1
|
Co IL, Fomina A, Nurse M, McGuigan AP. Applications and evolution of 3D cancer-immune cell models. Trends Biotechnol 2024; 42:1615-1627. [PMID: 39025680 DOI: 10.1016/j.tibtech.2024.06.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 06/17/2024] [Accepted: 06/18/2024] [Indexed: 07/20/2024]
Abstract
Understanding the highly complex tumor-immune landscape is an important goal for developing novel immune therapies for solid cancers. To this end, 3D cancer-immune models have emerged as patient-relevant in vitro tools for modeling the tumor-immune landscape and the cellular interactions within it. In this review, we provide an overview of the components and applications of 3D cancer-immune models and discuss their evolution from 2015 to 2023. Specifically, we observe trends in primary cell-sourced, T cell-based complex models used for therapy evaluation and biological discovery. Finally, we describe the challenges of implementing 3D cancer-immune models and the opportunities for maximizing their potential for deciphering the complex tumor-immune microenvironment and identifying novel, clinically relevant drug targets.
Collapse
Affiliation(s)
- Ileana L Co
- Institute of Biomedical Engineering, University of Toronto, 164 College St., Toronto, ON, M5S 3G9, Canada
| | - Aleksandra Fomina
- Institute of Biomedical Engineering, University of Toronto, 164 College St., Toronto, ON, M5S 3G9, Canada
| | - Michelle Nurse
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, 200 College St., Toronto, ON, M5S 3E5, Canada
| | - Alison P McGuigan
- Institute of Biomedical Engineering, University of Toronto, 164 College St., Toronto, ON, M5S 3G9, Canada; Department of Chemical Engineering and Applied Chemistry, University of Toronto, 200 College St., Toronto, ON, M5S 3E5, Canada.
| |
Collapse
|
2
|
Glibetic N, Bowman S, Skaggs T, Weichhaus M. The Use of Patient-Derived Organoids in the Study of Molecular Metabolic Adaptation in Breast Cancer. Int J Mol Sci 2024; 25:10503. [PMID: 39408832 PMCID: PMC11477048 DOI: 10.3390/ijms251910503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 09/24/2024] [Accepted: 09/25/2024] [Indexed: 10/20/2024] Open
Abstract
Around 13% of women will likely develop breast cancer during their lifetime. Advances in cancer metabolism research have identified a range of metabolic reprogramming events, such as altered glucose and amino acid uptake, increased reliance on glycolysis, and interactions with the tumor microenvironment (TME), all of which present new opportunities for targeted therapies. However, studying these metabolic networks is challenging in traditional 2D cell cultures, which often fail to replicate the three-dimensional architecture and dynamic interactions of real tumors. To address this, organoid models have emerged as powerful tools. Tumor organoids are 3D cultures, often derived from patient tissue, that more accurately mimic the structural and functional properties of actual tumor tissues in vivo, offering a more realistic model for investigating cancer metabolism. This review explores the unique metabolic adaptations of breast cancer and discusses how organoid models can provide deeper insights into these processes. We evaluate the most advanced tools for studying cancer metabolism in three-dimensional culture models, including optical metabolic imaging (OMI), matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI-MSI), and recent advances in conventional techniques applied to 3D cultures. Finally, we explore the progress made in identifying and targeting potential therapeutic targets in breast cancer metabolism.
Collapse
Affiliation(s)
- Natalija Glibetic
- Laboratory of Molecular Cancer Research, School of Natural Sciences and Mathematics, Chaminade University of Honolulu, Honolulu, HI 96816, USA; (N.G.); (S.B.); (T.S.)
- The IDeA Networks of Biomedical Research Excellence (INBRE) Program, School of Natural Sciences and Mathematics, Chaminade University, Honolulu, HI 96816, USA
- United Nations CIFAL Honolulu Center, Chaminade University, Honolulu, HI 96816, USA
| | - Scott Bowman
- Laboratory of Molecular Cancer Research, School of Natural Sciences and Mathematics, Chaminade University of Honolulu, Honolulu, HI 96816, USA; (N.G.); (S.B.); (T.S.)
- Undergraduate Program in Biochemistry, School of Natural Sciences and Mathematics, Chaminade University, Honolulu, HI 96816, USA
| | - Tia Skaggs
- Laboratory of Molecular Cancer Research, School of Natural Sciences and Mathematics, Chaminade University of Honolulu, Honolulu, HI 96816, USA; (N.G.); (S.B.); (T.S.)
- Undergraduate Program in Biology, School of Natural Sciences and Mathematics, Chaminade University, Honolulu, HI 96816, USA
| | - Michael Weichhaus
- Laboratory of Molecular Cancer Research, School of Natural Sciences and Mathematics, Chaminade University of Honolulu, Honolulu, HI 96816, USA; (N.G.); (S.B.); (T.S.)
| |
Collapse
|
3
|
Cortés-Guiral D, Kranenburg O, Sgarbura O, Van Der Speeten K, Taibi A, Hübner M, Yacoov AB. PIPAC Pharmacologic and Clinical Data. J Surg Oncol 2024. [PMID: 39315493 DOI: 10.1002/jso.27900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 09/01/2024] [Accepted: 09/03/2024] [Indexed: 09/25/2024]
Abstract
Pressurized intraperitoneal aerosol chemotherapy (PIPAC) emerged as an innovative intraperitoneal chemotherapy delivery system to overcome the issue of limited efficacy of systemic therapies to induce response in peritoneal malignancies. Promising results for patients with mesothelioma peritonei and peritoneal metastasis from gastric, ovarian, colorectal, pancreatic, and hepatobiliary tumors origin are changing the landscape for patients otherwise just facing palliative treatment. Ongoing trials will shed more light on the actual benefits of PIPAC.
Collapse
Affiliation(s)
- Delia Cortés-Guiral
- IVOQA (Viamed Advanced Surgical Oncology Institute), Hospital Viamed Santa Elena, Madrid, Spain
| | - Onno Kranenburg
- Lab Translational Oncology Cancer, Department of Surgical Oncology, Regenerative Medicine and Stem Cells, Utrecht Platform for Organoid Technology (UPORT), UMCU, Utrecht, The Netherlands
- Laboratory of Translational Oncology, Division of Imaging and Cancer, UMCU, Utrecht, The Netherlands
| | - Olivia Sgarbura
- Department of Surgical Oncology, Cancer Institute Montpellier, Montpellier, France
| | - Kurt Van Der Speeten
- Department of Surgical Oncology, Ziekenhuis Oost-Limburg, Genk, Belgium
- Faculty of Medicine and Life Sciences, BIOMED Research Institute, University Hasselt, Hasselt, Belgium
| | - Albdelkader Taibi
- Digestive Surgery Department, Dupuytren Limoges University Hospital, Limoges, France. CNRS, XLIM, UMR 7252, University Limoges, Limoges, France
| | - Martin Hübner
- Department of Visceral Surgery, Lausanne University Hospital CHUV, University of Lausanne (UNIL), Lausanne, Switzerland
| | - Almog Ben Yacoov
- Department of General Surgery C and Surgical Oncology, Sheba Medical Center, Ramat Gan, Israel, Tel-Aviv University, Tel-Aviv, Israel
| |
Collapse
|
4
|
Rahman MM, Wells G, Rantala JK, Helleday T, Muthana M, Danson SJ. In-vitro assays for immuno-oncology drug efficacy assessment and screening for personalized cancer therapy: scopes and challenges. Expert Rev Clin Immunol 2024; 20:821-838. [PMID: 38546609 DOI: 10.1080/1744666x.2024.2336583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 03/26/2024] [Indexed: 04/04/2024]
Abstract
INTRODUCTION Immunotherapies have revolutionized cancer treatment, but often fail to produce desirable therapeutic outcomes in all patients. Due to the inter-patient heterogeneity and complexity of the tumor microenvironment, personalized treatment approaches are gaining demand. Researchers have long been using a range of in-vitro assays including 2D models, organoid co-cultures, and cancer-on-a-chip platforms for cancer drug screening. A comparative analysis of these assays with their suitability, high-throughput capacity, and clinical translatability is required for optimal translational use. AREAS COVERED The review summarized in-vitro platforms with their comparative advantages and limitations including construction strategies, and translational potential for immuno-oncology drug efficacy assessment. We also discussed end-point analysis strategies so that researchers can contextualize their usefulness and optimally design experiments for personalized immunotherapy efficacy prediction. EXPERT OPINION Researchers developed several in-vitro platforms that can provide information on personalized immunotherapy efficacy from different angles. Image-based assays are undoubtedly more suitable to gather a wide range of information including cellular morphology and phenotypical behaviors but need significant improvement to overcome issues including background noise, sample preparation difficulty, and long duration of experiment. More studies and clinical trials are needed to resolve these issues and validate the assays before they can be used in real-life scenarios.
Collapse
Affiliation(s)
- Md Marufur Rahman
- Sheffield Ex vivo Group, Division of Clinical Medicine, School of Medicine & Population Health, University of Sheffield, Sheffield, UK
- Directorate General of Health Services, Dhaka, Bangladesh
| | - Greg Wells
- Sheffield Ex vivo Group, Division of Clinical Medicine, School of Medicine & Population Health, University of Sheffield, Sheffield, UK
| | - Juha K Rantala
- Sheffield Ex vivo Group, Division of Clinical Medicine, School of Medicine & Population Health, University of Sheffield, Sheffield, UK
- Misvik Biology Ltd, Turku, Finland
| | - Thomas Helleday
- Sheffield Ex vivo Group, Division of Clinical Medicine, School of Medicine & Population Health, University of Sheffield, Sheffield, UK
- Department of Oncology-Pathology, Karolinska Institutet, Huddinge, Sweden
| | - Munitta Muthana
- Nanobug Oncology Sheffield, Division of Clinical Medicine, School of Medicine & Population Health, University of Sheffield, Sheffield, UK
| | - Sarah J Danson
- Sheffield Ex vivo Group, Division of Clinical Medicine, School of Medicine & Population Health, University of Sheffield, Sheffield, UK
| |
Collapse
|
5
|
Lin TC. Perturbation Analysis of a Prognostic DDX3X-Mediated Gene Expression Signature Identifies the Antimetastatic Potential of Chaetocin in Hepatocellular Carcinoma. Cells 2023; 12:1628. [PMID: 37371098 DOI: 10.3390/cells12121628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 06/05/2023] [Accepted: 06/12/2023] [Indexed: 06/29/2023] Open
Abstract
ATP-dependent RNA helicase DDX3X, also known as DEAD (Asp-Glu-Ala-Asp) Box Polypeptide 3, X-Linked (DDX3X), is critical for RNA metabolism, and emerging evidence implicates ATP-dependent RNA helicase DDX3X's participation in various cellular processes to modulate cancer progression. In this study, the clinical significance of DDX3X was addressed, and DDX3X was identified as a biomarker for poor prognosis. An exploration of transcriptomic data from 373 liver cancer patients from The Cancer Genome Atlas (TCGA) using Ingenuity Pathway Analysis (IPA) suggested an association between DDX3X expression and cancer metastasis. Lentiviral-based silencing of DDX3X in a hepatocellular carcinoma (HCC) cell line resulted in the suppression of cell migration and invasion. The molecular mechanism regarding ATP-dependent RNA helicase DDX3X in liver cancer progression had been addressed in many studies. I focused on the biological application of the DDX3X-mediated gene expression signature in cancer therapeutics. An investigation of the DDX3X-correlated expression signature via the L1000 platform of Connectivity Map (BROAD Institute) first identified a histone methyltransferase inhibitor, chaetocin, as a novel compound for alleviating metastasis in HCC. In this study, the prognostic value of DDX3X and the antimetastatic property of chaetocin are presented to shed light on the development of anti-liver cancer strategies.
Collapse
Affiliation(s)
- Tsung-Chieh Lin
- Genomic Medicine Core Laboratory, Department of Medical Research and Development, Chang Gung Memorial Hospital, Linkou, Taoyuan City 333, Taiwan
- Department of Biomedical Sciences, Chang Gung University, Taoyuan City 333, Taiwan
| |
Collapse
|
6
|
Establishing a New Platform to Investigate the Efficacy of Oncolytic Virotherapy in a Human Ex Vivo Peritoneal Carcinomatosis Model. Viruses 2023; 15:v15020363. [PMID: 36851574 PMCID: PMC9963964 DOI: 10.3390/v15020363] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 01/25/2023] [Accepted: 01/25/2023] [Indexed: 01/31/2023] Open
Abstract
Oncolytic virotherapy constitutes a promising treatment option for many solid cancers, including peritoneal carcinomatosis (PC), which still represents a terminal stage of many types of tumors. To date, the in vitro efficacy of oncolytic viruses is mostly tested in 2D-cultured tumor cell lines due to the lack of realistic 3D in vitro tumor models. We have investigated the feasibility of virotherapy as a treatment option for PC in a human ex vivo peritoneum co-culture model. Human HT-29 cancer cells stably expressing marker genes GFP and firefly luciferase (GFP/luc) were cultured on human peritoneum and infected with two prototypic oncolytic viruses (GLV-0b347 and MeV-DsRed). Both viral constructs were able to infect HT-29 cells in patient-derived peritoneum with high tumor specificity. Over time, both GFP signal and luciferase activity decreased substantially, thereby indicating successful virus-induced oncolysis. Furthermore, immunohistochemistry stainings showed specific virotherapeutic infections of HT-29 cells and effective tumor cell lysis in infected co-cultures. Thus, the PC model established here provides a clinically relevant screening platform to evaluate the therapeutic efficacy of virotherapeutic compounds and also to investigate, in an autologous setting, the immunostimulatory potential of oncolytic viruses for PC in a unique human model system superior to standard 2D in vitro models.
Collapse
|
7
|
Koch J, Mönch D, Maaß A, Mangold A, Gužvić M, Mürdter T, Leibold T, Dahlke MH, Renner P. Pharmacologic Targeting of MMP2/9 Decreases Peritoneal Metastasis Formation of Colorectal Cancer in a Human Ex Vivo Peritoneum Culture Model. Cancers (Basel) 2022; 14:cancers14153760. [PMID: 35954423 PMCID: PMC9367441 DOI: 10.3390/cancers14153760] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 07/28/2022] [Accepted: 07/28/2022] [Indexed: 12/16/2022] Open
Abstract
Simple Summary We investigated the effects of matrix metalloproteinases (MMPs) on the peritoneal attachment of colorectal cancer cells in patient samples and in a human ex vivo peritoneum model. MMP2/9 overexpression and enhanced fibronectin cleavage occurred during peritoneal colonisation, which could be inhibited by specific MMP inhibition, thereby reducing cancer cell attachment. Abstract Background: Matrix metalloproteinases (MMPs) play a crucial role in tumour initiation, progression, and metastasis, including peritoneal carcinosis (PC) formation. MMPs serve as biomarkers for tumour progression in colorectal cancer (CRC), and MMP overexpression is associated with advanced-stage metastasis and poor survival. However, the molecular mechanisms of PC from CRC remain largely unclear. Methods: We investigated the role of MMPs during peritoneal colonisation by CRC cell lines in a human ex vivo peritoneum model and in patient-derived CRC and corresponding PC samples. MMP2 and MMP9 were inhibited using the small-molecule inhibitors batimastat and the specific MMP2/9 inhibitor III. Results: MMP2 and MMP9 were strongly upregulated in patient-derived samples and following peritoneal colonisation by CRC cells in the ex vivo model. MMP inhibition with batimastat reduced colonisation of HT29 and Colo205 cells by 36% and 68%, respectively (p = 0.0073 and p = 0.0002), while MMP2/9 inhibitor III reduced colonisation by 50% and 41%, respectively (p = 0.0003 and p = 0.0051). Fibronectin cleavage was enhanced in patient-derived samples of PC and during peritoneal colonisation in the ex vivo model, and this was inhibited by MMP2/9 inhibition. Conclusion: MMPs were upregulated in patient-derived samples and during peritoneal attachment of CRC cell lines in our ex vivo model. MMP2/9 inhibition prevented fibronectin cleavage and peritoneal colonisation by CRC cells. MMP inhibitors might thus offer a potential treatment strategy for patients with PC.
Collapse
Affiliation(s)
- Jana Koch
- Dr. Margarete Fischer-Bosch Institute of Clinical Pharmacology, 70376 Stuttgart, Germany; (J.K.); (D.M.); (A.M.); (T.M.)
- University of Tübingen, 72074 Tübingen, Germany
| | - Dina Mönch
- Dr. Margarete Fischer-Bosch Institute of Clinical Pharmacology, 70376 Stuttgart, Germany; (J.K.); (D.M.); (A.M.); (T.M.)
- University of Tübingen, 72074 Tübingen, Germany
| | - Annika Maaß
- Dr. Margarete Fischer-Bosch Institute of Clinical Pharmacology, 70376 Stuttgart, Germany; (J.K.); (D.M.); (A.M.); (T.M.)
- University of Tübingen, 72074 Tübingen, Germany
| | - Alina Mangold
- Robert Bosch Centre for Tumour Diseases (RBCT), Department of General and Visceral Surgery, Robert Bosch Hospital, 70376 Stuttgart, Germany; (A.M.); (T.L.); (M.-H.D.)
| | | | - Thomas Mürdter
- Dr. Margarete Fischer-Bosch Institute of Clinical Pharmacology, 70376 Stuttgart, Germany; (J.K.); (D.M.); (A.M.); (T.M.)
- University of Tübingen, 72074 Tübingen, Germany
| | - Tobias Leibold
- Robert Bosch Centre for Tumour Diseases (RBCT), Department of General and Visceral Surgery, Robert Bosch Hospital, 70376 Stuttgart, Germany; (A.M.); (T.L.); (M.-H.D.)
| | - Marc-H. Dahlke
- Robert Bosch Centre for Tumour Diseases (RBCT), Department of General and Visceral Surgery, Robert Bosch Hospital, 70376 Stuttgart, Germany; (A.M.); (T.L.); (M.-H.D.)
| | - Philipp Renner
- Robert Bosch Centre for Tumour Diseases (RBCT), Department of General and Visceral Surgery, Robert Bosch Hospital, 70376 Stuttgart, Germany; (A.M.); (T.L.); (M.-H.D.)
- University Medical Centre Regensburg, 93053 Regensburg, Germany
- Correspondence:
| |
Collapse
|
8
|
Herbert SL, Fick A, Heydarian M, Metzger M, Wöckel A, Rudel T, Kozjak-Pavlovic V, Wulff C. Establishment of the SIS scaffold-based 3D model of human peritoneum for studying the dissemination of ovarian cancer. J Tissue Eng 2022; 13:20417314221088514. [PMID: 35340423 PMCID: PMC8949747 DOI: 10.1177/20417314221088514] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 03/03/2022] [Indexed: 12/24/2022] Open
Abstract
Ovarian cancer is the second most common gynecological malignancy in women. More than 70% of the cases are diagnosed at the advanced stage, presenting as primary peritoneal metastasis, which results in a poor 5-year survival rate of around 40%. Mechanisms of peritoneal metastasis, including adhesion, migration, and invasion, are still not completely understood and therapeutic options are extremely limited. Therefore, there is a strong requirement for a 3D model mimicking the in vivo situation. In this study, we describe the establishment of a 3D tissue model of the human peritoneum based on decellularized porcine small intestinal submucosa (SIS) scaffold. The SIS scaffold was populated with human dermal fibroblasts, with LP-9 cells on the apical side representing the peritoneal mesothelium, while HUVEC cells on the basal side of the scaffold served to mimic the endothelial cell layer. Functional analyses of the transepithelial electrical resistance (TEER) and the FITC-dextran assay indicated the high barrier integrity of our model. The histological, immunohistochemical, and ultrastructural analyses showed the main characteristics of the site of adhesion. Initial experiments using the SKOV-3 cell line as representative for ovarian carcinoma demonstrated the usefulness of our models for studying tumor cell adhesion, as well as the effect of tumor cells on endothelial cell-to-cell contacts. Taken together, our data show that the novel peritoneal 3D tissue model is a promising tool for studying the peritoneal dissemination of ovarian cancer.
Collapse
Affiliation(s)
- Saskia-Laureen Herbert
- Department of Obstetrics and Gynaecology, University Hospital Wuerzburg, Wuerzburg, Germany
| | - Andrea Fick
- Department of Obstetrics and Gynaecology, University Hospital Wuerzburg, Wuerzburg, Germany
| | | | - Marco Metzger
- Department of Tissue Engineering and Regenerative Medicine, University Hospital Wuerzburg, Wuerzburg, Germany.,Fraunhofer ISC, Translational Centre Regenerative Medicine TLC-RT, Wuerzburg, Germany
| | - Achim Wöckel
- Department of Obstetrics and Gynaecology, University Hospital Wuerzburg, Wuerzburg, Germany
| | - Thomas Rudel
- Department of Microbiology, Biocentre, University of Wuerzburg, Wuerzburg, Germany
| | - Vera Kozjak-Pavlovic
- Department of Microbiology, Biocentre, University of Wuerzburg, Wuerzburg, Germany
| | - Christine Wulff
- Department of Obstetrics and Gynaecology, University Hospital Wuerzburg, Wuerzburg, Germany
| |
Collapse
|