1
|
Pu M, Fang C, Zhou X, Wang D, Lin Y, Lei W, Li L. Recent Advances in Environment-Friendly Polyurethanes from Polyols Recovered from the Recycling and Renewable Resources: A Review. Polymers (Basel) 2024; 16:1889. [PMID: 39000744 PMCID: PMC11244063 DOI: 10.3390/polym16131889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 06/25/2024] [Accepted: 06/27/2024] [Indexed: 07/17/2024] Open
Abstract
Polyurethane (PU) is among the most universal polymers and has been extensively applied in many fields, such as construction, machinery, furniture, clothing, textile, packaging and biomedicine. Traditionally, as the main starting materials for PU, polyols deeply depend on petroleum stock. From the perspective of recycling and environmental friendliness, advanced PU synthesis, using diversified resources as feedstocks, aims to develop versatile products with excellent properties to achieve the transformation from a fossil fuel-driven energy economy to renewable and sustainable ones. This review focuses on the recent development in the synthesis and modification of PU by extracting value-added monomers for polyols from waste polymers and natural bio-based polymers, such as the recycled waste polymers: polyethylene terephthalate (PET), PU and polycarbonate (PC); the biomaterials: vegetable oil, lignin, cashew nut shell liquid and plant straw; and biomacromolecules: polysaccharides and protein. To design these advanced polyurethane formulations, it is essential to understand the structure-property relationships of PU from recycling polyols. In a word, this bottom-up path provides a material recycling approach to PU design for printing and packaging, as well as biomedical, building and wearable electronics applications.
Collapse
Affiliation(s)
- Mengyuan Pu
- School of Mechanical and Precision Instrument Engineering, Xi’an University of Technology, Xi’an 710048, China; (M.P.); (D.W.)
- School of Printing, Packaging Engineering and Digital Media Technology, Xi’an University of Technology, Xi’an 710048, China; (Y.L.); (W.L.)
| | - Changqing Fang
- School of Mechanical and Precision Instrument Engineering, Xi’an University of Technology, Xi’an 710048, China; (M.P.); (D.W.)
- School of Printing, Packaging Engineering and Digital Media Technology, Xi’an University of Technology, Xi’an 710048, China; (Y.L.); (W.L.)
| | - Xing Zhou
- School of Mechanical and Precision Instrument Engineering, Xi’an University of Technology, Xi’an 710048, China; (M.P.); (D.W.)
- School of Printing, Packaging Engineering and Digital Media Technology, Xi’an University of Technology, Xi’an 710048, China; (Y.L.); (W.L.)
| | - Dong Wang
- School of Mechanical and Precision Instrument Engineering, Xi’an University of Technology, Xi’an 710048, China; (M.P.); (D.W.)
- School of Printing, Packaging Engineering and Digital Media Technology, Xi’an University of Technology, Xi’an 710048, China; (Y.L.); (W.L.)
| | - Yangyang Lin
- School of Printing, Packaging Engineering and Digital Media Technology, Xi’an University of Technology, Xi’an 710048, China; (Y.L.); (W.L.)
| | - Wanqing Lei
- School of Printing, Packaging Engineering and Digital Media Technology, Xi’an University of Technology, Xi’an 710048, China; (Y.L.); (W.L.)
| | - Lu Li
- Key Laboratory of Auxiliary Chemistry and Technology for Chemical Industry, Ministry of Education, Shaanxi University of Science and Technology, Xi’an 710021, China;
- Shaanxi Collaborative Innovation Center of Industrial Auxiliary Chemistry and Technology, Shaanxi University of Science and Technology, Xi’an 710021, China
| |
Collapse
|
2
|
Fontana D, Recupido F, Lama GC, Liu J, Boggioni L, Silvano S, Lavorgna M, Verdolotti L. Effect of Different Methods to Synthesize Polyol-Grafted-Cellulose Nanocrystals as Inter-Active Filler in Bio-Based Polyurethane Foams. Polymers (Basel) 2023; 15:923. [PMID: 36850207 PMCID: PMC9962898 DOI: 10.3390/polym15040923] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 02/02/2023] [Accepted: 02/08/2023] [Indexed: 02/15/2023] Open
Abstract
Currently, the scientific community has spent a lot of effort in developing "green" and environmentally friendly processes and products, due the contemporary problems connected to pollution and climate change. Cellulose nanocrystals (CNCs) are at the forefront of current research due to their multifunctional characteristics of biocompatibility, high mechanical properties, specific surface area, tunable surface chemistry and renewability. However, despite these many advantages, their inherent hydrophilicity poses a substantial challenge for the application of CNCs as a reinforcing filler in polymers, as it complicates their dispersion in hydrophobic polymeric matrices, such as polyurethane foams, often resulting in aggregate structures that compromise their properties. The manipulation and fine-tuning of the interfacial properties of CNCs is a crucial step to exploit their full potential in the development of new materials. In this respect, starting from an aqueous dispersion of CNCs, two different strategies were used to properly functionalize fillers: (i) freeze drying, solubilization in DMA/LiCl media and subsequent grafting with bio-based polyols; (ii) solvent exchange and subsequent grafting with bio-based polyols. The influence of the two functionalization methods on the chemical and thermal properties of CNCs was examined. In both cases, the role of the two bio-based polyols on filler functionalization was elucidated. Afterwards, the functionalized CNCs were used at 5 wt% to produce bio-based composite polyurethane foams and their effect on the morphological, thermal and mechanical properties was examined. It was found that CNCs modified through freeze drying, solubilization and bio-polyols grafting exhibited remarkably higher thermal stability (i.e., degradation stages > 100 °C) with respect to the unmodified freeze dried-CNCs. In addition, the use of the two grafting bio-polyols influenced the functionalization process, corresponding to different amount of grafted-silane-polyol and leading to different chemico-physical characteristics of the obtained CNCs. This was translated to higher thermal stability as well as improved functional and mechanical performances of the produced bio-based composite PUR foams with respect of the unmodified CNCs-composite ones (the best case attained compressive strength values three times more). Solvent exchange route slightly improved the thermal stability of the obtained CNCs; however; the so-obtained CNCs could not be properly dispersed within the polyurethane matrix, due to filler aggregation.
Collapse
Affiliation(s)
- Dario Fontana
- Chemistry Department, University of Pavia, Via Torquato Taramelli 12, 27100 Pavia, Italy
- Institute for Chemical Science and Technologies, CNR, Via Alfonso Corti 12, 20133 Milan, Italy
| | - Federica Recupido
- Institute for Polymers, Composites and Biomaterials (IPCB-CNR), P.zzale Enrico Fermi 1, 80055 Portici, Italy
| | - Giuseppe Cesare Lama
- Institute for Polymers, Composites and Biomaterials (IPCB-CNR), P.zzale Enrico Fermi 1, 80055 Portici, Italy
| | - Jize Liu
- Institute for Polymers, Composites and Biomaterials (IPCB-CNR), P.zzale Enrico Fermi 1, 80055 Portici, Italy
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute of Sichuan University, Chengdu 610065, China
| | - Laura Boggioni
- Institute for Chemical Science and Technologies, CNR, Via Alfonso Corti 12, 20133 Milan, Italy
| | - Selena Silvano
- Institute for Chemical Science and Technologies, CNR, Via Alfonso Corti 12, 20133 Milan, Italy
| | - Marino Lavorgna
- Institute for Polymers, Composites and Biomaterials (IPCB-CNR), P.zzale Enrico Fermi 1, 80055 Portici, Italy
| | - Letizia Verdolotti
- Institute for Polymers, Composites and Biomaterials (IPCB-CNR), P.zzale Enrico Fermi 1, 80055 Portici, Italy
| |
Collapse
|
3
|
Asif AH, Mahajan MS, Sreeharsha N, Gite VV, Al-Dhubiab BE, Kaliyadan F, Nanjappa SH, Meravanige G, Aleyadhy DM. Enhancement of Anticorrosive Performance of Cardanol Based Polyurethane Coatings by Incorporating Magnetic Hydroxyapatite Nanoparticles. MATERIALS 2022; 15:ma15062308. [PMID: 35329759 PMCID: PMC8953906 DOI: 10.3390/ma15062308] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Revised: 03/06/2022] [Accepted: 03/11/2022] [Indexed: 02/04/2023]
Abstract
The present investigation demonstrates renewable cardanol-based polyol for the formulation of nanocomposite polyurethane (PU) coatings. The functional and structural features of cardanol polyol and nanoparticles were studied using FT-IR and 1H NMR spectroscopic techniques. The magnetic hydroxyapatite nanoparticles (MHAPs) were dispersed 1–5% in PU formulations to develop nanocomposite anticorrosive coatings. An increase in the strength of MHAP increased the anticorrosive performance as examined by immersion and electrochemical methods. The nanocomposite PU coatings showed good coating properties, viz., gloss, pencil hardness, flexibility, cross-cut adhesion, and chemical resistance. Additionally, the coatings were also studied for surface morphology, wetting, and thermal properties by scanning electron microscope (SEM), contact angle, and thermogravimetric analysis (TGA), respectively. The hydrophobic nature of PU coatings increased by the addition of MHAP, and an optimum result (105°) was observed in 3% loading. The developed coatings revealed its hydrophobic nature with excellent anticorrosive performance.
Collapse
Affiliation(s)
- Afzal Haq Asif
- Department of Pharmacy Practice, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia;
- Correspondence: (A.H.A.); (M.S.M.)
| | - Mahendra S. Mahajan
- Department of Polymer Chemistry, School of Chemical Sciences, Kavayitri Bahinabai Chaudhari North Maharashtra University, Jalgaon 425001, MS, India;
- Correspondence: (A.H.A.); (M.S.M.)
| | - Nagaraja Sreeharsha
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia; (N.S.); (B.E.A.-D.)
- Department of Pharmaceutics, Vidya Siri College of Pharmacy, Off Sarjapura Road, Bangalore 560035, India
| | - Vikas V. Gite
- Department of Polymer Chemistry, School of Chemical Sciences, Kavayitri Bahinabai Chaudhari North Maharashtra University, Jalgaon 425001, MS, India;
| | - Bandar E. Al-Dhubiab
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia; (N.S.); (B.E.A.-D.)
| | - Feroze Kaliyadan
- Department of Dermatology, College of Medicine, King Faisal University, Al-Ahsa 31982, Saudi Arabia;
| | | | - Girish Meravanige
- Department of Biomedical Sciences, College of Medicine, King Faisal University, Al-Ahsa 31982, Saudi Arabia;
| | - Dalal Mishary Aleyadhy
- Department of Pharmacy Practice, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia;
| |
Collapse
|
4
|
Coccia F, Gryshchuk L, Moimare P, Bossa FDL, Santillo C, Barak-Kulbak E, Verdolotti L, Boggioni L, Lama GC. Chemically Functionalized Cellulose Nanocrystals as Reactive Filler in Bio-Based Polyurethane Foams. Polymers (Basel) 2021; 13:2556. [PMID: 34372159 PMCID: PMC8348027 DOI: 10.3390/polym13152556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 07/26/2021] [Accepted: 07/29/2021] [Indexed: 11/17/2022] Open
Abstract
Cellulose Nanocrystals, CNC, opportunely functionalized are proposed as reactive fillers in bio-based flexible polyurethane foams to improve, mainly, their mechanical properties. To overcome the cellulose hydrophilicity, CNC was functionalized on its surface by linking covalently a suitable bio-based polyol to obtain a grafted-CNC. The polyols grafted with CNC will react with the isocyanate in the preparation of the polyurethane foams. An attractive way to introduce functionalities on cellulose surfaces in aqueous media is silane chemistry by using functional trialkoxy silanes, X-Si (OR)3. Here, we report the synthesis of CNC-grafted-biopolyol to be used as a successful reactive filler in bio-based polyurethane foams, PUFs. The alkyl silanes were used as efficient coupling agents for the grafting of CNC and bio-polyols. Four strategies to obtain CNC-grafted-polyol were fine-tuned to use CNC as an active filler in PUFs. The effective grafting of the bio polyol on CNC was evaluated by FTIR analysis, and the amount of grafted polyol by thermogravimetric analysis. Finally, the morphological, thermal and mechanical properties and hydrophobicity of filled PUFs were thoughtfully assessed as well as the structure of the foams and, in particular, of the edges and walls of the cell foams by means of the Gibson-Ashby model. Improved thermal stability and mechanical properties of PU foams containing CNC-functionalized-polyol are observed. The morphology of the PU foams is also influenced by the functionalization of the CNC.
Collapse
Affiliation(s)
- Francesca Coccia
- Institute of Chemical Science and Technologies—“G. Natta”, National Research Council, via A. Corti 12, 20133 Milan, Italy; (F.C.); (P.M.)
| | - Liudmyla Gryshchuk
- Leibniz-Institut für Verbundwerkstoffe GmbH, Technische Universität, Erwin-Schrödinger-Straße 58, 67663 Kaiserslautern, Germany;
| | - Pierluigi Moimare
- Institute of Chemical Science and Technologies—“G. Natta”, National Research Council, via A. Corti 12, 20133 Milan, Italy; (F.C.); (P.M.)
| | - Ferdinando de Luca Bossa
- Institute of Polymers, Composite and Biomaterials, National Research Council, Piazzale Enrico Fermi, 80055 Portici, Italy; (F.d.L.B.); (C.S.); (G.C.L.)
| | - Chiara Santillo
- Institute of Polymers, Composite and Biomaterials, National Research Council, Piazzale Enrico Fermi, 80055 Portici, Italy; (F.d.L.B.); (C.S.); (G.C.L.)
| | | | - Letizia Verdolotti
- Institute of Polymers, Composite and Biomaterials, National Research Council, Piazzale Enrico Fermi, 80055 Portici, Italy; (F.d.L.B.); (C.S.); (G.C.L.)
| | - Laura Boggioni
- Institute of Chemical Science and Technologies—“G. Natta”, National Research Council, via A. Corti 12, 20133 Milan, Italy; (F.C.); (P.M.)
| | - Giuseppe Cesare Lama
- Institute of Polymers, Composite and Biomaterials, National Research Council, Piazzale Enrico Fermi, 80055 Portici, Italy; (F.d.L.B.); (C.S.); (G.C.L.)
| |
Collapse
|
5
|
de Luca Bossa F, Verdolotti L, Russo V, Campaner P, Minigher A, Lama GC, Boggioni L, Tesser R, Lavorgna M. Upgrading Sustainable Polyurethane Foam Based on Greener Polyols: Succinic-Based Polyol and Mannich-Based Polyol. MATERIALS 2020; 13:ma13143170. [PMID: 32708562 PMCID: PMC7412382 DOI: 10.3390/ma13143170] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 07/09/2020] [Accepted: 07/13/2020] [Indexed: 11/25/2022]
Abstract
It is well known that the traditional synthetic polymers, such as Polyurethane foams, require raw materials that are not fully sustainable and are based on oil-feedstocks. For this reason, renewable resources such as biomass, polysaccharides and proteins are still recognized as one of the most promising approaches for substituting oil-based raw materials (mainly polyols). However, polyurethanes from renewable sources exhibit poor physical and functional performances. For this reason, the best technological solution is the production of polyurethane materials obtained through a partial replacement of the oil-based polyurethane precursors. This approach enables a good balance between the need to improve the sustainability of the polymer and the need to achieve suitable performances, to fulfill the technological requirements for specific applications. In this paper, a succinic-based polyol sample (obtained from biomass source) was synthesized, characterized and blended with cardanol-based polyol (Mannich-based polyol) to produce sustainable rigid polyurethane foams in which the oil-based polyol is totally replaced. A suitable amount of catalysts and surfactant, water as blowing reagent and poly-methylene diphenyl di-isocyanate as isocyanate source were used for the polyurethane synthesis. The resulting foams were characterized by means of infrared spectroscopy (FTIR) to control the cross-linking reactions, scanning electron microscopy (SEM) to evaluate the morphological structure and thermal gravimetric analysis (TGA) and thermal conductivity to evaluate thermal degradation behavior and thermal insulation properties.
Collapse
Affiliation(s)
- Ferdinando de Luca Bossa
- Institute of Polymers, Composite and Biomaterials, National Research Council, P.le Enrico Fermi 1, Portici, 80055 Naples, Italy; (F.d.L.B.); (G.C.L.); (M.L.)
| | - Letizia Verdolotti
- Institute of Polymers, Composite and Biomaterials, National Research Council, P.le Enrico Fermi 1, Portici, 80055 Naples, Italy; (F.d.L.B.); (G.C.L.); (M.L.)
- Correspondence:
| | - Vincenzo Russo
- Department of Chemical Sciences, University of Naples Federico II, Via Cintia 4, 80126 Naples, Italy; (V.R.); (R.T.)
| | - Pietro Campaner
- AEP Polymers Srl, Basovizza, 34149 Trieste, Italy; (P.C.); (A.M.)
| | - Andrea Minigher
- AEP Polymers Srl, Basovizza, 34149 Trieste, Italy; (P.C.); (A.M.)
| | - Giuseppe Cesare Lama
- Institute of Polymers, Composite and Biomaterials, National Research Council, P.le Enrico Fermi 1, Portici, 80055 Naples, Italy; (F.d.L.B.); (G.C.L.); (M.L.)
| | - Laura Boggioni
- Institute for Chemical Science and Technologies, CNR, V. Corti 12, 20133 Milano, Italy;
| | - Riccardo Tesser
- Department of Chemical Sciences, University of Naples Federico II, Via Cintia 4, 80126 Naples, Italy; (V.R.); (R.T.)
| | - Marino Lavorgna
- Institute of Polymers, Composite and Biomaterials, National Research Council, P.le Enrico Fermi 1, Portici, 80055 Naples, Italy; (F.d.L.B.); (G.C.L.); (M.L.)
| |
Collapse
|
6
|
Vahabi H, Rastin H, Movahedifar E, Antoun K, Brosse N, Saeb MR. Flame Retardancy of Bio-Based Polyurethanes: Opportunities and Challenges. Polymers (Basel) 2020; 12:E1234. [PMID: 32485825 PMCID: PMC7361950 DOI: 10.3390/polym12061234] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 05/24/2020] [Accepted: 05/26/2020] [Indexed: 01/14/2023] Open
Abstract
Sustainable polymers are emerging fast and have received much more attention in recent years compared to petro-sourced polymers. However, they inherently have low-quality properties, such as poor mechanical properties, and inadequate performance, such as high flammability. In general, two methods have been considered to tackle such drawbacks: (i) reinforcement of sustainable polymers with additives; and (ii) modification of chemical structure by architectural manipulation so as to modify polymers for advanced applications. Development and management of bio-based polyurethanes with flame-retardant properties have been at the core of attention in recent years. Bio-based polyurethanes are currently prepared from renewable, bio-based sources such as vegetable oils. They are used in a wide range of applications including coatings and foams. However, they are highly flammable, and their further development is dependent on their flame retardancy. The aim of the present review is to investigate recent advances in the development of flame-retardant bio-based polyurethanes. Chemical structures of bio-based flame-retardant polyurethanes have been studied and explained from the point of view of flame retardancy. Moreover, various strategies for improving the flame retardancy of bio-based polyurethanes as well as reactive and additive flame-retardant solutions are discussed.
Collapse
Affiliation(s)
- Henri Vahabi
- Université de Lorraine, CentraleSupélec, LMOPS, F-57000 Metz, France
| | - Hadi Rastin
- School of Chemical Engineering, College of Engineering, University of Tehran, Tehran 1417466191, Iran;
| | - Elnaz Movahedifar
- Department of Polymer Engineering, Amirkabir University of Technology-Mahshahr Campus, Mahshahr 424, Iran;
| | - Karina Antoun
- Université de Lorraine, INRAE, LERMAB, F-54000 Nancy, France; (K.A.); (N.B.)
| | - Nicolas Brosse
- Université de Lorraine, INRAE, LERMAB, F-54000 Nancy, France; (K.A.); (N.B.)
| | - Mohammad Reza Saeb
- Department of Resin and Additives, Institute for Color Science and Technology, Tehran 16765-654, Iran
| |
Collapse
|
7
|
Cassales A, Ramos LA, Frollini E. Synthesis of bio-based polyurethanes from Kraft lignin and castor oil with simultaneous film formation. Int J Biol Macromol 2020; 145:28-41. [DOI: 10.1016/j.ijbiomac.2019.12.173] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 12/19/2019] [Accepted: 12/19/2019] [Indexed: 02/07/2023]
|
8
|
Furtwengler P, Avérous L. Renewable polyols for advanced polyurethane foams from diverse biomass resources. Polym Chem 2018. [DOI: 10.1039/c8py00827b] [Citation(s) in RCA: 102] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
This review highlights recent advances in the synthesis of renewable polyols, used for making polyurethane foams, from biomass.
Collapse
Affiliation(s)
| | - Luc Avérous
- BioTeam/ICPEES-ECPM
- UMR CNRS 7515
- Université de Strasbourg
- Cedex 2
- France
| |
Collapse
|