1
|
Green D, Singh A, Tippett VL, Tattersall L, Shah KM, Siachisumo C, Ward NJ, Thomas P, Carter S, Jeys L, Sumathi V, McNamara I, Elliott DJ, Gartland A, Dalmay T, Fraser WD. YBX1-interacting small RNAs and RUNX2 can be blocked in primary bone cancer using CADD522. J Bone Oncol 2023; 39:100474. [PMID: 36936386 PMCID: PMC10015236 DOI: 10.1016/j.jbo.2023.100474] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 02/28/2023] [Accepted: 02/28/2023] [Indexed: 03/07/2023] Open
Abstract
Primary bone cancer (PBC) comprises several subtypes each underpinned by distinctive genetic drivers. This driver diversity produces novel morphological features and clinical behaviour that serendipitously makes PBC an excellent metastasis model. Here, we report that some transfer RNA-derived small RNAs termed tRNA fragments (tRFs) perform as a constitutive tumour suppressor mechanism by blunting a potential pro-metastatic protein-RNA interaction. This mechanism is reduced in PBC progression with a gradual loss of tRNAGlyTCC cleavage into 5' end tRF-GlyTCC when comparing low-grade, intermediate-grade and high-grade patient tumours. We detected recurrent activation of miR-140 leading to upregulated RUNX2 expression in high-grade patient tumours. Both tRF-GlyTCC and RUNX2 share a sequence motif in their 3' ends that matches the YBX1 recognition site known to stabilise pro-metastatic mRNAs. Investigating some aspects of this interaction network, gain- and loss-of-function experiments using small RNA mimics and antisense LNAs, respectively, showed that ectopic tRF-GlyTCC reduced RUNX2 expression and dispersed 3D micromass architecture in vitro. iCLIP sequencing revealed YBX1 physical binding to the 3' UTR of RUNX2. The interaction between YBX1, tRF-GlyTCC and RUNX2 led to the development of the RUNX2 inhibitor CADD522 as a PBC treatment. CADD522 assessment in vitro revealed significant effects on PBC cell behaviour. In xenograft mouse models, CADD522 as a single agent without surgery significantly reduced tumour volume, increased overall and metastasis-free survival and reduced cancer-induced bone disease. Our results provide insight into PBC molecular abnormalities that have led to the identification of new targets and a new therapeutic.
Collapse
Key Words
- CADD522
- CADD522, computer aided drug design molecule 522
- CI, confidence interval
- CNV, copy number variant
- CS, chondrosarcoma
- CTC, circulating tumour cell
- DE, differentially expressed
- ES, Ewing sarcoma
- HD, high definition
- HR, hazard ratio
- OS, osteosarcoma
- RBP, RNA binding protein
- RNU6-1, U6 small nuclear 1
- ROI, region-of-interest
- Rnl, T4 RNA ligase
- SNV, single nucleotide variant
- SV, structural variant
- bone cancer
- iCLIP, individual nucleotide resolution cross-linking and immunoprecipitation
- mRNA, messenger RNA
- miRNA
- miRNA, microRNA
- piRNA, piwi interacting RNA
- sRNA, small RNA
- small RNA
- tRF
- tRF, transfer RNA fragment
- tRNA, transfer RNA
- ysRNA, Y RNA-derived sRNA
Collapse
Affiliation(s)
- Darrell Green
- Biomedical Research Centre, Norwich Medical School, University of East Anglia, Norwich, UK
- Corresponding author.
| | - Archana Singh
- School of Biological Sciences, University of East Anglia, Norwich, UK
| | - Victoria L. Tippett
- The Mellanby Centre for Musculoskeletal Research, Department of Oncology and Metabolism, The University of Sheffield, UK
| | - Luke Tattersall
- The Mellanby Centre for Musculoskeletal Research, Department of Oncology and Metabolism, The University of Sheffield, UK
| | - Karan M. Shah
- The Mellanby Centre for Musculoskeletal Research, Department of Oncology and Metabolism, The University of Sheffield, UK
| | | | - Nicole J. Ward
- School of Biological Sciences, University of East Anglia, Norwich, UK
| | - Paul Thomas
- School of Biological Sciences, University of East Anglia, Norwich, UK
- Henry Wellcome Laboratory for Cell Imaging, Faculty of Science, University of East Anglia, Norwich, UK
| | - Simon Carter
- Orthopaedic Oncology, Royal Orthopaedic Hospital, Birmingham, UK
| | - Lee Jeys
- Orthopaedic Oncology, Royal Orthopaedic Hospital, Birmingham, UK
| | - Vaiyapuri Sumathi
- Musculoskeletal Pathology, University Hospitals Birmingham, Royal Orthopaedic Hospital, Birmingham, UK
| | - Iain McNamara
- Orthopaedics & Trauma, Norfolk and Norwich University Hospital, Norwich, UK
| | | | - Alison Gartland
- The Mellanby Centre for Musculoskeletal Research, Department of Oncology and Metabolism, The University of Sheffield, UK
| | - Tamas Dalmay
- School of Biological Sciences, University of East Anglia, Norwich, UK
| | - William D. Fraser
- Biomedical Research Centre, Norwich Medical School, University of East Anglia, Norwich, UK
- Clinical Biochemistry, Diabetes and Endocrinology, Norfolk and Norwich University Hospital, Norwich, UK
| |
Collapse
|
2
|
Payet R, Billmeier M. Small RNA Profiling by Next-Generation Sequencing Using High-Definition Adapters. Methods Mol Biol 2023; 2630:103-115. [PMID: 36689179 DOI: 10.1007/978-1-0716-2982-6_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Next-generation sequencing (NGS) of small RNA (sRNA) cDNA libraries permits the identification and characterization of sRNA species de novo. However, the method through which these libraries are constructed can often introduce artifacts such as over- or underrepresentation of specific sequences or adapter oligonucleotides due to sequence biases held by the enzymes used. In this chapter we describe a protocol for sRNA library construction making use of high-definition (HD) adapters for the Illumina sequencing platform, which reduce ligation bias. This protocol leads to drastically reduced direct 5'/3' adapter ligation products and can be used for the synthesis of sRNA libraries from total RNA or sRNA of various plant, animal, and fungal samples. This protocol also includes a method for total RNA extraction from plant leaf and cultured cells or body fluids.
Collapse
Affiliation(s)
- Rocky Payet
- School of Biological Sciences, University of East Anglia, Norwich, UK.
| | - Martina Billmeier
- Institute of Medical Microbiology and Hygiene, University of Regensburg, Regensburg, Germany
| |
Collapse
|
3
|
Benesova S, Kubista M, Valihrach L. Small RNA-Sequencing: Approaches and Considerations for miRNA Analysis. Diagnostics (Basel) 2021; 11:964. [PMID: 34071824 PMCID: PMC8229417 DOI: 10.3390/diagnostics11060964] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 05/21/2021] [Accepted: 05/24/2021] [Indexed: 01/15/2023] Open
Abstract
MicroRNAs (miRNAs) are a class of small RNA molecules that have an important regulatory role in multiple physiological and pathological processes. Their disease-specific profiles and presence in biofluids are properties that enable miRNAs to be employed as non-invasive biomarkers. In the past decades, several methods have been developed for miRNA analysis, including small RNA sequencing (RNA-seq). Small RNA-seq enables genome-wide profiling and analysis of known, as well as novel, miRNA variants. Moreover, its high sensitivity allows for profiling of low input samples such as liquid biopsies, which have now found applications in diagnostics and prognostics. Still, due to technical bias and the limited ability to capture the true miRNA representation, its potential remains unfulfilled. The introduction of many new small RNA-seq approaches that tried to minimize this bias, has led to the existence of the many small RNA-seq protocols seen today. Here, we review all current approaches to cDNA library construction used during the small RNA-seq workflow, with particular focus on their implementation in commercially available protocols. We provide an overview of each protocol and discuss their applicability. We also review recent benchmarking studies comparing each protocol's performance and summarize the major conclusions that can be gathered from their usage. The result documents variable performance of the protocols and highlights their different applications in miRNA research. Taken together, our review provides a comprehensive overview of all the current small RNA-seq approaches, summarizes their strengths and weaknesses, and provides guidelines for their applications in miRNA research.
Collapse
Affiliation(s)
- Sarka Benesova
- Laboratory of Gene Expression, Institute of Biotechnology, CAS, BIOCEV, 252 50 Vestec, Czech Republic; (S.B.); (M.K.)
- Laboratory of Informatics and Chemistry, Faculty of Chemical Technology, University of Chemistry and Technology, 166 28 Prague, Czech Republic
| | - Mikael Kubista
- Laboratory of Gene Expression, Institute of Biotechnology, CAS, BIOCEV, 252 50 Vestec, Czech Republic; (S.B.); (M.K.)
- TATAA Biocenter AB, 411 03 Gothenburg, Sweden
| | - Lukas Valihrach
- Laboratory of Gene Expression, Institute of Biotechnology, CAS, BIOCEV, 252 50 Vestec, Czech Republic; (S.B.); (M.K.)
| |
Collapse
|
4
|
Prigigallo MI, Križnik M, De Paola D, Catalano D, Gruden K, Finetti-Sialer MM, Cillo F. Potato Virus Y Infection Alters Small RNA Metabolism and Immune Response in Tomato. Viruses 2019; 11:v11121100. [PMID: 31783643 PMCID: PMC6950276 DOI: 10.3390/v11121100] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 11/19/2019] [Accepted: 11/24/2019] [Indexed: 12/17/2022] Open
Abstract
Potato virus Y (PVY) isolate PVYC-to induces growth reduction and foliar symptoms in tomato, but new vegetation displays symptom recovery at a later stage. In order to investigate the role of micro(mi)RNA and secondary small(s)RNA-regulated mechanisms in tomato defenses against PVY, we performed sRNA sequencing from healthy and PVYC-to infected tomato plants at 21 and 30 days post-inoculation (dpi). A total of 792 miRNA sequences were obtained, among which were 123 canonical miRNA sequences, many isomiR variants, and 30 novel miRNAs. MiRNAs were mostly overexpressed in infected vs. healthy plants, whereas only a few miRNAs were underexpressed. Increased accumulation of isomiRs was correlated with viral infection. Among miRNA targets, enriched functional categories included resistance (R) gene families, transcription and hormone factors, and RNA silencing genes. Several 22-nt miRNAs were shown to target R genes and trigger the production of 21-nt phased sRNAs (phasiRNAs). Next, 500 phasiRNA-generating loci were identified, and were shown to be mostly active in PVY-infected tissues and at 21 dpi. These data demonstrate that sRNA-regulated host responses, encompassing miRNA alteration, diversification within miRNA families, and phasiRNA accumulation, regulate R and disease-responsive genes. The dynamic regulation of miRNAs and secondary sRNAs over time suggests a functional role of sRNA-mediated defenses in the recovery phenotype.
Collapse
Affiliation(s)
- Maria I. Prigigallo
- Consiglio Nazionale delle Ricerche, Istituto per la Protezione Sostenibile delle Piante, G. Via Amendola 122/D, 70126 Bari, Italy;
| | - Maja Križnik
- National Institute of Biology, Department of Biotechnology and Systems Biology, Večna pot 111, 1000 Ljubljana, Slovenia; (M.K.); (K.G.)
| | - Domenico De Paola
- Consiglio Nazionale delle Ricerche, Istituto di Bioscienze e BioRisorse, Via G. Amendola 165/A, 70126 Bari, Italy;
| | - Domenico Catalano
- Consiglio Nazionale delle Ricerche, Istituto di Tecnologie Biomediche, Via G. Amendola 122/D, 70126 Bari, Italy;
| | - Kristina Gruden
- National Institute of Biology, Department of Biotechnology and Systems Biology, Večna pot 111, 1000 Ljubljana, Slovenia; (M.K.); (K.G.)
| | - Mariella M. Finetti-Sialer
- Consiglio Nazionale delle Ricerche, Istituto di Bioscienze e BioRisorse, Via G. Amendola 165/A, 70126 Bari, Italy;
- Correspondence: (M.M.F.-S.); (F.C.); Tel.: +39-080-55583400 (ext. 213) (M.M.F.-S.); +39-080-5443109 (F.C.)
| | - Fabrizio Cillo
- Consiglio Nazionale delle Ricerche, Istituto per la Protezione Sostenibile delle Piante, G. Via Amendola 122/D, 70126 Bari, Italy;
- Correspondence: (M.M.F.-S.); (F.C.); Tel.: +39-080-55583400 (ext. 213) (M.M.F.-S.); +39-080-5443109 (F.C.)
| |
Collapse
|
5
|
Chung BYW, Valli A, Deery MJ, Navarro FJ, Brown K, Hnatova S, Howard J, Molnar A, Baulcombe DC. Distinct roles of Argonaute in the green alga Chlamydomonas reveal evolutionary conserved mode of miRNA-mediated gene expression. Sci Rep 2019; 9:11091. [PMID: 31366981 PMCID: PMC6668577 DOI: 10.1038/s41598-019-47415-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Accepted: 07/11/2019] [Indexed: 12/20/2022] Open
Abstract
The unicellular green alga Chlamydomonas reinhardtii is evolutionarily divergent from higher plants, but has a fully functional silencing machinery including microRNA (miRNA)-mediated translation repression and mRNA turnover. However, distinct from the metazoan machinery, repression of gene expression is primarily associated with target sites within coding sequences instead of 3′UTRs. This feature indicates that the miRNA-Argonaute (AGO) machinery is ancient and the primary function is for post transcriptional gene repression and intermediate between the mechanisms in the rest of the plant and animal kingdoms. Here, we characterize AGO2 and 3 in Chlamydomonas, and show that cytoplasmically enriched Cr-AGO3 is responsible for endogenous miRNA-mediated gene repression. Under steady state, mid-log phase conditions, Cr-AGO3 binds predominantly miR-C89, which we previously identified as the predominant miRNA with effects on both translation repression and mRNA turnover. In contrast, the paralogue Cr-AGO2 is nuclear enriched and exclusively binds to 21-nt siRNAs. Further analysis of the highly similar Cr-AGO2 and Cr-AGO 3 sequences (90% amino acid identity) revealed a glycine-arginine rich N-terminal extension of ~100 amino acids that, given previous work on unicellular protists, may associate AGO with the translation machinery. Phylogenetic analysis revealed that this glycine-arginine rich N-terminal extension is present outside the animal kingdom and is highly conserved, consistent with our previous proposal that miRNA-mediated CDS-targeting operates in this green alga.
Collapse
Affiliation(s)
- Betty Y-W Chung
- Department of Plant Sciences, University of Cambridge, Cambridge, CB2 3EA, United Kingdom. .,Department of Pathology, University of Cambridge, Cambridge, CB2 1QP, United Kingdom.
| | - Adrian Valli
- Department of Plant Sciences, University of Cambridge, Cambridge, CB2 3EA, United Kingdom.,Department of Plant Molecular Genetics, Spanish National Centre for Biotechnology, Madrid, 28049, Spain
| | - Michael J Deery
- Cambridge System Biology Centre and Department of Biochemistry, University of Cambridge, Cambridge, CB2 1GA, United Kingdom
| | - Francisco J Navarro
- Department of Plant Sciences, University of Cambridge, Cambridge, CB2 3EA, United Kingdom
| | - Katherine Brown
- Department of Pathology, University of Cambridge, Cambridge, CB2 1QP, United Kingdom
| | - Silvia Hnatova
- Department of Plant Sciences, University of Cambridge, Cambridge, CB2 3EA, United Kingdom
| | - Julie Howard
- Cambridge System Biology Centre and Department of Biochemistry, University of Cambridge, Cambridge, CB2 1GA, United Kingdom
| | - Attila Molnar
- Institute of Molecular Plant Sciences, University of Edinburgh, Edinburgh, EH9 3BF, United Kingdom
| | - David C Baulcombe
- Department of Plant Sciences, University of Cambridge, Cambridge, CB2 3EA, United Kingdom.
| |
Collapse
|
6
|
Comprehensive multi-center assessment of small RNA-seq methods for quantitative miRNA profiling. Nat Biotechnol 2018; 36:746-757. [PMID: 30010675 PMCID: PMC6078798 DOI: 10.1038/nbt.4183] [Citation(s) in RCA: 105] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Accepted: 05/01/2018] [Indexed: 01/08/2023]
Abstract
RNA-seq is increasingly employed for quantitative profiling of small RNAs (e.g., microRNAs, piRNAs, snoRNAs) in diverse sample types including isolated cells, tissues and cell-free biofluids. The accuracy and reproducibility of the multiple small RNA-seq library preparation methods in use, however, have not been systematically assessed. We report systematic results obtained by a consortium of nine labs that independently sequenced reference, ‘ground truth’, samples of synthetic small RNAs and human plasma-derived RNA. Three commercially available library preparation methods employing adapters of defined sequence and six methods using adapters with degenerate bases were assessed. Both protocol- and sequence-specific biases were identified, including biases that reduce the ability of small RNA-seq to accurately measure adenosine-to-inosine editing in microRNAs. We report that these biases were mitigated by library preparation methods that incorporate adapters with degenerate bases. MicroRNA relative quantification between samples using small RNA-seq was found to be accurate and reproducible across laboratories and methods.
Collapse
|
7
|
Small RNA Profiling by Next-Generation Sequencing Using High-Definition Adapters. Methods Mol Biol 2018; 1580:45-57. [PMID: 28439825 DOI: 10.1007/978-1-4939-6866-4_4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Small RNAs (sRNAs) as key regulators of gene expression play fundamental roles in many biological processes. Next-generation sequencing (NGS) has become an important tool for sRNA discovery and profiling. However, NGS data often show bias for or against certain sequences which is mainly caused by adapter oligonucleotides that are ligated to sRNAs more or less efficiently by RNA ligases. In order to reduce ligation bias, High-definition (HD) adapters for the Illumina sequencing platform were developed. However, a large amount of direct 5' and 3' adapter ligation products are often produced when the current commercially available kits are used for cloning with HD adapters. In this chapter we describe a protocol for sRNA library construction using HD adapters with drastically reduced direct 5' adapter-3' adapter ligation product. The protocol can be used for sRNA library preparation from total RNA or sRNA of various plant, animal, insect, or fungal samples. The protocol includes total RNA extraction from plant leaf tissue and cultured mammalian cells and sRNA library construction using HD adapters.
Collapse
|
8
|
Dacosta C, Bao Y. The Role of MicroRNAs in the Chemopreventive Activity of Sulforaphane from Cruciferous Vegetables. Nutrients 2017; 9:nu9080902. [PMID: 28825609 PMCID: PMC5579695 DOI: 10.3390/nu9080902] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Revised: 08/14/2017] [Accepted: 08/15/2017] [Indexed: 12/15/2022] Open
Abstract
Colorectal cancer is an increasingly significant cause of mortality whose risk is linked to diet and inversely correlated with cruciferous vegetable consumption. This is likely to be partly attributable to the isothiocyanates derived from eating these vegetables, such as sulforaphane, which is extensively characterised for cytoprotective and tumour-suppressing activities. However, its bioactivities are likely to extend in complexity beyond those currently known; further insight into these bioactivities could aid the development of sulforaphane-based chemopreventive or chemotherapeutic strategies. Evidence suggests that sulforaphane modulates the expression of microRNAs, many of which are known to regulate genes involved at various stages of colorectal carcinogenesis. Based upon existing knowledge, there exist many plausible mechanisms by which sulforaphane may regulate microRNAs. Thus, there is a strong case for the further investigation of the roles of microRNAs in the anti-cancer effects of sulforaphane. There are several different types of approach to the wide-scale profiling of microRNA differential expression. Array-based methods may involve the use of RT-qPCR or complementary hybridisation probe chips, and tend to be relatively fast and economical. Cloning and deep sequencing approaches are more expensive and labour-intensive, but are worth considering where viable, for their greater sensitivity and ability to detect novel microRNAs.
Collapse
Affiliation(s)
| | - Yongping Bao
- Norwich Medical School, University of East Anglia, Norwich NR4 7UQ, UK. .
| |
Collapse
|
9
|
Green D, Mohorianu I, McNamara I, Dalmay T, Fraser WD. miR-16 is highly expressed in Paget's associated osteosarcoma. Endocr Relat Cancer 2017; 24:L27-L31. [PMID: 28377382 DOI: 10.1530/erc-16-0487] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Accepted: 03/07/2017] [Indexed: 11/08/2022]
Affiliation(s)
- Darrell Green
- Norwich Medical SchoolUniversity of East Anglia, Norwich Research Park, Norwich, UK
| | - Irina Mohorianu
- School of Biological SciencesUniversity of East Anglia, Norwich Research Park, Norwich, UK
| | - Iain McNamara
- Department of Orthopaedics and TraumaNorfolk and Norwich University Hospital, Norwich Research Park, Norwich, UK
| | - Tamas Dalmay
- School of Biological SciencesUniversity of East Anglia, Norwich Research Park, Norwich, UK
| | - William D Fraser
- Norwich Medical SchoolUniversity of East Anglia, Norwich Research Park, Norwich, UK
- Department of Diabetes and EndocrinologyNorfolk and Norwich University Hospital, Norwich Research Park, Norwich, UK
| |
Collapse
|