1
|
Du R, Li X, Fielding LA. Investigating the Formation of Polymer-Nanoparticle Complex Coacervate Hydrogels Using Polymerization-Induced Self-Assembly-Derived Nanogels with a Succinate-Functional Core. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:20648-20656. [PMID: 39291829 PMCID: PMC11447913 DOI: 10.1021/acs.langmuir.4c02626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 09/10/2024] [Accepted: 09/11/2024] [Indexed: 09/19/2024]
Abstract
This paper reports polymer-nanoparticle-based complex coacervate (PNCC) hydrogels prepared by mixing anionic nanogels synthesized by polymerization-induced self-assembly (PISA) and cationic branched poly(ethylenimine) (bPEI). Specifically, poly(3-sulfopropyl methacrylate)58-b-poly(2-(methacryloyloxy)ethyl succinate)500 (PKSPMA58-PMES500) nanogels were prepared by reversible addition-fragmentation chain-transfer (RAFT)-mediated PISA. These nanogels swell on increasing the solution pH and form free-standing hydrogels at 20% w/w and pH ≥ 7.5. However, the addition of bPEI significantly improves the gel properties through the formation of PNCCs. Diluted bPEI/nanoparticle mixtures were analyzed by dynamic light scattering (DLS) and aqueous electrophoresis to examine the mechanism of PNCC formation. The influence of pH and the bPEI-to-nanogel mass ratio (MR) on the formation of these PNCC hydrogels was subsequently investigated. A maximum gel strength of 1300 Pa was obtained for 20% w/w bPEI/PKSPMA58-PMES500 PNCC hydrogels prepared at pH 9 with an MR of 0.1, and shear-thinning behavior was observed in all cases. After the removal of shear, these PNCC gels recovered rapidly, with the recovery efficiency being pH-dependent.
Collapse
Affiliation(s)
- Ruiling Du
- Department
of Materials, School of Natural Sciences, University of Manchester, Oxford Road, Manchester M13 9PL, U.K.
- Henry
Royce Institute, The University of Manchester, Oxford Road, Manchester M13 9PL, U.K.
| | - Xueyuan Li
- Department
of Materials, School of Natural Sciences, University of Manchester, Oxford Road, Manchester M13 9PL, U.K.
- Henry
Royce Institute, The University of Manchester, Oxford Road, Manchester M13 9PL, U.K.
| | - Lee A. Fielding
- Department
of Materials, School of Natural Sciences, University of Manchester, Oxford Road, Manchester M13 9PL, U.K.
- Henry
Royce Institute, The University of Manchester, Oxford Road, Manchester M13 9PL, U.K.
| |
Collapse
|
2
|
Wang F, Feng W, Zhu Z, Zhang J, Wei H, Dang L. Coacervating behavior of amino acid anionic and amphoteric mixed micelle-polymer. SOFT MATTER 2024; 20:5733-5744. [PMID: 38980096 DOI: 10.1039/d4sm00267a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
In this paper, coacervates were formed with mixed micelles consisting of the anionic amino acid surfactant sodium lauroylsarcosinate (NLS) and amphoteric surfactant cocamidopropyl betaine (CAPB) in combination with cationic guar gum. Based on personal care formulation studies, coacervates were prepared by diluting a concentrated system with water to better suit the product application process. The phase behavior during dilution was revealed by turbidity, which was influenced by the mixed micelle ratio (X), salt concentration, and dilution ratio (R). Optical microscopy, cryo-SEM, SAXS and rotational rheometry were used to characterize the structure and properties of the coacervates, which strongly depended on the interaction strength between the polymer and micelles. Dominated by electrostatic interactions, the coacervates exhibited a dense porous structure with low water content and a high viscoelastic modulus, while weakened interactions resulted in a looser mesh internal structure with lower viscoelasticity, enhancing skin adsorption. These findings enhance our understanding of polymer-mixed micelle systems and offer practical strategies for controlling the properties of coacervates.
Collapse
Affiliation(s)
- Feihong Wang
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, P. R. China.
| | - Wenhui Feng
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, P. R. China.
| | - Zhendong Zhu
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, P. R. China.
| | - Jiahao Zhang
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, P. R. China.
| | - Hongyuan Wei
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, P. R. China.
| | - Leping Dang
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, P. R. China.
| |
Collapse
|
3
|
Ziemlewska A, Wójciak M, Mroziak-Lal K, Zagórska-Dziok M, Bujak T, Nizioł-Łukaszewska Z, Szczepanek D, Sowa I. Assessment of Cosmetic Properties and Safety of Use of Model Washing Gels with Reishi, Maitake and Lion's Mane Extracts. Molecules 2022; 27:5090. [PMID: 36014338 PMCID: PMC9412612 DOI: 10.3390/molecules27165090] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 08/05/2022] [Accepted: 08/05/2022] [Indexed: 11/25/2022] Open
Abstract
Natural cosmetics are becoming more and more popular every day. For this reason, this work investigates the properties of mushroom extracts, which are not as widely used in the cosmetics industry as plant ingredients. Water extracts of Grifolafrondosa (Maitake), Hericiumerinaceus (Lion's Mane) and Ganoderma lucidum (Reishi) were tested for their antioxidant properties, bioactive substances content, skin cell toxicity, ability to limit TEWL, effect on skin hydration and pH, and skin irritation. Our research showed that Maitake extract contained the highest amount of flavonoids and phenols, and also showed the most effective scavenging of DPPH and ABTS radicals as well as Chelation of Fe2+ and FRAP radicals, which were 39.84% and 82.12% in a concentration of 1000 µg/mL, respectively. All tested extracts did not increase the amount of ROS in fibroblasts and keratinocytes. The addition of mushroom extracts to washing gels reduced the irritating effect on skin, and reduced the intracellular production of free radicals, compared with the cosmetic base. Moreover, it was shown that the analyzedcosmetics had a positive effect on the pH and hydration of the skin, and reduced TEWL.
Collapse
Affiliation(s)
- Aleksandra Ziemlewska
- Department of Technology of Cosmetic and Pharmaceutical Products, Medical College, University of Information Technology and Management in Rzeszow, Sucharskiego 2, 35-225 Rzeszow, Poland
| | - Magdalena Wójciak
- Department of Analytical Chemistry, Medical University of Lublin, AlejeRaclawickie 1, 20-059 Lublin, Poland
| | - Kamila Mroziak-Lal
- Department of Technology of Cosmetic and Pharmaceutical Products, Medical College, University of Information Technology and Management in Rzeszow, Sucharskiego 2, 35-225 Rzeszow, Poland
| | - Martyna Zagórska-Dziok
- Department of Technology of Cosmetic and Pharmaceutical Products, Medical College, University of Information Technology and Management in Rzeszow, Sucharskiego 2, 35-225 Rzeszow, Poland
| | - Tomasz Bujak
- Department of Technology of Cosmetic and Pharmaceutical Products, Medical College, University of Information Technology and Management in Rzeszow, Sucharskiego 2, 35-225 Rzeszow, Poland
| | - Zofia Nizioł-Łukaszewska
- Department of Technology of Cosmetic and Pharmaceutical Products, Medical College, University of Information Technology and Management in Rzeszow, Sucharskiego 2, 35-225 Rzeszow, Poland
| | - Dariusz Szczepanek
- Chair and Department of Neurosurgery and Paediatric Neurosurgery, Medical University of Lublin, 20-090 Lublin, Poland
| | - Ireneusz Sowa
- Department of Analytical Chemistry, Medical University of Lublin, AlejeRaclawickie 1, 20-059 Lublin, Poland
| |
Collapse
|
4
|
Wasilewski T, Seweryn A, Pannert D, Kierul K, Domżał-Kędzia M, Hordyjewicz-Baran Z, Łukaszewicz M, Lewińska A. Application of Levan-Rich Digestate Extract in the Production of Safe-to-Use and Functional Natural Body Wash Cosmetics. Molecules 2022; 27:2793. [PMID: 35566142 PMCID: PMC9099796 DOI: 10.3390/molecules27092793] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 04/22/2022] [Accepted: 04/24/2022] [Indexed: 11/16/2022] Open
Abstract
The study focused on the evaluation of the possibility of using a levan-rich digestate extract in the production of safe and functional body wash cosmetics. Model shower gels were designed and formulated on the basis of raw materials of natural origin. Prepared prototypes contained various extract concentrations (16.7; 33; 50%). A gel without extract was used as a reference. The samples were evaluated for their safety in use and functionality. The results showed that the use of high-concentration levan-rich digestate extract in a shower gel resulted in a significant reduction in the negative impact on the skin. For example, the zein value decreased by over 50% in relation to the preparation without the extract. An over 40% reduction in the emulsifying capacity of hydrophobic substances was also demonstrated, which reduces skin dryness after the washing process. However, the presence of the extract did not significantly affect the parameters related to functionality. Overall, it was indicated that levan-rich digestate extract can be successfully used as a valuable ingredient in natural cleansing cosmetics.
Collapse
Affiliation(s)
- Tomasz Wasilewski
- Department of Industrial Chemistry, Faculty of Chemical Engineering and Commodity Science, Kazimierz Pulaski University of Technology and Humanities in Radom, Chrobrego 27, 26-600 Radom, Poland;
- Research and Development Department, ONLYBIO.life S.A., Jakóba Hechlińskiego 6, 85-825 Bydgoszcz, Poland;
| | - Artur Seweryn
- Department of Industrial Chemistry, Faculty of Chemical Engineering and Commodity Science, Kazimierz Pulaski University of Technology and Humanities in Radom, Chrobrego 27, 26-600 Radom, Poland;
- Research and Development Department, ONLYBIO.life S.A., Jakóba Hechlińskiego 6, 85-825 Bydgoszcz, Poland;
| | - Dominika Pannert
- Research and Development Department, ONLYBIO.life S.A., Jakóba Hechlińskiego 6, 85-825 Bydgoszcz, Poland;
| | - Kinga Kierul
- Research and Development Department, INVENTIONBIO S.A., Jakóba Hechlińskiego 4, 85-825 Bydgoszcz, Poland; (K.K.); (M.D.-K.)
| | - Marta Domżał-Kędzia
- Research and Development Department, INVENTIONBIO S.A., Jakóba Hechlińskiego 4, 85-825 Bydgoszcz, Poland; (K.K.); (M.D.-K.)
- Faculty of Biotechnology, University of Wroclaw, Joliot-Curie 14a, 50-383 Wroclaw, Poland (M.Ł.)
| | - Zofia Hordyjewicz-Baran
- Lukasiewicz Research Network-Institute of Heavy Organic Synthesis “Blachownia”, Energetykow 9, 47-225 Kedzierzyn-Kozle, Poland;
| | - Marcin Łukaszewicz
- Faculty of Biotechnology, University of Wroclaw, Joliot-Curie 14a, 50-383 Wroclaw, Poland (M.Ł.)
| | - Agnieszka Lewińska
- Research and Development Department, INVENTIONBIO S.A., Jakóba Hechlińskiego 4, 85-825 Bydgoszcz, Poland; (K.K.); (M.D.-K.)
- Faculty of Chemistry, University of Wroclaw, Joliot-Curie 14, 50-383 Wroclaw, Poland
| |
Collapse
|
5
|
Sustainable Green Processing of Grape Pomace Using Micellar Extraction for the Production of Value-Added Hygiene Cosmetics. Molecules 2022; 27:molecules27082444. [PMID: 35458642 PMCID: PMC9025557 DOI: 10.3390/molecules27082444] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Revised: 04/01/2022] [Accepted: 04/08/2022] [Indexed: 01/27/2023] Open
Abstract
This study sought to evaluate the possibility of using grape pomace, a waste material from wine production, for the preparation of cosmetic components. Following the existing clear research trend related to improving the safety of cleansing cosmetics, an attempt was made to determine the possibility of preparing model shower gels based on grape pomace extract. A new method for producing cosmetic components named loan chemical extraction (LCE) was developed and is described for the first time in this paper. In the LCE method, an extraction medium consisting only of the components from the final product was used. Thus, there were no additional substances in the cosmetics developed, and the formulation was significantly enriched with compounds isolated from grape pomace. Samples of the model shower gels produced were evaluated in terms of their basic parameters related to functionality (e.g., foaming properties, rheological characteristics, color) and their effect on the skin. The results obtained showed that the extracts based on waste grape pomace contained a number of valuable cosmetic compounds (e.g., organic acids, phenolic compounds, amino acids and sugars), and the model products basis on them provided colorful and safe natural cosmetics.
Collapse
|
6
|
Phaodee P, Sabatini DA. Anionic and Cationic Surfactant Synergism: Minimizing Precipitation, Microemulsion Formation, and Enhanced Solubilization and Surface Modification. J SURFACTANTS DETERG 2021. [DOI: 10.1002/jsde.12512] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Parichat Phaodee
- School of Chemical, Biological, and Materials Engineering University of Oklahoma Norman Oklahoma USA
- Institute for Applied Surfactant Research University of Oklahoma Norman Oklahoma USA
| | - David A. Sabatini
- School of Civil Engineering and Environmental Science University of Oklahoma Norman Oklahoma USA
- Institute for Applied Surfactant Research University of Oklahoma Norman Oklahoma USA
- Research Program of Industrial Waste Management‐Policies and Practices, Center of Excellence on Hazardous Substance Management (HSM) Chulalongkorn University Bangkok Thailand
| |
Collapse
|
7
|
Complexes of Ectoine with the Anionic Surfactants as Active Ingredients of Cleansing Cosmetics with Reduced Irritating Potential. Molecules 2020; 25:molecules25061433. [PMID: 32245215 PMCID: PMC7145297 DOI: 10.3390/molecules25061433] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 03/17/2020] [Accepted: 03/18/2020] [Indexed: 11/17/2022] Open
Abstract
For many years, an increasing number of diagnosed atopy and skin problems have been observed. For people affected by the problem of atopy, the selection of skin care products, including cosmetics, is extremely important. Cleansing cosmetics, due to their ability to cause skin irritations and disturb the hydrolipidic barrier, can increase problems with atopic skin. New solutions to reduce the effects of these products on the skin are very important. In this work, the effect of ectoine on the properties of anionic surfactants was analyzed. Based on model systems, analysis of the effect of ectoine on the irritating effect of four anionic surfactants and their ability to solubilize model sebum was performed. Antioxidant activity was also evaluated, and cytotoxic studies were performed on cell cultures. It was shown that the addition of ectoine to the anionic surfactant solutions improves its safety of use. After introducing ectoine to the surfactant solution, a decrease of irritant potential (about 20%) and a decrease in the ability to solubilize of model sebum (about 10–20%) was noted. Addition of ectoine to surfactant solutions also reduced their cytotoxicity by up to 60%. The obtained results indicate that ectoine may be a modern ingredient that improves the safety of cleansing cosmetics.
Collapse
|
8
|
Bujak T, Nizioł-Łukaszewska Z, Ziemlewska A. Amphiphilic cationic polymers as effective substances improving the safety of use of body wash gels. Int J Biol Macromol 2019; 147:973-979. [PMID: 31678103 DOI: 10.1016/j.ijbiomac.2019.10.064] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Revised: 09/25/2019] [Accepted: 10/06/2019] [Indexed: 10/25/2022]
Abstract
Cationic surfactants have a wide range of applications in the cosmetic industry. The present study is an attempt to determine the effect of an amphiphilic cationic polymer - a cationic derivative of guar gum - on the safety of use of body wash cosmetics. Model body wash gels based on an anionic surfactant, containing 0.05, 0.25 and 0.5% of the studied compound, were subjected to analyses in order to evaluate their skin irritation effect and the ability to solubilize model sebum. Cell culture studies were also carried out. In addition, the effect of the cationized guar gum derivative on the key quality parameters of body wash cosmetics (viscosity and foaming properties) was assessed. The analyses showed that the addition of the cationic guar gum derivative induced a significant increase in the safety of use of the model body wash gels without causing any impairment of the functional properties of the product.
Collapse
Affiliation(s)
- Tomasz Bujak
- Department of Technology of Cosmetic and Pharmaceutical Products, University of Information Technology and Management in Rzeszow, Kielnarowa 386a, 36-020 Tyczyn, Poland.
| | - Zofia Nizioł-Łukaszewska
- Department of Technology of Cosmetic and Pharmaceutical Products, University of Information Technology and Management in Rzeszow, Kielnarowa 386a, 36-020 Tyczyn, Poland.
| | - Aleksandra Ziemlewska
- Department of Technology of Cosmetic and Pharmaceutical Products, University of Information Technology and Management in Rzeszow, Kielnarowa 386a, 36-020 Tyczyn, Poland.
| |
Collapse
|