1
|
Serangeli I, Diamanti T, De Jaco A, Miranda E. Role of mitochondria-endoplasmic reticulum contacts in neurodegenerative, neurodevelopmental and neuropsychiatric conditions. Eur J Neurosci 2024; 60:5040-5068. [PMID: 39099373 DOI: 10.1111/ejn.16485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 04/15/2024] [Accepted: 07/15/2024] [Indexed: 08/06/2024]
Abstract
Mitochondria-endoplasmic reticulum contacts (MERCs) mediate a close and continuous communication between both organelles that is essential for the transfer of calcium and lipids to mitochondria, necessary for cellular signalling and metabolic pathways. Their structural and molecular characterisation has shown the involvement of many proteins that bridge the membranes of the two organelles and maintain the structural stability and function of these contacts. The crosstalk between the two organelles is fundamental for proper neuronal function and is now recognised as a component of many neurological disorders. In fact, an increasing proportion of MERC proteins take part in the molecular and cellular basis of pathologies affecting the nervous system. Here we review the alterations in MERCs that have been reported for these pathologies, from neurodevelopmental and neuropsychiatric disorders to neurodegenerative diseases. Although mitochondrial abnormalities in these debilitating conditions have been extensively attributed to the high energy demand of neurons, a distinct role for MERCs is emerging as a new field of research. Understanding the molecular details of such alterations may open the way to new paths of therapeutic intervention.
Collapse
Affiliation(s)
- Ilaria Serangeli
- Department of Biology and Biotechnologies 'Charles Darwin', Sapienza University of Rome, Rome, Italy
| | - Tamara Diamanti
- Department of Biology and Biotechnologies 'Charles Darwin', Sapienza University of Rome, Rome, Italy
| | - Antonella De Jaco
- Department of Biology and Biotechnologies 'Charles Darwin', Sapienza University of Rome, Rome, Italy
| | - Elena Miranda
- Department of Biology and Biotechnologies 'Charles Darwin', Sapienza University of Rome, Rome, Italy
| |
Collapse
|
2
|
Liu X, Ishikawa KI, Hattori N, Akamatsu W. Generation of one induced pluripotent stem cell line JUCGRMi004-A from a Charcot-Marie-Tooth disease type 1A (CMT1A) patient with PMP22 duplication. Stem Cell Res 2024; 77:103401. [PMID: 38537501 DOI: 10.1016/j.scr.2024.103401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 02/26/2024] [Accepted: 03/21/2024] [Indexed: 06/03/2024] Open
Abstract
The CMT1A variant accounts for over 60% of cases of Charcot-Marie-Tooth disease (CMT), one of the most common human neuropathies. The cause of CMT1A has been identified as the duplication of PMP22, a myelin protein expressed in Schwann cells. Yet, the pathological mechanisms have not been elucidated, and no treatment is currently available. In our study, we established an iPS cell line from a CMT1A patient with PMP22 duplication. The generated iPSCs maintain pluripotency and in vitro differentiation potency.
Collapse
Affiliation(s)
- Xing Liu
- Center for Genomic and Regenerative Medicine, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Kei-Ichi Ishikawa
- Center for Genomic and Regenerative Medicine, Juntendo University Graduate School of Medicine, Tokyo, Japan; Department of Neurology, Juntendo University School of Medicine, Tokyo, Japan; Department of Research and Development for Organoids, Juntendo University School of Medicine, Tokyo, Japan.
| | - Nobutaka Hattori
- Center for Genomic and Regenerative Medicine, Juntendo University Graduate School of Medicine, Tokyo, Japan; Department of Neurology, Juntendo University School of Medicine, Tokyo, Japan; Neurodegenerative Disorders Collaborative Laboratory, RIKEN Center for Brain Science, Saitama, Japan
| | - Wado Akamatsu
- Center for Genomic and Regenerative Medicine, Juntendo University Graduate School of Medicine, Tokyo, Japan
| |
Collapse
|
3
|
Kotaich F, Caillol D, Bomont P. Neurofilaments in health and Charcot-Marie-Tooth disease. Front Cell Dev Biol 2023; 11:1275155. [PMID: 38164457 PMCID: PMC10758125 DOI: 10.3389/fcell.2023.1275155] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 10/02/2023] [Indexed: 01/03/2024] Open
Abstract
Neurofilaments (NFs) are the most abundant component of mature neurons, that interconnect with actin and microtubules to form the cytoskeleton. Specifically expressed in the nervous system, NFs present the particularity within the Intermediate Filament family of being formed by four subunits, the neurofilament light (NF-L), medium (NF-M), heavy (NF-H) proteins and α-internexin or peripherin. Here, we review the current knowledge on NF proteins and neurofilaments, from their domain structures and their model of assembly to the dynamics of their transport and degradation along the axon. The formation of the filament and its behaviour are regulated by various determinants, including post-transcriptional (miRNA and RBP proteins) and post-translational (phosphorylation and ubiquitination) modifiers. Altogether, the complex set of modifications enable the neuron to establish a stable but elastic NF array constituting the structural scaffold of the axon, while permitting the local expression of NF proteins and providing the dynamics necessary to fulfil local demands and respond to stimuli and injury. Thus, in addition to their roles in mechano-resistance, radial axonal outgrowth and nerve conduction, NFs control microtubule dynamics, organelle distribution and neurotransmission at the synapse. We discuss how the studies of neurodegenerative diseases with NF aggregation shed light on the biology of NFs. In particular, the NEFL and NEFH genes are mutated in Charcot-Marie-Tooth (CMT) disease, the most common inherited neurological disorder of the peripheral nervous system. The clinical features of the CMT forms (axonal CMT2E, CMT2CC; demyelinating CMT1F; intermediate I-CMT) with symptoms affecting the central nervous system (CNS) will allow us to further investigate the physiological roles of NFs in the brain. Thus, NF-CMT mouse models exhibit various degrees of sensory-motor deficits associated with CNS symptoms. Cellular systems brought findings regarding the dominant effect of NF-L mutants on NF aggregation and transport, although these have been recently challenged. Neurofilament detection without NF-L in recessive CMT is puzzling, calling for a re-examination of the current model in which NF-L is indispensable for NF assembly. Overall, we discuss how the fundamental and translational fields are feeding each-other to increase but also challenge our knowledge of NF biology, and to develop therapeutic avenues for CMT and neurodegenerative diseases with NF aggregation.
Collapse
Affiliation(s)
| | | | - Pascale Bomont
- ERC team, NeuroMyoGene Institute-Pathophysiology and Genetics of Neuron and Muscle, Inserm U1315, CNRS UMR5261, University of Lyon 1, Lyon, France
| |
Collapse
|
4
|
Stavrou M, Kleopa KA. CMT1A current gene therapy approaches and promising biomarkers. Neural Regen Res 2023; 18:1434-1440. [PMID: 36571339 PMCID: PMC10075121 DOI: 10.4103/1673-5374.361538] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Charcot-Marie-Tooth neuropathies (CMT) constitute a group of common but highly heterogeneous, non-syndromic genetic disorders affecting predominantly the peripheral nervous system. CMT type 1A (CMT1A) is the most frequent type and accounts for almost ~50% of all diagnosed CMT cases. CMT1A results from the duplication of the peripheral myelin protein 22 (PMP22) gene. Overexpression of PMP22 protein overloads the protein folding apparatus in Schwann cells and activates the unfolded protein response. This leads to Schwann cell apoptosis, dys- and de- myelination and secondary axonal degeneration, ultimately causing neurological disabilities. During the last decades, several different gene therapies have been developed to treat CMT1A. Almost all of them remain at the pre-clinical stage using CMT1A animal models overexpressing PMP22. The therapeutic goal is to achieve gene silencing, directly or indirectly, thereby reversing the CMT1A genetic mechanism allowing the recovery of myelination and prevention of axonal loss. As promising treatments are rapidly emerging, treatment-responsive and clinically relevant biomarkers are becoming necessary. These biomarkers and sensitive clinical evaluation tools will facilitate the design and successful completion of future clinical trials for CMT1A.
Collapse
Affiliation(s)
- Marina Stavrou
- Neuroscience Department, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
| | - Kleopas A Kleopa
- Neuroscience Department, The Cyprus Institute of Neurology and Genetics; Center for Neuromuscular Disorders, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
| |
Collapse
|
5
|
Weterman MAJ, Bronk M, Jongejan A, Hoogendijk JE, Krudde J, Karjosukarso D, Goebel HH, Aronica E, Jöbsis GJ, van Ruissen F, van Spaendonck-Zwarts KY, de Visser M, Baas F. Pathogenic variants in three families with distal muscle involvement. Neuromuscul Disord 2023; 33:58-64. [PMID: 36539320 DOI: 10.1016/j.nmd.2022.11.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 11/23/2022] [Accepted: 11/28/2022] [Indexed: 12/02/2022]
Abstract
Three families suspected of distal hereditary motor neuropathy underwent genetic screening with the aim to identify the molecular defect underlying the disease. The description of the identification reflects the shift in molecular diagnostics that was made during the last decades. Our candidate gene approach yielded a known pathogenic variant in BSCL2 (p.Asn88Ser) in one family, and via a CMT-capture, in HSPB1 (p.Arg127Trp), in addition to five other variations in Charcot-Marie-Tooth-related genes in the proband of the second family. In the third family, using whole exome sequencing, followed by linkage-by-location, a three base pair deletion in exon 33 of MYH7 (p.Glu1508del) was found, a reported pathogenic allele albeit for a myopathy. After identification of the causative molecular defect, cardiac examination was performed for patients of the third family and this demonstrated abnormalities in three out of five affected family members. Heterogeneity and expansion of clinical phenotypes beyond known characteristics requires a wider set of genes to be screened. Whole exome/genome analysis with limited prior clinical information may therefore be used to precede a detailed clinical evaluation in cases of large families, preventing screening of a too narrow set of genes, and enabling the identification of novel disease-associated genes. In our cases, the variants had been reported, and co-segregation analysis confirmed the molecular diagnosis.
Collapse
Affiliation(s)
- Marian A J Weterman
- Department of Genome Analysis/Clinical Genetics, Amsterdam University Medical Center, Location Academic Medical Center, Amsterdam, the Netherlands; Dept Clinical Genetics, LUMC, Leiden, the Netherlands.
| | - Marieke Bronk
- Department of Neurology, University Medical Center Amsterdam, location Academic Medical Center, Amsterdam, the Netherlands
| | - Aldo Jongejan
- Department of Bio-informatics, University Medical Center Amsterdam, location Academic Medical Center, Amsterdam, the Netherlands
| | - Jessica E Hoogendijk
- Department of Neurology, UMC Brain Center, University Medical Center, Utrecht, the Netherlands
| | - Judith Krudde
- Department of Neurology, University Medical Center Amsterdam, location Academic Medical Center, Amsterdam, the Netherlands
| | - Dyah Karjosukarso
- Department of Genome Analysis/Clinical Genetics, Amsterdam University Medical Center, Location Academic Medical Center, Amsterdam, the Netherlands
| | - Hans H Goebel
- Department of Neurology, University Medical Center Amsterdam, location Academic Medical Center, Amsterdam, the Netherlands
| | - Eleonora Aronica
- Department of Pathology, Amsterdam University Medical Center, Location Academic Medical Center, Amsterdam, the Netherlands
| | - G Joost Jöbsis
- Department of Neurology, University Medical Center Amsterdam, location Academic Medical Center, Amsterdam, the Netherlands
| | - Fred van Ruissen
- Department of Genome Analysis/Clinical Genetics, Amsterdam University Medical Center, Location Academic Medical Center, Amsterdam, the Netherlands; Department of Human Genetics, Amsterdam Reproduction and Development Research Institute, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - Karin Y van Spaendonck-Zwarts
- Department of Neurology, University Medical Center Amsterdam, location Academic Medical Center, Amsterdam, the Netherlands
| | - Marianne de Visser
- Department of Neurology, University Medical Center Amsterdam, location Academic Medical Center, Amsterdam, the Netherlands
| | - Frank Baas
- Department of Genome Analysis/Clinical Genetics, Amsterdam University Medical Center, Location Academic Medical Center, Amsterdam, the Netherlands; Dept Clinical Genetics, LUMC, Leiden, the Netherlands
| |
Collapse
|
6
|
Markworth R, Bähr M, Burk K. Held Up in Traffic-Defects in the Trafficking Machinery in Charcot-Marie-Tooth Disease. Front Mol Neurosci 2021; 14:695294. [PMID: 34483837 PMCID: PMC8415527 DOI: 10.3389/fnmol.2021.695294] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 07/23/2021] [Indexed: 12/13/2022] Open
Abstract
Charcot-Marie-Tooth disease (CMT), also known as motor and sensory neuropathy, describes a clinically and genetically heterogenous group of disorders affecting the peripheral nervous system. CMT typically arises in early adulthood and is manifested by progressive loss of motor and sensory functions; however, the mechanisms leading to the pathogenesis are not fully understood. In this review, we discuss disrupted intracellular transport as a common denominator in the pathogenesis of different CMT subtypes. Intracellular transport via the endosomal system is essential for the delivery of lipids, proteins, and organelles bidirectionally to synapses and the soma. As neurons of the peripheral nervous system are amongst the longest neurons in the human body, they are particularly susceptible to damage of the intracellular transport system, leading to a loss in axonal integrity and neuronal death. Interestingly, defects in intracellular transport, both in neurons and Schwann cells, have been found to provoke disease. This review explains the mechanisms of trafficking and subsequently summarizes and discusses the latest findings on how defects in trafficking lead to CMT. A deeper understanding of intracellular trafficking defects in CMT will expand our understanding of CMT pathogenesis and will provide novel approaches for therapeutic treatments.
Collapse
Affiliation(s)
- Ronja Markworth
- Department of Neurology, University Medical Center Göttingen, Göttingen, Germany.,Center for Biostructural Imaging of Neurodegeneration, Göttingen, Germany
| | - Mathias Bähr
- Department of Neurology, University Medical Center Göttingen, Göttingen, Germany
| | - Katja Burk
- Department of Neurology, University Medical Center Göttingen, Göttingen, Germany.,Center for Biostructural Imaging of Neurodegeneration, Göttingen, Germany
| |
Collapse
|