1
|
González-Castro MJ, Uribe-Ares J, Muniategui-Lorenzo S, Beceiro-González E. Development of a dispersive liquid-liquid microextraction method for the determination of plastic additives in seawater. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024. [PMID: 38404245 DOI: 10.1039/d3ay01948a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/27/2024]
Abstract
A method using dispersive liquid-liquid microextraction (DLLME) prior to high performance liquid chromatography-diode array detection (HPLC-DAD) was developed to determine seven additives from the plastics industry (butylated hydroxytoluene, diisodecyl phthalate, irgafos 168, lawsone, quercetin, triclosan and vitamin E) in seawater samples. These compounds can reach seawater due to direct discharge from wastewater treatment plants and leaching from plastics and microplastics. The extraction was performed using 25 mL of seawater, 500 μL of 1-octanol (extraction solvent) and a stirring step instead of dispersive solvent. Additive concentrations were determined by LC-DAD on a C18 column with a mobile phase of acetonitrile and phosphoric acid aqueous solution (pH 3.5) by gradient elution. The analytical recoveries ranged from 82 to 93% for all compounds, except for lawsone (60%). Repeatability and intermediate precision were adequate with RSD < calculated values following the Horwitz equation at the concentration levels evaluated (0.06 and 0.24 mg L-1). All additives exhibited linear matrix calibration curves (R2 > 0.99). Detection limits ranged from 0.009 to 0.028 mg L-1 and quantification limits ranged from 0.027 to 0.084 mg L-1. Finally, the application of the method to real samples verified the method as accurate and applicable to seawater.
Collapse
Affiliation(s)
- María José González-Castro
- Departamento de Química, Facultade de Ciencias, Universidade da Coruña, Grupo Química Analítica Aplicada (QANAP), Instituto Universitario de Medio Ambiente (IUMA), Campus de A Coruña, 15071 A Coruña, Spain.
| | - Jaime Uribe-Ares
- Departamento de Química, Facultade de Ciencias, Universidade da Coruña, Grupo Química Analítica Aplicada (QANAP), Instituto Universitario de Medio Ambiente (IUMA), Campus de A Coruña, 15071 A Coruña, Spain.
| | - Soledad Muniategui-Lorenzo
- Departamento de Química, Facultade de Ciencias, Universidade da Coruña, Grupo Química Analítica Aplicada (QANAP), Instituto Universitario de Medio Ambiente (IUMA), Campus de A Coruña, 15071 A Coruña, Spain.
| | - Elisa Beceiro-González
- Departamento de Química, Facultade de Ciencias, Universidade da Coruña, Grupo Química Analítica Aplicada (QANAP), Instituto Universitario de Medio Ambiente (IUMA), Campus de A Coruña, 15071 A Coruña, Spain.
| |
Collapse
|
2
|
Forooghi E, Ahmadi S, Farhoodi M, Mortazavian AM. Migration of Irganox 1010, Irganox 1076, and Titanium dioxide into Doogh and corresponding food simulant from laminated packaging. JOURNAL OF ENVIRONMENTAL HEALTH SCIENCE & ENGINEERING 2022; 20:363-373. [PMID: 35669824 PMCID: PMC9163261 DOI: 10.1007/s40201-021-00782-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Accepted: 12/25/2021] [Indexed: 05/12/2023]
Abstract
PURPOSE Doogh is a famous Iranian drink based on fermented milk. Laminated film is one of the most common packaging for this beverage in Iran. So, chemical substances of the packaging may migrate to the Doogh and endanger human health. METHOD In this research, High-Performance Liquid Chromatography (HPLC) was used to determine the migration of Irganox 1010 and Irganox 1076 from the contact layer and inductively coupled plasma for Titanium dioxide (TiO2) from the second layer of three-layer laminate films into Doogh and acetic acid 3% (w/v). The influence of different storage temperatures and times was investigated by evaluating the samples stored in various conditions. The morphological, thermal and mechanical properties of the film, before and after contact with food simulant were further studied. RESULT The highest amount of Irganox 1010 concentration of the tested samples were 0.8 ± 0.04 mg/l in acetic acid 3% (w/v), and 0.62 ± 0.04 mg/l in Doogh. The highest amount of TiO2 concentration were 0.25 ± 0.04 mg/l in acetic acid 3% (w/v), and 0.12 ± 0.02 mg/l in Doogh. The migration of Irganox 1076 was determined, but it was not detected. The results indicated that the food simulant had no significant effect on the microstructure and thermal properties of the polymer, but it reduced the mechanical properties. CONCLUSION The results indicate the possible migrating of Irganox 1010 and TiO2 through laminate packaging into Doogh in some storage conditions. Since the migration value was low, the mentioned film was proven safe for Doogh packaging, imposing no hazards on human health.
Collapse
Affiliation(s)
- Elaheh Forooghi
- Student Research Committee, Department of Food Science and Technology, National Nutrition and Food Technology Research Institute, Faculty of Nutrition and Food Technology, Shahid Beheshti University of Medical Sciences, 7, West Arghavan St., Farahzadi Blvd, P.O. Box 19395-4741, Tehran, Iran
| | - Shervin Ahmadi
- Department of Polymer Processing, Iran Polymer and Petrochemical Institute (IPPI), PO BOX: 14965-115, Tehran, Iran
| | - Mehdi Farhoodi
- Department of Food Science and Technology, National Nutrition and Food Technology Research Institute, Faculty of Nutrition Sciences and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Amir M. Mortazavian
- Department of Food Science and Technology, National Nutrition and Food Technology Research Institute, Faculty of Nutrition Sciences and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
3
|
Zhang Q, Li X, Wang Y, Zhang C, Cheng Z, Zhao L, Li X, Sun Z, Zhang J, Yao Y, Wang L, Li W, Sun H. Occurrence of novel organophosphate esters derived from organophosphite antioxidants in an e-waste dismantling area: Associations between hand wipes and dust. ENVIRONMENT INTERNATIONAL 2021; 157:106860. [PMID: 34500363 DOI: 10.1016/j.envint.2021.106860] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 08/31/2021] [Accepted: 09/01/2021] [Indexed: 06/13/2023]
Abstract
Electronic waste (e-waste) is a well-known source of plastic additives in the environment. However, the e-waste-related occupational exposure to organophosphite antioxidants (OPAs) and the relevant oxidation products-novel organophosphate esters (NOPEs)-via different pathways is still unknown. In this study, six OPAs and three NOPEs were measured in 116 dust and 43 hand-wipe samples from an e-waste dismantling area in Central China. The median concentrations of ΣOPAs and ΣNOPEs were 188 and 13,900 ng·g-1 in workshop dust and 5,250 ng·m-2 and 53,600 ng·m-2 on workers' hands, respectively. The increasing concentrations of dust in the form of triphenyl phosphate (TPHP) (p < 0.01) and tris(2,4-di-tert-butylphenyl) phosphate (AO168 = O) (p < 0.05) were strongly associated with the corresponding concentration on workers' hands. Furthermore, men had significantly lower levels of NOPEs on their hands than did women (p < 0.01). Moreover, the hand wipe levels of AO168 = O (41,600 ng·m-2) was significantly higher than that of the typical OPE (TPHP, 7370 ng·m-2), and the hand-to-mouth contact (ΣOPAs, 9.48 ng·kg bw-1·day-1; ΣNOPEs, 109 ng·kg bw-1·day-1) was a more significant and integrated pathway than dust ingestion (ΣOPAs, 0.10 ng·kg bw-1·day-1; ΣNOPEs, 5.01 ng·kg bw-1·day-1) of e-waste related occupational exposure to these "new" chemicals.
Collapse
Affiliation(s)
- Qiuyue Zhang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Xuejiao Li
- College of Environmental and Resource Sciences, Shanxi University, Shanxi 030006, China
| | - Yu Wang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China.
| | - Chong Zhang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Zhipeng Cheng
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Leicheng Zhao
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Xiaoxiao Li
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Zhaoyang Sun
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Jingran Zhang
- SCIEX, Analytical Instrument Trading Co., Ltd, Beijing 100015, China
| | - Yiming Yao
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Lei Wang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Wei Li
- College of Environmental and Resource Sciences, Shanxi University, Shanxi 030006, China
| | - Hongwen Sun
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| |
Collapse
|