced dialysate myoglobin concentration during ischemia and at 0-15 min after reperfusion, but local administration (100 μM and 1 mM) did not. Therefore, acute systemic administration of dapagliflozin prior to ischemia has cardioprotective effects on structural damage during I/R.
Collapse
Affiliation(s)
- Tomohiro Hayashida
- Department of Cardiovascular Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, 700-8558, Japan
- Department of Cardiovascular Surgery, Fukuyama City Hospital, Fukuyama, Hiroshima, 721-8511, Japan
| | - Yosuke Kuroko
- Department of Cardiovascular Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences and Okayama University Hospital, Okayama, 700-8558, Japan
| | - Shuji Shimizu
- Department of Cardiovascular Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, 700-8558, Japan.
- Department of Research Promotion and Management, National Cerebral and Cardiovascular Center, 6-1 Kishibe-Shimmachi, Suita, Osaka, 564-8565, Japan.
| | - Tsuyoshi Akiyama
- Department of Cardiac Physiology, National Cerebral and Cardiovascular Center, Suita, Osaka, 564-8565, Japan
| | - Takanori Suezawa
- Department of Cardiovascular Surgery, Fukuyama City Hospital, Fukuyama, Hiroshima, 721-8511, Japan
| | - Yukio Kioka
- Department of Cardiovascular Surgery, Fukuyama City Hospital, Fukuyama, Hiroshima, 721-8511, Japan
| | - Yasuhiro Kotani
- Department of Cardiovascular Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences and Okayama University Hospital, Okayama, 700-8558, Japan
| | - Toshiaki Shishido
- Department of Research Promotion and Management, National Cerebral and Cardiovascular Center, 6-1 Kishibe-Shimmachi, Suita, Osaka, 564-8565, Japan
| | - Shingo Kasahara
- Department of Cardiovascular Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences and Okayama University Hospital, Okayama, 700-8558, Japan
| |
Collapse
|
4
|
Yue TT, Cao YJ, Cao YX, Li WX, Wang XY, Si CY, Xia H, Zhu MJ, Tang JF, Wang H. Shuxuening Injection Inhibits Apoptosis and Reduces Myocardial Ischemia-Reperfusion Injury in Rats through PI3K/AKT Pathway. Chin J Integr Med 2024; 30:421-432. [PMID: 38153596 DOI: 10.1007/s11655-023-3650-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/14/2023] [Indexed: 12/29/2023]
Abstract
OBJECTIVE To investigate the main components and potential mechanism of Shuxuening Injection (SXNI) in the treatment of myocardial ischemia-reperfusion injury (MIRI) through network pharmacology and in vivo research. METHODS The Traditional Chinese Medicine Systems Pharmacology (TCMSP) and PharmMapper databases were used to extract and evaluate the effective components of Ginkgo biloba leaves, the main component of SXNI. The Online Mendelian Inheritance in Man (OMIM) and GeneCards databases were searched for disease targets and obtain the drug target and disease target intersections. The active ingredient-target network was built using Cytoscape 3.9.1 software. The STRING database, Metascape online platform, and R language were used to obtain the key targets and signaling pathways of the anti-MIRI effects of SXNI. In order to verify the therapeutic effect of different concentrations of SXNI on MIRI in rats, 60 rats were first divided into 5 groups according to random number table method: the sham operation group, the model group, SXNI low-dose (3.68 mg/kg), medium-dose (7.35 mg/kg), and high-dose (14.7 mg/kg) groups, with 12 rats in each group. Then, another 60 rats were randomly divided into 5 groups: the sham operation group, the model group, SXNI group (14.7 mg/kg), SXNI+LY294002 group, and LY294002 group, with 12 rats in each group. The drug was then administered intraperitoneally at body weight for 14 days. The main biological processes were validated using in vivo testing. Evans blue/triphenyltetrazolium chloride (TTC) double staining, hematoxylin-eosin (HE) staining, terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) assay, enzyme-linked immunosorbent assay (ELISA), and Western blot analysis were used to investigate the efficacy and mechanism of SXNI in MIRI rats. RESULTS Eleven core targets and 30 Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways were selected. Among these, the phosphoinositide 3-kinase (PI3K)/ protein kinase B (AKT) pathway was closely related to SXNI treatment of MIRI. In vivo experiments showed that SXNI reduced the myocardial infarction area in the model group, improved rat heart pathological damage, and reduced the cardiomyocyte apoptosis rate (all P<0.01). After SXNI treatment, the p-PI3K/PI3K and p-AKT/AKT ratios as well as B-cell lymphoma-2 (Bcl-2) protein expression in cardiomyocytes were increased, while the Bax and cleaved caspase 3 protein expression levels were decreased (all P<0.05). LY294002 partially reversed the protective effect of SXNI on MIRI. CONCLUSION SXNI protects against MIRI by activating the PI3K/AKT signaling pathway.
Collapse
Affiliation(s)
- Tong-Tong Yue
- The First Clinical Medical College of Henan University of Chinese Medicine, Zhengzhou, 450046, China
| | - Ying-Jie Cao
- Department of Pharmacy, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, 451200, China
| | - Ya-Xuan Cao
- The First Clinical Medical College of Henan University of Chinese Medicine, Zhengzhou, 450046, China
| | - Wei-Xia Li
- Department of Pharmacy, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, 451200, China
| | - Xiao-Yan Wang
- Department of Pharmacy, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, 451200, China
| | - Chun-Ying Si
- Department of Cardiovascular Diseases, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, 451200, China
| | - Han Xia
- Department of Cardiovascular Diseases, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, 451200, China
| | - Ming-Jun Zhu
- Department of Cardiovascular Diseases, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, 451200, China
| | - Jin-Fa Tang
- Department of Pharmacy, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, 451200, China
| | - He Wang
- Department of Cardiovascular Diseases, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, 451200, China.
| |
Collapse
|
5
|
Zuo W, Wang L, Tian R, Wang L, Liu Y, Qian H, Yang X, Liu Z. Dapagliflozin Alleviates Myocardial Ischaemia Reperfusion Injury by Activating Mitophagy via the AMPK-PINK1/Parkin Signalling Pathway. Curr Vasc Pharmacol 2024; 22:203-217. [PMID: 38141195 DOI: 10.2174/0115701611269801231211104905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 10/18/2023] [Accepted: 10/23/2023] [Indexed: 12/25/2023]
Abstract
INTRODUCTION Myocardial ischaemia reperfusion injury (MIRI) determines infarct size and long-term outcomes after acute myocardial infarction (AMI). Dapagliflozin, a sodium-glucose cotransporter 2 inhibitor, alleviates MIRI in animal models. METHOD We investigated the potential mechanisms underlying the cardioprotective effect of dapagliflozin against MIRI, focusing on mitochondrial injury and mitophagy. MIRI mouse and H9C2 cell models were established. RESULTS 2,3,5-Triphenyltetrazolium chloride (TTC) staining showed a significant alleviation of MIRI after pre-treatment of dapagliflozin compared to the model group (14.91 ± 1.76 vs. 40.47 ± 3.69%). Data from the pre-treatment dapagliflozin group showed a significant decrease in left ventricular ejection fraction (LVEF) (44.8 ± 2.7 vs. 28.5 ± 5.3%, P<0.01), left ventricular end-diastolic volume (LVEDV) (70.6 ± 9.5 vs. 93.5 ± 13.8 ul, P<0.05), and left ventricular end-systolic volume (LVESV) (39.0 ± 8.3 vs. 67.9 ± 13.7 ul, P<0.05) compared to the model group. Dapagliflozin also reduced the levels of reactive oxygen species (ROS) and fragmented mitochondrial DNA, reversed the decrease in mitochondrial membrane potential, and suppressed apoptosis. Further study showed that dapagliflozin could protect against mitochondrial injury by rapidly clearing damaged mitochondria via mitophagy in a phosphatase and tensin homologue (PTEN)-induced putative kinase 1 (PINK1)/parkindependent manner. Dapagliflozin regulated mitophagy in cardiomyocytes by suppressing the adenosine 5'monophosphate-activated protein kinase (AMPK)-PINK1/parkin signalling pathway, resulting in attenuated MIRI. CONCLUSION Dapagliflozin alleviated MIRI by activating mitophagy via the AMPK-PINK1/parkin signalling pathway.
Collapse
MESH Headings
- Animals
- Glucosides/pharmacology
- Mitophagy/drug effects
- Myocardial Reperfusion Injury/pathology
- Myocardial Reperfusion Injury/drug therapy
- Myocardial Reperfusion Injury/physiopathology
- Myocardial Reperfusion Injury/prevention & control
- Myocardial Reperfusion Injury/metabolism
- Signal Transduction/drug effects
- Protein Kinases/metabolism
- Benzhydryl Compounds/pharmacology
- Ubiquitin-Protein Ligases/metabolism
- Myocytes, Cardiac/drug effects
- Myocytes, Cardiac/pathology
- Myocytes, Cardiac/enzymology
- Myocytes, Cardiac/metabolism
- AMP-Activated Protein Kinases/metabolism
- Disease Models, Animal
- Male
- Ventricular Function, Left/drug effects
- Cell Line
- Mice, Inbred C57BL
- Mitochondria, Heart/drug effects
- Mitochondria, Heart/pathology
- Mitochondria, Heart/metabolism
- Mitochondria, Heart/enzymology
- Myocardial Infarction/drug therapy
- Myocardial Infarction/pathology
- Myocardial Infarction/physiopathology
- Myocardial Infarction/metabolism
- Sodium-Glucose Transporter 2 Inhibitors/pharmacology
- Mice
- Rats
- Reactive Oxygen Species/metabolism
- Apoptosis/drug effects
- Stroke Volume/drug effects
Collapse
Affiliation(s)
- Wei Zuo
- Department of Pharmacy, Peking Union Medical College Hospital, Beijing, China
| | - Liang Wang
- Department of Cardiology, Peking Union Medical College Hospital, Beijing, China
| | - Ran Tian
- Department of Cardiology, Peking Union Medical College Hospital, Beijing, China
| | - Lun Wang
- Department of Cardiology, Peking Union Medical College Hospital, Beijing, China
| | - Yifan Liu
- Department of Cardiology, Peking Union Medical College Hospital, Beijing, China
| | - Hao Qian
- Department of Cardiology, Peking Union Medical College Hospital, Beijing, China
| | - Xinglin Yang
- Department of Cardiology, Peking Union Medical College Hospital, Beijing, China
| | - Zhenyu Liu
- Department of Cardiology, Peking Union Medical College Hospital, Beijing, China
| |
Collapse
|
6
|
Panico C, Bonora B, Camera A, Chilelli NC, Prato GD, Favacchio G, Grancini V, Resi V, Rondinelli M, Zarra E, Pintaudi B. Pathophysiological basis of the cardiological benefits of SGLT-2 inhibitors: a narrative review. Cardiovasc Diabetol 2023; 22:164. [PMID: 37391739 PMCID: PMC10314539 DOI: 10.1186/s12933-023-01855-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 05/10/2023] [Indexed: 07/02/2023] Open
Abstract
In recent years, GLP-1 receptor agonists (GLP-1RA), and SGLT-2 inhibitors (SGLT-2i) have become available, which have become valuable additions to therapy for type 2 diabetes as they are associated with low risk for hypoglycemia and cardiovascular benefits. Indeed, SGLT-2i have emerged as a promising class of agents to treat heart failure (HF). By inhibiting SGLT-2, these agents lead to excretion of glucose in urine with subsequent lowering of plasma glucose, although it is becoming clear that the observed benefits in HF cannot be explained by glucose-lowering alone. In fact, multiple mechanisms have been proposed to explain the cardiovascular and renal benefits of SGLT-2i, including hemodynamic, anti-inflammatory, anti-fibrotic, antioxidant, and metabolic effects. Herein, we review the available evidence on the pathophysiology of the cardiological benefits of SGLT-2i. In diabetic heart disease, in both clinical and animal models, the effect of SGLT-2i have been shown to improve diastolic function, which is even more evident in HF with preserved ejection fraction. The probable pathogenic mechanisms likely involve damage from free radicals, apoptosis, and inflammation, and therefore fibrosis, many of which have been shown to be improved by SGLT-2i. While the effects on systolic function in models of diabetic heart disease and HF with preserved ejection fraction is limited and contrasting, it is a key element in patients with HF and reduced ejection fraction both with and without diabetes. The significant improvement in systolic function appears to lead to subsequent structural remodeling of the heart with a reduction in left ventricle volume and a consequent reduction in pulmonary pressure. While the effects on cardiac metabolism and inflammation appear to be consolidated, greater efforts are still warranted to further define the entity to which these mechanisms contribute to the cardiovascular benefits of SGLT-2i.
Collapse
Affiliation(s)
- Cristina Panico
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele-Milan, Italy.
- IRCCS Humanitas Research Hospital, Rozzano-Milan, Italy.
| | - Benedetta Bonora
- Department of Medicine, Division of Metabolic Diseases, University of Padova, Via Giustiniani 2, Padua, 35128, Italy
| | | | - Nino Cristiano Chilelli
- Diabetology and Internal Medicine, Hospital of Cittadella, AULSS 6 Euganea (Padua), Padua, Italy
| | - Giuliana Da Prato
- Divisione di Endocrinologia, Diabetologia e Malattie del Metabolismo, Dipartimento di Medicina, Azienda Ospedaliera Universitaria Integrata di Verona, Ospedale Maggiore, Verona, Italy
| | - Giuseppe Favacchio
- U.O di Endocrinologia e Diabetologia, IRCCS Humanitas Research Hospital, Rozzano, MI, Italy
| | - Valeria Grancini
- Endocrinology Unit, Fondazione IRCCS Ca' Granda - Ospedale Maggiore Policlinico, Milan, Italy
| | - Veronica Resi
- Endocrinology Unit, Fondazione IRCCS Ca' Granda - Ospedale Maggiore Policlinico, Milan, Italy
| | - Maurizio Rondinelli
- Diabetes Endocrine and Metabolic Diseases Unit, IRCCS Centro Cardiologico Monzino, Milan, Italy
| | - Emanuela Zarra
- S.C. Medicina Diabetologia, Dipartimento di Continuità di Cura e Fragilità, ASST Spedali Civili, Brescia, Italy
| | | |
Collapse
|
7
|
Tan X, Chen YF, Zou SY, Wang WJ, Zhang NN, Sun ZY, Xian W, Li XR, Tang B, Wang HJ, Gao Q, Kang PF. ALDH2 attenuates ischemia and reperfusion injury through regulation of mitochondrial fusion and fission by PI3K/AKT/mTOR pathway in diabetic cardiomyopathy. Free Radic Biol Med 2023; 195:219-230. [PMID: 36587924 DOI: 10.1016/j.freeradbiomed.2022.12.097] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 12/16/2022] [Accepted: 12/27/2022] [Indexed: 12/31/2022]
Abstract
The function of mitochondrial fusion and fission is one of the important factors causing ischemia-reperfusion (I/R) injury in diabetic myocardium. Aldehyde dehydrogenase 2 (ALDH2) is abundantly expressed in heart, which involved in the regulation of cellular energy metabolism and stress response. However, the mechanism of ALDH2 regulating mitochondrial fusion and fission in diabetic myocardial I/R injury has not been elucidated. In the present study, we found that the expression of ALDH2 was downregulated in rat diabetic myocardial I/R model. Functionally, the activation of ALDH2 resulted in the improvement of cardiac hemodynamic parameters and myocardial injury, which were abolished by the treatment of Daidzin, a specific inhibitor of ALDH2. In H9C2 cardiomyocyte hypoxia-reoxygenation model, ALDH2 regulated the dynamic balance of mitochondrial fusion and fission and maintained mitochondrial morphology stability. Meanwhile, ALDH2 reduced mitochondrial ROS levels, and apoptotic protein expression in cardiomyocytes, which was associated with the upregulation of phosphorylation (p-PI3KTyr458, p-AKTSer473, p-mTOR). Moreover, ALDH2 suppressed the mitoPTP opening through reducing 4-HNE. Therefore, our results demonstrated that ALDH2 alleviated the ischemia and reperfusion injury in diabetic cardiomyopathy through inhibition of mitoPTP opening and activation of PI3K/AKT/mTOR pathway.
Collapse
Affiliation(s)
- Xin Tan
- Department of Cardiovascular Disease, The First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Yong-Feng Chen
- Department of Cardiovascular Disease, The First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Shi-Ying Zou
- Department of Cardiovascular Disease, The First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Wei-Jie Wang
- Department of Cardiovascular Disease, The First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Ning-Ning Zhang
- Department of Cardiovascular Disease, The First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Zheng-Yu Sun
- Department of Cardiovascular Disease, The First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Wei Xian
- Department of Cardiovascular Disease, The First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Xiao-Rong Li
- Department of Cardiovascular Disease, The First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Bi Tang
- Department of Cardiovascular Disease, The First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Hong-Ju Wang
- Department of Cardiovascular Disease, The First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Qin Gao
- Department of Physiology, Bengbu Medical College, Bengbu, China; Key Laboratory of Basic and Clinical Cardiovascular and Cerebrovascular Diseases, Bengbu Medical College, Bengbu, China.
| | - Pin-Fang Kang
- Department of Cardiovascular Disease, The First Affiliated Hospital of Bengbu Medical College, Bengbu, China; Key Laboratory of Basic and Clinical Cardiovascular and Cerebrovascular Diseases, Bengbu Medical College, Bengbu, China.
| |
Collapse
|
8
|
Xiong S, Mo D, Wu Y, Wu P, Hu Y, Gong F. The effect of dapagliflozin on myocardial ischemia-reperfusion injury in diabetic rats. Can J Physiol Pharmacol 2023; 101:80-89. [PMID: 36621925 DOI: 10.1139/cjpp-2022-0045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The incidence of ischemic heart disease is 2-3 times higher in diabetic patients. However, the effect of dapagliflozin on ischemia-reperfusion myocardial injury in diabetic rats has not been studied. We examined the effects of dapagliflozin on myocardial IR injury in streptozotocin-nicotinamide-induced diabetic rats. Rats were divided into four groups (n = 7 in each group): control, control-dapagliflozin, diabetes, and diabetes-dapagliflozin. Dapagliflozin (1.5 mg/kg/day) was administered concomitantly in drinking water for 2 months. The hearts were perfused in a Langendorff's apparatus at 2 months and assessed before (baseline) and after myocardial IR for the following parameters: left ventricular developed pressure (LVDP), minimum and maximum rates of pressure change in the left ventricle (±dP/dt), endothelial nitric oxide (NO) synthase (eNOS) and inducible NO synthase (iNOS) mRNA expressions, creatine kinase MB (CK-MB) and troponin imyocardial enzyme extravasation, and lactate dehydrogenase. The recovery of LVDP and ±dP/dt in diabetic rats was lower than that in controls but near normal after dapagliflozin treatment. Diabetic rats had decreased eNOS expression and increased iNOS expression at baseline and after IR, whereas dapagliflozin normalized these parameters after IR. Compared with controls, cardiac NOx levels were initially lower in diabetic patients but higher after IR. Baseline MDA levels were higher in diabetic rats after IR, whereas cardiac NOx levels decreased after treatment with dapagliflozin. Dapagliflozin protects the diabetic rat heart from ischemia-reperfusion myocardial injury by regulating the expression of eNOS and iNOS and inhibiting cardiac lipid peroxidation.
Collapse
Affiliation(s)
- Shilong Xiong
- Department of Laboratory Diagnostics, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 511447, People's Republic of China
| | - Donghua Mo
- Department of Laboratory Diagnostics, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 511447, People's Republic of China
| | - Yingjun Wu
- Department of Laboratory Diagnostics, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 511447, People's Republic of China
| | - Peng Wu
- Department of Laboratory Diagnostics, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 511447, People's Republic of China
| | - YuanMing Hu
- Department of Laboratory Diagnostics, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 511447, People's Republic of China
| | - Fang Gong
- ECG Lab, The Second Affiliated Hospital of Guangzhou Medical University, Panyu, Guangzhou, Guangdong 511447, People's Republic of China
| |
Collapse
|
9
|
Zhao H, Yang Y, Si X, Liu H, Wang H. The Role of Pyroptosis and Autophagy in Ischemia Reperfusion Injury. Biomolecules 2022; 12:biom12071010. [PMID: 35883566 PMCID: PMC9313059 DOI: 10.3390/biom12071010] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Revised: 07/13/2022] [Accepted: 07/20/2022] [Indexed: 02/07/2023] Open
Abstract
Pyroptosis is a process of programmed cell death mediated by gasdermin (GSDM) found in recent years. In the process of pyroptosis, caspase-1 or caspase-11/4/5 is activated, which cleaves gasdermin D and separates its N-terminal pore-forming domain (PFD). The oligomers of PFD bind to the cell membrane and form macropores on the membrane, resulting in cell swelling and membrane rupture. Increasing evidence indicates that pyroptosis is involved in many diseases, including ischemia reperfusion injury. Autophagy is a highly conserved catabolic process in eukaryotic cells. It plays an important role in the survival and maintenance of cells by degrading organelles, proteins, and macromolecules in the cytoplasm and recycling degradation products. Increasing evidence shows that dysfunctional autophagy participates in many diseases. Recently, autophagy and pyroptosis have been reported to play a vital role in the process of ischemia/reperfusion injury, but the related mechanisms are not completely clear. Therefore, this article reviews the role of autophagy and pyroptosis in ischemia–reperfusion injury and analyzes the related mechanisms to provide a basis for future research.
Collapse
Affiliation(s)
- Huijie Zhao
- Institute of Chronic Disease Risks Assessment, Henan University, Jinming Avenue, Kaifeng 475004, China;
| | - Yihan Yang
- School of Basic Medical Sciences, Henan University, Kaifeng 475004, China; (Y.Y.); (H.L.)
| | - Xinya Si
- School of Stomatology, Henan University, Kaifeng 475004, China;
| | - Huiyang Liu
- School of Basic Medical Sciences, Henan University, Kaifeng 475004, China; (Y.Y.); (H.L.)
| | - Honggang Wang
- School of Basic Medical Sciences, Henan University, Kaifeng 475004, China; (Y.Y.); (H.L.)
- Correspondence:
| |
Collapse
|
10
|
L-Borneol 7-O-[β-D-Apiofuranosyl-(1 6)]-β-D-Glucopyranoside Alleviates Myocardial Ischemia-Reperfusion Injury in Rats and Hypoxic/Reoxygenated Injured Myocardial Cells via Regulating the PI3K/AKT/mTOR Signaling Pathway. J Immunol Res 2022; 2022:5758303. [PMID: 35600046 PMCID: PMC9119761 DOI: 10.1155/2022/5758303] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Revised: 04/13/2022] [Accepted: 04/26/2022] [Indexed: 12/12/2022] Open
Abstract
Ischemia/reperfusion (I/R) is a primary cause of morbidity and mortality in acute myocardial infarction (AMI). L-Borneol 7-O-[β-D-apiofuranosyl-(1→6)]-β-D-glucopyranoside (LBAG), extracted from the Radix Ophiopogonis, is the main bioactive component that may be exerting cardiovascular protection in AMI. The purpose was to examine the effects of LBAG on myocardial I/R injury (MIRI) in rats and H9c2 cells treated with hypoxia/reoxygenation (H/R). MIRI was induced through the combination of ischemia with reperfusion for 30 min and 24 h, respectively. LBAG was administered 7 days before vascular ligation. Myocardial function was detected by an electrocardiograph, histological, TTC, and TUNEL staining analyses. The influences of LBAG on the content concentration of cardiac enzymes in the serum were measured by ELISA. Moreover, H9c2 cells were exposed to LBAG or combined with AKT inhibitor (perifosine) and then exposed to H/R for simulating the cardiac injury process. Afterward, cell viability, LDH, CD-KM release, apoptosis, and autophagy were evaluated by CCK-8 and ELISA assays, flow cytometry, TUNEL, and immunofluorescence staining, respectively. Additionally, the proteins of apoptosis, autophagy, and PI3K/mTOR pathway were determined by western blotting. In I/R rats, LBAG pretreatment significantly ameliorated cardiac function, as illustrated by reducing the infarct size, myocardial autophagy, and apoptosis levels. In H/R-induced H9c2 cells, LBAG pretreatment significantly decreased cell apoptosis, LC3 II/I, and Beclin 1 levels, elevated the Bcl-2 levels, attenuated LDH, and CD-KM production. Moreover, LBAG pretreatment markedly increased the PI3K/mTOR pathway activation, and the protective influences of LBAG were partly abolished with the AKT inhibitor perifosine treatment. These findings demonstrated the protective functions of LBAG on I/R by regulating apoptosis and autophagy in vitro and in vivo by activating the PI3K/mTOR pathway.
Collapse
|
11
|
Integrated Bioinformatics Analysis and Verification of Gene Targets for Myocardial Ischemia-Reperfusion Injury. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:2056630. [PMID: 35463067 PMCID: PMC9033367 DOI: 10.1155/2022/2056630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 03/11/2022] [Accepted: 03/28/2022] [Indexed: 11/18/2022]
Abstract
Background Myocardial ischemia-reperfusion injury (MIRI) has become a thorny and unsolved clinical problem. The pathological mechanisms of MIRI are intricate and unclear, so it is of great significance to explore potential hub genes and search for some natural products that exhibit potential therapeutic efficacy on MIRI via targeting the hub genes. Methods First, the differential expression genes (DEGs) from GSE58486, GSE108940, and GSE115568 were screened and integrated via a robust rank aggregation algorithm. Then, the hub genes were identified and verified by the functional experiment of the MIRI mice. Finally, natural products with protective effects against MIRI were retrieved, and molecular docking simulations between hub genes and natural products were performed. Results 230 integrated DEGs and 9 hub genes were identified. After verification, Emr1, Tyrobp, Itgb2, Fcgr2b, Cybb, and Fcer1g might be the most significant genes during MIRI. A total of 75 natural products were discovered. Most of them (especially araloside C, glycyrrhizic acid, ophiopogonin D, polyphyllin I, and punicalagin) showed good ability to bind the hub genes. Conclusions Emr1, Tyrobp, Itgb2, Fcgr2b, Cybb, and Fcer1g might be critical in the pathological process of MIRI, and the natural products (araloside C, glycyrrhizic acid, ophiopogonin D, polyphyllin I, and punicalagin) targeting these hub genes exhibited potential therapeutic efficacy on MIRI. Our findings provided new insights to explore the mechanism and treatments for MIRI and revealed new therapeutic targets for natural products with protective properties against MIRI.
Collapse
|
12
|
Wang K, Li Z, Sun Y, Liu X, Ma W, Ding Y, Hong J, Qian L, Xu D. Dapagliflozin Improves Cardiac Function, Remodeling, Myocardial Apoptosis, and Inflammatory Cytokines in Mice with Myocardial Infarction. J Cardiovasc Transl Res 2021; 15:786-796. [PMID: 34855147 DOI: 10.1007/s12265-021-10192-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Accepted: 11/22/2021] [Indexed: 11/28/2022]
Abstract
Dapagliflozin (DAPA) exerts cardioprotective effects in non-diabetic patients. Nonetheless, the protective mechanism remains unknown. This study aims to evaluate the performance of DAPA on cardiac function and remodeling as well as its potential mechanism in mice with myocardial infarction (MI). Here, a MI mice model was established. One week after MI, mice were treated with saline or DAPA (1.5 mg/kg/day) for 4 weeks. At the end of this study, echocardiography was performed to assess cardiac structure and function. Myocardial apoptosis was analyzed by Western blot and immunofluorescence. Inflammatory cytokines and cardiac fibrosis were analyzed by real-time PCR and Masson's trichrome stain, respectively. Results showed that DAPA improved cardiac structure and function, attenuated cardiac fibrosis, and inhibited inflammatory cytokines and myocardial apoptosis. Moreover, the inhibition of PI3K/AKT/mTOR pathway might be related to the cardioprotective role of DAPA. These findings reveal that dapagliflozin is a potential therapeutic agent for MI patients without diabetes.
Collapse
Affiliation(s)
- Kai Wang
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, No. 300 Guangzhou Road, Nanjing, 210029, Jiangsu, China
| | - Zhongming Li
- Department of Geriatrics, The First Affiliated Hospital of Nanjing Medical University, No. 300 Guangzhou Road, Nanjing, 210029, Jiangsu, China
| | - Yan Sun
- Department of Geriatrics, The First Affiliated Hospital of Nanjing Medical University, No. 300 Guangzhou Road, Nanjing, 210029, Jiangsu, China
| | - Xianling Liu
- Department of Geriatrics, The First Affiliated Hospital of Nanjing Medical University, No. 300 Guangzhou Road, Nanjing, 210029, Jiangsu, China
| | - Wenjie Ma
- Department of Geriatrics, The First Affiliated Hospital of Nanjing Medical University, No. 300 Guangzhou Road, Nanjing, 210029, Jiangsu, China
| | - Yinzhang Ding
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, No. 300 Guangzhou Road, Nanjing, 210029, Jiangsu, China
| | - Jian Hong
- Department of Geriatrics, The First Affiliated Hospital of Nanjing Medical University, No. 300 Guangzhou Road, Nanjing, 210029, Jiangsu, China
| | - Lijun Qian
- Department of Geriatrics, The First Affiliated Hospital of Nanjing Medical University, No. 300 Guangzhou Road, Nanjing, 210029, Jiangsu, China
| | - Di Xu
- Department of Geriatrics, The First Affiliated Hospital of Nanjing Medical University, No. 300 Guangzhou Road, Nanjing, 210029, Jiangsu, China.
| |
Collapse
|
13
|
Tubeimoside I Ameliorates Myocardial Ischemia-Reperfusion Injury through SIRT3-Dependent Regulation of Oxidative Stress and Apoptosis. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:5577019. [PMID: 34795840 PMCID: PMC8595016 DOI: 10.1155/2021/5577019] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 09/13/2021] [Accepted: 10/23/2021] [Indexed: 12/31/2022]
Abstract
Myocardial ischemia-reperfusion injury (MIRI) is a phenomenon that reperfusion leads to irreversible damage to the myocardium and increases mortality in acute myocardial infarction (AMI) patients. There is no effective drug to treat MIRI. Tubeimoside I (TBM) is a triterpenoid saponin purified from Chinese traditional medicine tubeimu. In this study, 4 mg/kg TBM was given to mice intraperitoneally at 15 min after ischemia. And TBM treatment improved postischemic cardiac function, decreased infarct size, diminished lactate dehydrogenase release, ameliorated oxidative stress, and reduced apoptotic index. Notably, ischemia-reperfusion induced a significant decrease in cardiac SIRT3 expression and activity, while TBM treatment upregulated SIRT3's expression and activity. However, the cardioprotective effects of TBM were largely abolished by a SIRT3 inhibitor 3-(1H-1,2,3-triazol-4-yl) pyridine (3-TYP). This suggests that SIRT3 plays an essential role in TBM's cardioprotective effects. In vitro, TBM also protected H9c2 cells against simulated ischemia/reperfusion (SIR) injury by attenuating oxidative stress and apoptosis, and siSIRT3 diminished its protective effects. Taken together, our results demonstrate for the first time that TBM protects against MIRI through SIRT3-dependent regulation of oxidative stress and apoptosis. TBM might be a potential drug candidate for MIRI treatment.
Collapse
|
14
|
Li H, Yang W, Wang Z, Wang X, Hao Y, Xi J, Lu H, Du Z, Feng J, Zhang B, Ma D. Computational research of mTORC1 inhibitor on cerebral ischemia-reperfusion injury. Aging (Albany NY) 2021; 13:19598-19613. [PMID: 34343111 PMCID: PMC8386574 DOI: 10.18632/aging.203371] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Accepted: 07/08/2021] [Indexed: 12/16/2022]
Abstract
Ischemic stroke contributes to more than 80% of all strokes and has the four characteristics of high prevalence, high disability, high mortality, and high recurrence. Stroke is a preventable and controllable disease. In addition to controlling the primary disease, effective prevention and control measures need to be given to the occurrence and development of stroke. With the development and progress of modern treatment methods for ischemic stroke, the mortality and disability rate have decreased significantly. At present, the main treatment methods for ischemic stroke include thrombolysis, thrombus removal at the ultra-early stage, and treatment of improving collateral circulation in the acute phase. However, the ultra-early and early blood reperfusion involves reperfusion injury, which will cause secondary nerve damage, which is called cerebral ischemia/reperfusion injury (CIRI). Studies have found that autophagy is involved in the entire process of CIRI and can reduce the damage of CIRI. The mammalian target of Rapamycin (mTORC1) is the primary signal pathway regulating autophagy. And the mTORC1 inhibitor, Rapamycin, has been proved to exert neuroprotective effects in the ultra-early and early cerebral ischemia-reperfusion. Therefore, screening and designing mTORC1 inhibitors is very important to control reperfusion injury and reduce neuronal death and apoptosis. In this research, plenty of computer-assisted was applied to virtually screen and select potential mTORC1's inhibitors. We used Libdock to screen the structure and performed toxicity predictions, ADME (absorption, distribution, metabolism, excretion) to predict small molecules' pharmacological and toxicological properties. To assess the binding mechanism and affinity between the mTORC1 dimer and the ligand, molecular docking was performed. Then, the pharmacophore of small molecules in the docking conformation with the protein was supplemented by Schrodinger. Additionally, molecular dynamics simulations were conducted to assess if the ligand-receptor complex was stable in a natural environment. Furthermore, an experiment was performed to verify the inhibitory effect of compound 1 and compound 2 on mTOR protein. All in all, the study provides a hand of candidate drugs as well as pharmacological properties, which can play an essential role in mTORC1 inhibitors.
Collapse
Affiliation(s)
- Hui Li
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Changchun, China
| | - Wenzhuo Yang
- Clinical College, Jilin University, Changchun, China
| | - Zhenhua Wang
- Clinical College, Jilin University, Changchun, China
| | - Xu Wang
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Changchun, China
| | - Yulei Hao
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Changchun, China
| | - Jianxin Xi
- Clinical College, Jilin University, Changchun, China
| | - Han Lu
- Clinical College, Jilin University, Changchun, China
| | - Zhishan Du
- Clinical College, Jilin University, Changchun, China
| | - Jiachun Feng
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Changchun, China
| | - Bao Zhang
- Department of Urology Surgery, Aerospace Center Hospital, Beijing, China
| | - Di Ma
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
15
|
Xing YJ, Liu BH, Wan SJ, Cheng Y, Zhou SM, Sun Y, Yao XM, Hua Q, Meng XJ, Cheng JH, Zhong M, Zhang Y, Lv K, Kong X. A SGLT2 Inhibitor Dapagliflozin Alleviates Diabetic Cardiomyopathy by Suppressing High Glucose-Induced Oxidative Stress in vivo and in vitro. Front Pharmacol 2021; 12:708177. [PMID: 34322029 PMCID: PMC8311522 DOI: 10.3389/fphar.2021.708177] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 06/28/2021] [Indexed: 01/10/2023] Open
Abstract
Diabetic cardiomyopathy (DCM) is a serious complication of diabetes mellitus (DM). One of the hallmarks of the DCM is enhanced oxidative stress in myocardium. The aim of this study was to research the underlying mechanisms involved in the effects of dapagliflozin (Dap) on myocardial oxidative stress both in streptozotocin-induced DCM rats and rat embryonic cardiac myoblasts H9C2 cells exposed to high glucose (33.0 mM). In in vivo studies, diabetic rats were given Dap (1 mg/ kg/ day) by gavage for eight weeks. Dap treatment obviously ameliorated cardiac dysfunction, and improved myocardial fibrosis, apoptosis and oxidase stress. In in vitro studies, Dap also attenuated the enhanced levels of reactive oxygen species and cell death in H9C2 cells incubated with high glucose. Mechanically, Dap administration remarkably reduced the expression of membrane-bound nicotinamide adenine dinucleotide phosphate (NADPH) oxidase subunits gp91phox and p22phox, suppressed the p67phox subunit translocation to membrane, and decreased the compensatory elevated copper, zinc superoxide dismutase (Cu/Zn-SOD) protein expression and total SOD activity both in vivo and in vitro. Collectively, our results indicated that Dap protects cardiac myocytes from damage caused by hyperglycemia through suppressing NADPH oxidase-mediated oxidative stress.
Collapse
Affiliation(s)
- Yu-Jie Xing
- Key Laboratory of Non-coding RNA Transformation Research of Anhui Higher Education Institution, Wannan Medical College, Wuhu, China.,Department of Endocrinology, The First Aflliated Hospital of Wannan Medical College, Yijishan Hospital, Wuhu, China
| | - Biao-Hu Liu
- Department of Ultrasound Medicine, The First Aflliated Hospital of Wannan Medical College, Yijishan Hospital, Wuhu, China
| | - Shu-Jun Wan
- Key Laboratory of Non-coding RNA Transformation Research of Anhui Higher Education Institution, Wannan Medical College, Wuhu, China.,Central Laboratory of Yijishan Hospital, Wuhu, China
| | - Yi Cheng
- Key Laboratory of Non-coding RNA Transformation Research of Anhui Higher Education Institution, Wannan Medical College, Wuhu, China.,Department of Endocrinology, The First Aflliated Hospital of Wannan Medical College, Yijishan Hospital, Wuhu, China
| | - Si-Min Zhou
- Key Laboratory of Non-coding RNA Transformation Research of Anhui Higher Education Institution, Wannan Medical College, Wuhu, China.,Department of Endocrinology, The First Aflliated Hospital of Wannan Medical College, Yijishan Hospital, Wuhu, China
| | - Yue Sun
- Key Laboratory of Non-coding RNA Transformation Research of Anhui Higher Education Institution, Wannan Medical College, Wuhu, China.,Department of Endocrinology, The First Aflliated Hospital of Wannan Medical College, Yijishan Hospital, Wuhu, China
| | - Xin-Ming Yao
- Department of Endocrinology, The First Aflliated Hospital of Wannan Medical College, Yijishan Hospital, Wuhu, China
| | - Qiang Hua
- Department of Endocrinology, The First Aflliated Hospital of Wannan Medical College, Yijishan Hospital, Wuhu, China
| | - Xiang-Jian Meng
- Department of Endocrinology, The First Aflliated Hospital of Wannan Medical College, Yijishan Hospital, Wuhu, China
| | - Jin-Han Cheng
- Department of Endocrinology, The First Aflliated Hospital of Wannan Medical College, Yijishan Hospital, Wuhu, China
| | - Min Zhong
- Key Laboratory of Non-coding RNA Transformation Research of Anhui Higher Education Institution, Wannan Medical College, Wuhu, China.,Central Laboratory of Yijishan Hospital, Wuhu, China
| | - Yan Zhang
- Key Laboratory of Non-coding RNA Transformation Research of Anhui Higher Education Institution, Wannan Medical College, Wuhu, China
| | - Kun Lv
- Key Laboratory of Non-coding RNA Transformation Research of Anhui Higher Education Institution, Wannan Medical College, Wuhu, China.,Central Laboratory of Yijishan Hospital, Wuhu, China
| | - Xiang Kong
- Key Laboratory of Non-coding RNA Transformation Research of Anhui Higher Education Institution, Wannan Medical College, Wuhu, China.,Central Laboratory of Yijishan Hospital, Wuhu, China.,Department of Endocrinology, The First Aflliated Hospital of Wannan Medical College, Yijishan Hospital, Wuhu, China
| |
Collapse
|