1
|
Sayed-Ahmed MM, El-Bassyouni HT, Afifi HH, Essawi ML, Taher MB, Gadelhak MI, Zaytoun RA, Abdelmonem AA, Elbagoury NM. Molecular and Clinical Characterization of a Cohort of Autosomal Recessive Sensorineural Hearing Loss in Egyptian Patients. J Mol Neurosci 2024; 74:102. [PMID: 39467922 PMCID: PMC11519120 DOI: 10.1007/s12031-024-02279-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Accepted: 10/13/2024] [Indexed: 10/30/2024]
Abstract
Hearing loss (HL) is one of the most common health problems worldwide. Autosomal recessive non-syndromic sensorineural hearing loss (ARNSHL) represents a large portion of congenital hereditary HL. Our study was conducted on 13 patients from 13 unrelated families. The majority of patients presented with congenital severe to profound bilateral sensorineural HL. All patients were subjected to detailed family history and three-generation pedigree analysis to exclude any environmental cause and to ensure an autosomal recessive mode of inheritance. Molecular analysis was performed using the whole exome sequencing (WES) technique for the recruited patients. Three variants in the MYO7A and OTOF genes were reported for the first time in patients with ARNSHL (one nonsense, one frameshift, and one splice variant). Ten previously reported variants were detected in seven genes (GJB2, MYO15A, BSND, OTOF, CDH23, SLC26A4, and TMIE). They varied between missense, nonsense, frameshift, and splice variants. This study expands the molecular spectrum of two types of autosomal recessive deafness (types 2 and 9).
Collapse
Affiliation(s)
- Mohammed M Sayed-Ahmed
- Clinical Genetics Department, Human Genetics and Genome Research Institute, National Research Centre, Cairo, Egypt
| | - Hala T El-Bassyouni
- Clinical Genetics Department, Human Genetics and Genome Research Institute, National Research Centre, Cairo, Egypt
| | - Hanan H Afifi
- Clinical Genetics Department, Human Genetics and Genome Research Institute, National Research Centre, Cairo, Egypt
| | - Mona L Essawi
- Medical Molecular Genetics Department, Human Genetics and Genome Research Institute, National Research Centre, Cairo, 12311, Egypt
| | - Mohamed B Taher
- Clinical Genetics Department, Human Genetics and Genome Research Institute, National Research Centre, Cairo, Egypt
| | - Mohamed I Gadelhak
- Clinical Genetics Department, Human Genetics and Genome Research Institute, National Research Centre, Cairo, Egypt
| | - Rehab A Zaytoun
- Phoniatrics Unit, Faculty of Medicine, Fayoum University, Fayoum, Egypt
| | - Ahmed A Abdelmonem
- Phoniatrics Unit, Faculty of Medicine, Beni-Suef University, Beni Suef, Egypt
| | - Nagham M Elbagoury
- Medical Molecular Genetics Department, Human Genetics and Genome Research Institute, National Research Centre, Cairo, 12311, Egypt.
| |
Collapse
|
2
|
Nassauer L, Staecker H, Huang P, Renslo B, Goblet M, Harre J, Warnecke A, Schott JW, Morgan M, Galla M, Schambach A. Protection from cisplatin-induced hearing loss with lentiviral vector-mediated ectopic expression of the anti-apoptotic protein BCL-XL. MOLECULAR THERAPY. NUCLEIC ACIDS 2024; 35:102157. [PMID: 38450280 PMCID: PMC10915631 DOI: 10.1016/j.omtn.2024.102157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 02/15/2024] [Indexed: 03/08/2024]
Abstract
Cisplatin is a highly effective chemotherapeutic agent, but it can cause sensorineural hearing loss (SNHL) in patients. Cisplatin-induced ototoxicity is closely related to the accumulation of reactive oxygen species (ROS) and subsequent death of hair cells (HCs) and spiral ganglion neurons (SGNs). Despite various strategies to combat ototoxicity, only one therapeutic agent has thus far been clinically approved. Therefore, we have developed a gene therapy concept to protect cochlear cells from cisplatin-induced toxicity. Self-inactivating lentiviral (LV) vectors were used to ectopically express various antioxidant enzymes or anti-apoptotic proteins to enhance the cellular ROS scavenging or prevent apoptosis in affected cell types. In direct comparison, anti-apoptotic proteins mediated a stronger reduction in cytotoxicity than antioxidant enzymes. Importantly, overexpression of the most promising candidate, Bcl-xl, achieved an up to 2.5-fold reduction in cisplatin-induced cytotoxicity in HEI-OC1 cells, phoenix auditory neurons, and primary SGN cultures. BCL-XL protected against cisplatin-mediated tissue destruction in cochlear explants. Strikingly, in vivo application of the LV BCL-XL vector improved hearing and increased HC survival in cisplatin-treated mice. In conclusion, we have established a preclinical gene therapy approach to protect mice from cisplatin-induced ototoxicity that has the potential to be translated to clinical use in cancer patients.
Collapse
Affiliation(s)
- Larissa Nassauer
- Institute of Experimental Hematology, Hannover Medical School, 30625 Hannover, Germany
| | - Hinrich Staecker
- Department of Otolaryngology-Head and Neck Surgery, University of Kansas School of Medicine, Kansas City, KS 66160, USA
| | - Peixin Huang
- Department of Otolaryngology-Head and Neck Surgery, University of Kansas School of Medicine, Kansas City, KS 66160, USA
| | - Bryan Renslo
- Department of Otolaryngology-Head and Neck Surgery, University of Kansas School of Medicine, Kansas City, KS 66160, USA
| | - Madeleine Goblet
- Department of Otorhinolaryngology, Head and Neck Surgery, Hannover Medical School, 30625 Hannover, Germany
- Cluster of Excellence “Hearing4all”, Hannover Medical School, 30625 Hannover, Germany
| | - Jennifer Harre
- Department of Otorhinolaryngology, Head and Neck Surgery, Hannover Medical School, 30625 Hannover, Germany
- Cluster of Excellence “Hearing4all”, Hannover Medical School, 30625 Hannover, Germany
| | - Athanasia Warnecke
- Department of Otorhinolaryngology, Head and Neck Surgery, Hannover Medical School, 30625 Hannover, Germany
- Cluster of Excellence “Hearing4all”, Hannover Medical School, 30625 Hannover, Germany
| | - Juliane W. Schott
- Institute of Experimental Hematology, Hannover Medical School, 30625 Hannover, Germany
| | - Michael Morgan
- Institute of Experimental Hematology, Hannover Medical School, 30625 Hannover, Germany
| | - Melanie Galla
- Institute of Experimental Hematology, Hannover Medical School, 30625 Hannover, Germany
| | - Axel Schambach
- Institute of Experimental Hematology, Hannover Medical School, 30625 Hannover, Germany
- Division of Hematology/Oncology, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
3
|
Manjila SB, Betty R, Kim Y. Missing pieces in decoding the brain oxytocin puzzle: Functional insights from mouse brain wiring diagrams. Front Neurosci 2022; 16:1044736. [PMID: 36389241 PMCID: PMC9643707 DOI: 10.3389/fnins.2022.1044736] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 10/06/2022] [Indexed: 10/24/2023] Open
Abstract
The hypothalamic neuropeptide, oxytocin (Oxt), has been the focus of research for decades due to its effects on body physiology, neural circuits, and various behaviors. Oxt elicits a multitude of actions mainly through its receptor, the Oxt receptor (OxtR). Despite past research to understand the central projections of Oxt neurons and OxtR- coupled signaling pathways in different brain areas, it remains unclear how this nonapeptide exhibits such pleiotropic effects while integrating external and internal information. Most reviews in the field either focus on neuroanatomy of the Oxt-OxtR system, or on the functional effects of Oxt in specific brain areas. Here, we provide a review by integrating brain wide connectivity of Oxt neurons and their downstream circuits with OxtR expression in mice. We categorize Oxt connected brain regions into three functional modules that regulate the internal state, somatic visceral, and cognitive response. Each module contains three neural circuits that process distinct behavioral effects. Broad innervations on functional circuits (e.g., basal ganglia for motor behavior) enable Oxt signaling to exert coordinated modulation in functionally inter-connected circuits. Moreover, Oxt acts as a neuromodulator of neuromodulations to broadly control the overall state of the brain. Lastly, we discuss the mismatch between Oxt projections and OxtR expression across various regions of the mouse brain. In summary, this review brings forth functional circuit-based analysis of Oxt connectivity across the whole brain in light of Oxt release and OxtR expression and provides a perspective guide to future studies.
Collapse
Affiliation(s)
| | | | - Yongsoo Kim
- Department of Neural and Behavioral Sciences, The Pennsylvania State University, Hershey, PA, United States
| |
Collapse
|