1
|
Song Q, Zhang Y, Chen Q, Wu S, Yan X, He K, Gao G, Chen Q, Wang S. Site-Selective Synthesis of Bilayer Graphene on Cu Substrates Using Titanium as a Carbon Diffusion Barrier. ACS APPLIED MATERIALS & INTERFACES 2024; 16:38355-38364. [PMID: 39011562 DOI: 10.1021/acsami.4c04521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/17/2024]
Abstract
Chemical vapor deposition (CVD) is a widely used method for graphene synthesis, but it struggles to produce large-area uniform bilayer graphene (BLG). This study introduces a novel approach to meet the demands of large-scale integrated circuit applications, challenging the conventional reliance on uniform BLG over extensive areas. We developed a unique method involving the direct growth of bilayer graphene arrays (BLGA) on Cu foil substrates using patterned titanium (Ti) as a diffusion barrier. The use of the Ti layer can effectively control carbon atom diffusion through the Cu foil without altering the growth conditions or compromising the graphene quality, thereby showcasing its versatility. The approach allows for targeted BLG growth and achieved a yield of 100% for a 10 × 10 BLG units array. Then a 10 × 10 BLG memristor array was fabricated, and a yield of 96% was achieved. The performances of these devices show good uniformity, evidenced by the set voltages concentrated around 4 V, and a high resistance state (HRS) to low resistance state (LRS) ratio predominantly around 107, reflecting the spatial uniformity of the prepared BLGA. This study provides insight into the BLG growth mechanism and opens new possibilities for BLG-based electronics.
Collapse
Affiliation(s)
- Qiyang Song
- MOE Key Laboratory of Fundamental Physical Quantities Measurement & Hubei Key Laboratory of Gravitation and Quantum Physics, PGMF and School of Physics, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Youwei Zhang
- MOE Key Laboratory of Fundamental Physical Quantities Measurement & Hubei Key Laboratory of Gravitation and Quantum Physics, PGMF and School of Physics, Huazhong University of Science and Technology, Wuhan 430074, China
- Shenzhen Huazhong University of Science and Technology Research Institute, Shenzhen 518057, China
| | - Qiao Chen
- MOE Key Laboratory of Fundamental Physical Quantities Measurement & Hubei Key Laboratory of Gravitation and Quantum Physics, PGMF and School of Physics, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Su Wu
- MOE Key Laboratory of Fundamental Physical Quantities Measurement & Hubei Key Laboratory of Gravitation and Quantum Physics, PGMF and School of Physics, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Xin Yan
- Key Laboratory of Ultra-fast Photoelectric Diagnostics Technology, Xi'an Institute of Optics and Precision Mechanics (XIOPM), Chinese Academy of Sciences (CAS), Xi'an, Shaanxi 710119, China
| | - Kai He
- Key Laboratory of Ultra-fast Photoelectric Diagnostics Technology, Xi'an Institute of Optics and Precision Mechanics (XIOPM), Chinese Academy of Sciences (CAS), Xi'an, Shaanxi 710119, China
| | - Guilong Gao
- Key Laboratory of Ultra-fast Photoelectric Diagnostics Technology, Xi'an Institute of Optics and Precision Mechanics (XIOPM), Chinese Academy of Sciences (CAS), Xi'an, Shaanxi 710119, China
| | - Qiao Chen
- Gemmological Institute, China University of Geosciences, Wuhan 430074, China
| | - Shun Wang
- MOE Key Laboratory of Fundamental Physical Quantities Measurement & Hubei Key Laboratory of Gravitation and Quantum Physics, PGMF and School of Physics, Huazhong University of Science and Technology, Wuhan 430074, China
| |
Collapse
|
2
|
Lizeth Katherine TN, Vendula B, Jaroslav K, Jaroslav C. Structure and Photocatalytic Properties of Ni-, Co-, Cu-, and Fe-Doped TiO 2 Aerogels. Gels 2023; 9:gels9050357. [PMID: 37232949 DOI: 10.3390/gels9050357] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 04/19/2023] [Accepted: 04/20/2023] [Indexed: 05/27/2023] Open
Abstract
TiO2 aerogels doped with Ni, Co, Cu, and Fe were prepared, and their structure and photocatalytic activity during the decomposition of a model pollutant, acid orange (AO7), were studied. After calcination at 500 °C and 900 °C, the structure and composition of the doped aerogels were evaluated and analyzed. XRD analysis revealed the presence of anatase/brookite and rutile phases in the aerogels along with other oxide phases from the dopants. SEM and TEM microscopy showed the nanostructure of the aerogels, and BET analysis showed their mesoporosity and high specific surface area of 130 to 160 m2·g-1. SEM-EDS, STEM-EDS, XPS, EPR methods and FTIR analysis evaluated the presence of dopants and their chemical state. The concentration of doped metals in aerogels varied from 1 to 5 wt.%. The photocatalytic activity was evaluated using UV spectrophotometry and photodegradation of the AO7 pollutant. Ni-TiO2 and Cu-TiO2 aerogels calcined at 500 °C showed higher photoactivity coefficients (kaap) than aerogels calcined at 900 °C, which were ten times less active due to the transformation of anatase and brookite to the rutile phase and the loss of textural properties of the aerogels.
Collapse
Affiliation(s)
- Tinoco Navarro Lizeth Katherine
- CEITEC-Central European Institute of Technology, Brno University of Technology, Purkynova 656/123, 612 00 Brno, Czech Republic
| | - Bednarikova Vendula
- CEITEC-Central European Institute of Technology, Brno University of Technology, Purkynova 656/123, 612 00 Brno, Czech Republic
| | - Kastyl Jaroslav
- CEITEC-Central European Institute of Technology, Brno University of Technology, Purkynova 656/123, 612 00 Brno, Czech Republic
| | - Cihlar Jaroslav
- CEITEC-Central European Institute of Technology, Brno University of Technology, Purkynova 656/123, 612 00 Brno, Czech Republic
- Institute of Materials Science and Engineering, Brno University of Technology, Technicka 2, 616 69 Brno, Czech Republic
| |
Collapse
|
3
|
Rueda-Navarro CM, Ferrer B, Baldoví HG, Navalón S. Photocatalytic Hydrogen Production from Glycerol Aqueous Solutions as Sustainable Feedstocks Using Zr-Based UiO-66 Materials under Simulated Sunlight Irradiation. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:3808. [PMID: 36364583 PMCID: PMC9658527 DOI: 10.3390/nano12213808] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 10/21/2022] [Accepted: 10/26/2022] [Indexed: 06/16/2023]
Abstract
There is an increasing interest in developing cost-effective technologies to produce hydrogen from sustainable resources. Herein we show a comprehensive study on the use of metal-organic frameworks (MOFs) as heterogeneous photocatalysts for H2 generation from photoreforming of glycerol aqueous solutions under simulated sunlight irradiation. The list of materials employed in this study include some of the benchmark Zr-MOFs such as UiO-66(Zr)-X (X: H, NO2, NH2) as well as MIL-125(Ti)-NH2 as the reference Ti-MOF. Among these solids, UiO-66(Zr)-NH2 exhibits the highest photocatalytic H2 production, and this observation is attributed to its adequate energy level. The photocatalytic activity of UiO-66(Zr)-NH2 can be increased by deposition of small Pt NPs as the reference noble metal co-catalyst within the MOF network. This photocatalyst is effectively used for H2 generation at least for 70 h without loss of activity. The crystallinity of MOF and Pt particle size were maintained as revealed by powder X-ray diffraction and transmission electron microscopy measurements, respectively. Evidence in support of the occurrence of photoinduced charge separation with Pt@UiO-66(Zr)-NH2 is provided from transient absorption and photoluminescence spectroscopies together with photocurrent measurements. This study exemplifies the possibility of using MOFs as photocatalysts for the solar-driven H2 generation using sustainable feedstocks.
Collapse
|
4
|
An Efficient Photocatalytic Synthesis of Benzimidazole over Cobalt-loaded TiO2 catalysts under Solar light irradiation. J Photochem Photobiol A Chem 2022. [DOI: 10.1016/j.jphotochem.2022.113888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
5
|
Bioalcohol Reforming: An Overview of the Recent Advances for the Enhancement of Catalyst Stability. Catalysts 2020. [DOI: 10.3390/catal10060665] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The growing demand for energy production highlights the shortage of traditional resources and the related environmental issues. The adoption of bioalcohols (i.e., alcohols produced from biomass or biological routes) is progressively becoming an interesting approach that is used to restrict the consumption of fossil fuels. Bioethanol, biomethanol, bioglycerol, and other bioalcohols (propanol and butanol) represent attractive feedstocks for catalytic reforming and production of hydrogen, which is considered the fuel of the future. Different processes are already available, including steam reforming, oxidative reforming, dry reforming, and aqueous-phase reforming. Achieving the desired hydrogen selectivity is one of the main challenges, due to the occurrence of side reactions that cause coke formation and catalyst deactivation. The aims of this review are related to the critical identification of the formation of carbon roots and the deactivation of catalysts in bioalcohol reforming reactions. Furthermore, attention is focused on the strategies used to improve the durability and stability of the catalysts, with particular attention paid to the innovative formulations developed over the last 5 years.
Collapse
|
6
|
Zhu W, Zhang C, Zhu YD, An R, Lu XH, Shi YJ, Jiang SY. Molecular insights on the microstructures of nanoconfined glycerol and its aqueous solutions: The effects of interfacial properties, temperature, and glycerol concentration. J Mol Liq 2019. [DOI: 10.1016/j.molliq.2019.111238] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
7
|
Effect of Co-Feeding Inorganic and Organic Molecules in the Fe and Co Catalyzed Fischer–Tropsch Synthesis: A Review. Catalysts 2019. [DOI: 10.3390/catal9090746] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
This short review makes it clear that after 90 years, the Fischer–Tropsch synthesis (FTS) process is still not well understood. While it is agreed that it is primarily a polymerization process, giving rise to a distribution of mainly olefins and paraffins; the mechanism by which this occurs on catalysts is still a subject of much debate. Many of the FT features, such as deactivation, product distributions, kinetics and mechanism, and equilibrium aspects of the FT processes are still subjects of controversy, regardless of the progress that has been made so far. The effect of molecules co-feeding in FTS on these features is the main focus of this study. This review looks at some of these areas and tries to throw some light on aspects of FTS since the inception of the idea to date with emphasis and recommendation made based on nitrogen, water, ammonia, and olefins co-feeding case studies.
Collapse
|
8
|
Recent advances in gas-to-liquids process intensification with emphasis on reactive distillation. Curr Opin Chem Eng 2019. [DOI: 10.1016/j.coche.2018.12.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
9
|
He N, Hu Y, Masuku CM, Biegler LT. 110th Anniversary: Fischer–Tropsch Synthesis for Multiphase Product Recovery through Reactive Distillation. Ind Eng Chem Res 2019. [DOI: 10.1021/acs.iecr.9b02352] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Naien He
- Department of Chemical Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Yanyan Hu
- Department of Chemical Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Cornelius M. Masuku
- Department of Chemical Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
- Department of Civil and Chemical Engineering, University of South Africa, Private Bag X6, Florida 1710, South Africa
| | - Lorenz T. Biegler
- Department of Chemical Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| |
Collapse
|
10
|
Vapour–liquid equilibrium prediction for synthesis gas conversion using artificial neural networks. SOUTH AFRICAN JOURNAL OF CHEMICAL ENGINEERING 2018. [DOI: 10.1016/j.sajce.2018.10.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|