1
|
Angius L, Ansdell P, Škarabot J, Goodall S, Thomas K, Cowper G, Santarnecchi E, Kidgell DJ, Howatson G. Anodal tDCS improves neuromuscular adaptations to short-term resistance training of the knee extensors in healthy individuals. J Neurophysiol 2024; 132:1793-1804. [PMID: 39475491 DOI: 10.1152/jn.00289.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 10/21/2024] [Accepted: 10/21/2024] [Indexed: 11/27/2024] Open
Abstract
Experimental studies show improvement in physical performance following acute application of transcranial direct current stimulation (tDCS). This study examined the neuromuscular and neural responses to a single training session (Part 1) and following a 3 wk resistance training program (Part 2) performed with the knee extensors, preceded by tDCS over the primary motor cortex. Twenty-four participants (age, 30 ± 7 yr; stature, 172 ± 8 cm; mass, 72 ± 15 kg) were randomly allocated to perform either resistance training with anodal tDCS (a-tDCS) or a placebo tDCS (Sham). Resistance training consisted of 3 × 10 isometric contractions of 3 s at 75% maximal voluntary contraction (MVC). Measures of neuromuscular function (MVC, voluntary activation, and potentiated twitch force), corticospinal excitability, along with short and long cortical inhibition were assessed. Acute tDCS did not affect neuromuscular and neural responses to a single training session (all P ≥ 0.10). Conversely, after the 3 wk training program, MVC increased in both groups (P < 0.01) with a greater increase observed for a-tDCS vs. Sham (∼6%, P = 0.04). Additionally, increased voluntary activation (∼2%, P = 0.04) and corticospinal excitability (∼22%, P = 0.04), accompanied by a shorter silent period (-13%, P = 0.04) were found after a-tDCS vs. Sham. The potentiated twitch force and measures of short and long cortical inhibition did not change after the training program (all P ≥ 0.29). Pretraining administration of tDCS only resulted in greater neuromuscular adaptations following 3 wk of resistance training. These results provide new evidence that tDCS facilitates adaptations to resistance training in healthy individuals.NEW & NOTEWORTHY The initial increase in maximal strength during resistance training is attributed to neural adaptations. Acute administration of transcranial direct current stimulation (tDCS) has been shown to improve motor function and neural adaptations in healthy and clinical populations. This study measured the neuromuscular and neural response to acute (single training session) and short-term (3 wk) resistance training with tDCS. Greater neuromuscular and neural adaptations were only found following 3 wk of resistance training.
Collapse
Affiliation(s)
- Luca Angius
- Department of Sport, Exercise and Rehabilitation, Faculty of Health and Life Sciences, Northumbria University, Newcastle upon Tyne, United Kingdom
| | - Paul Ansdell
- Department of Sport, Exercise and Rehabilitation, Faculty of Health and Life Sciences, Northumbria University, Newcastle upon Tyne, United Kingdom
| | - Jakob Škarabot
- School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, United Kingdom
| | - Stuart Goodall
- Department of Sport, Exercise and Rehabilitation, Faculty of Health and Life Sciences, Northumbria University, Newcastle upon Tyne, United Kingdom
- Physical Activity Sport and Recreation Research Group, North-West University, Potchefstroom, South Africa
| | - Kevin Thomas
- Department of Sport, Exercise and Rehabilitation, Faculty of Health and Life Sciences, Northumbria University, Newcastle upon Tyne, United Kingdom
| | - Gavin Cowper
- Department of Sport, Exercise and Rehabilitation, Faculty of Health and Life Sciences, Northumbria University, Newcastle upon Tyne, United Kingdom
| | - Emiliano Santarnecchi
- Precision Neuroscience and Neuromodulation Program, Gordon Center for Medical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, United States
| | - Dawson J Kidgell
- Monash Exercise Neuroplasticity Research Unit, School of Primary and Allied Health Care, Monash University, Melbourne, Victoria, Australia
| | - Glyn Howatson
- Department of Sport, Exercise and Rehabilitation, Faculty of Health and Life Sciences, Northumbria University, Newcastle upon Tyne, United Kingdom
- Water Research Group, North-West University, Potchefstroom, South Africa
| |
Collapse
|
2
|
Siddique U, Frazer AK, Avela J, Walker S, Ahtiainen JP, Tanel M, Uribe S, Akalu Y, Rostami M, Tallent J, Kidgell DJ. Differential modulation of corticomotor excitability in older compared to young adults following a single bout of strength -exercise. Arch Gerontol Geriatr 2024; 122:105384. [PMID: 38394740 DOI: 10.1016/j.archger.2024.105384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 02/09/2024] [Accepted: 02/19/2024] [Indexed: 02/25/2024]
Abstract
Evidence shows corticomotor plasticity diminishes with age. Nevertheless, whether strength-training, a proven intervention that induces corticomotor plasticity in younger adults, also takes effect in older adults, remains untested. This study examined the effect of a single-session of strength-exercise on corticomotor plasticity in older and younger adults. Thirteen older adults (72.3 ± 6.5 years) and eleven younger adults (29.9 ± 6.9 years), novice to strength-exercise, participated. Strength-exercise involved four sets of 6-8 repetitions of a dumbbell biceps curl at 70-75% of their one-repetition maximum (1-RM). Muscle strength, cortical, corticomotor and spinal excitability, before and up to 60-minutes after the strength-exercise session were assessed. We observed significant changes over time (p < 0.05) and an interaction between time and age group (p < 0.05) indicating a decrease in corticomotor excitability (18% p < 0.05) for older adults at 30- and 60-minutes post strength-exercise and an increase (26% and 40%, all p < 0.05) in younger adults at the same time points. Voluntary activation (VA) declined in older adults immediately post and 60-minutes post strength-exercise (36% and 25%, all p < 0.05). Exercise had no effect on the cortical silent period (cSP) in older adults however, in young adults cSP durations were shorter at both 30- and 60- minute time points (17% 30-minute post and 9% 60-minute post, p < 0.05). There were no differences in short-interval cortical inhibition (SICI) or intracortical facilitation (ICF) between groups. Although the corticomotor responses to strength-exercise were different within groups, overall, the neural responses seem to be independent of age.
Collapse
Affiliation(s)
- Ummatul Siddique
- Monash University Exercise Neuroplasticity Research Unit, School of Primary and Allied Care, Monash University, Frankston, Australia
| | - Ashlyn K Frazer
- Monash University Exercise Neuroplasticity Research Unit, School of Primary and Allied Care, Monash University, Frankston, Australia
| | - Janne Avela
- NeuroMuscular Research Center, Faculty of Sport and Health Sciences, University of Jyväskylä, Jyväskylä, Finland
| | - Simon Walker
- NeuroMuscular Research Center, Faculty of Sport and Health Sciences, University of Jyväskylä, Jyväskylä, Finland
| | - Juha P Ahtiainen
- NeuroMuscular Research Center, Faculty of Sport and Health Sciences, University of Jyväskylä, Jyväskylä, Finland
| | - Meghan Tanel
- NeuroMuscular Research Center, Faculty of Sport and Health Sciences, University of Jyväskylä, Jyväskylä, Finland
| | - Sergio Uribe
- Department of Medical Imaging and Radiation Sciences, School of Primary and Allied Care, Monash University, Clayton, Australia
| | - Yonas Akalu
- Monash University Exercise Neuroplasticity Research Unit, School of Primary and Allied Care, Monash University, Frankston, Australia; Department of Human Physiology, School of Medicine, University of Gondar, Gondar, Ethiopia
| | - Mohamad Rostami
- Monash University Exercise Neuroplasticity Research Unit, School of Primary and Allied Care, Monash University, Frankston, Australia
| | - Jamie Tallent
- Monash University Exercise Neuroplasticity Research Unit, School of Primary and Allied Care, Monash University, Frankston, Australia; School of Sport, Rehabilitation and Exercise Sciences, University of Essex, Colchester, UK
| | - Dawson J Kidgell
- Monash University Exercise Neuroplasticity Research Unit, School of Primary and Allied Care, Monash University, Frankston, Australia.
| |
Collapse
|
3
|
Gomez-Guerrero G, Avela J, Jussila I, Pihlajamäki E, Deng FY, Kidgell DJ, Ahtiainen JP, Walker S. Cortical and spinal responses to short-term strength training and detraining in young and older adults in rectus femoris muscle. Eur J Appl Physiol 2024; 124:2209-2223. [PMID: 38441691 PMCID: PMC11199260 DOI: 10.1007/s00421-024-05443-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 02/14/2024] [Indexed: 06/27/2024]
Abstract
INTRODUCTION Strength training mitigates the age-related decline in strength and muscle activation but limited evidence exists on specific motor pathway adaptations. METHODS Eleven young (22-34 years) and ten older (66-80 years) adults underwent five testing sessions where lumbar-evoked potentials (LEPs) and motor-evoked potentials (MEPs) were measured during 20 and 60% of maximum voluntary contraction (MVC). Ten stimulations, randomly delivered, targeted 25% of maximum compound action potential for LEPs and 120, 140, and 160% of active motor threshold (aMT) for MEPs. The 7-week whole-body resistance training intervention included five exercises, e.g., knee extension (5 sets) and leg press (3 sets), performed twice weekly and was followed by 4 weeks of detraining. RESULTS Young had higher MVC (~ 63 N·m, p = 0.006), 1-RM (~ 50 kg, p = 0.002), and lower aMT (~ 9%, p = 0.030) than older adults at baseline. Young increased 1-RM (+ 18 kg, p < 0.001), skeletal muscle mass (SMM) (+ 0.9 kg, p = 0.009), and LEP amplitude (+ 0.174, p < 0.001) during 20% MVC. Older adults increased MVC (+ 13 N·m, p = 0.014), however, they experienced decreased LEP amplitude (- 0.241, p < 0.001) during 20% MVC and MEP amplitude reductions at 120% (- 0.157, p = 0.034), 140% (- 0.196, p = 0.026), and 160% (- 0.210, p = 0.006) aMT during 60% MVC trials. After detraining, young and older adults decreased 1-RM, while young adults decreased SMM. CONCLUSION Higher aMT and MEP amplitude in older adults were concomitant with lower baseline strength. Training increased strength in both groups, but divergent modifications in cortico-spinal activity occurred. Results suggest that the primary locus of adaptation occurs at the spinal level.
Collapse
Affiliation(s)
- Gonzalo Gomez-Guerrero
- Faculty of Sport and Health Sciences, NeuroMuscular Research Center, Viveca, VIV221, University of Jyväskylä, 40700, Jyväskylä, Finland.
| | - Janne Avela
- Faculty of Sport and Health Sciences, NeuroMuscular Research Center, Viveca, VIV221, University of Jyväskylä, 40700, Jyväskylä, Finland
| | - Ilkka Jussila
- Faculty of Sport and Health Sciences, NeuroMuscular Research Center, Viveca, VIV221, University of Jyväskylä, 40700, Jyväskylä, Finland
| | - Esa Pihlajamäki
- Faculty of Sport and Health Sciences, NeuroMuscular Research Center, Viveca, VIV221, University of Jyväskylä, 40700, Jyväskylä, Finland
| | - Fu-Yu Deng
- Faculty of Sport and Health Sciences, NeuroMuscular Research Center, Viveca, VIV221, University of Jyväskylä, 40700, Jyväskylä, Finland
| | - Dawson J Kidgell
- Monash Exercise Neuroplasticity Research Unit, School of Primary and Allied Health Care, Faculty of Medicine, Nursing and Health Sciences, Monash University, Melbourne, Australia
| | - Juha P Ahtiainen
- Faculty of Sport and Health Sciences, NeuroMuscular Research Center, Viveca, VIV221, University of Jyväskylä, 40700, Jyväskylä, Finland
| | - Simon Walker
- Faculty of Sport and Health Sciences, NeuroMuscular Research Center, Viveca, VIV221, University of Jyväskylä, 40700, Jyväskylä, Finland
| |
Collapse
|
4
|
Wohlgemuth KJ, Conner MJ, Tinsley GM, Palmer TB, Mota JA. Strategies for Improving Firefighter Health On-Shift: A Review. J Funct Morphol Kinesiol 2024; 9:105. [PMID: 38921641 PMCID: PMC11204757 DOI: 10.3390/jfmk9020105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 06/11/2024] [Accepted: 06/13/2024] [Indexed: 06/27/2024] Open
Abstract
The fire service suffers from high rates of cardiovascular disease and poor overall health, and firefighters often suffer fatal and non-fatal injuries while on the job. Most fatal injuries result from sudden cardiac death, while non-fatal injuries are to the musculoskeletal system. Previous works suggest a mechanistic link between several health and performance variables and injury risk. In addition, studies have suggested physical activity and nutrition can improve overall health and occupational performance. This review offers practical applications for exercise via feasible training modalities as well as nutritional recommendations that can positively impact performance on the job. Time-efficient training modalities like high-intensity interval training and feasible modalities such as resistance training offer numerous benefits for firefighters. Also, modifying and supplementing the diet and can be advantageous for health and body composition in the fire service. Firefighters have various schedules, making it difficult for planned exercise and eating while on shift. The practical training and nutritional aspects discussed in this review can be implemented on-shift to improve the overall health and performance in firefighters.
Collapse
Affiliation(s)
- Kealey J. Wohlgemuth
- Neuromuscular and Occupational Performance Laboratory, Texas Tech University, Lubbock, TX 79409, USA;
| | | | - Grant M. Tinsley
- Energy Balance and Body Composition Laboratory, Texas Tech University, Lubbock, TX 79409, USA;
| | - Ty B. Palmer
- Muscular Assessment Laboratory, Texas Tech University, Lubbock, TX 79409, USA;
| | - Jacob A. Mota
- Neuromuscular and Occupational Performance Laboratory, Texas Tech University, Lubbock, TX 79409, USA;
| |
Collapse
|
5
|
Norbury R, Grant I, Woodhead A, Hughes L, Tallent J, Patterson SD. Acute hypoalgesic, neurophysiological and perceptual responses to low-load blood flow restriction exercise and high-load resistance exercise. Exp Physiol 2024; 109:672-688. [PMID: 38578259 PMCID: PMC11061633 DOI: 10.1113/ep091705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 03/13/2024] [Indexed: 04/06/2024]
Abstract
This study compared the acute hypoalgesic and neurophysiological responses to low-load resistance exercise with and without blood flow restriction (BFR), and free-flow, high-load exercise. Participants performed four experimental conditions where they completed baseline measures of pain pressure threshold (PPT), maximum voluntary force (MVF) with peripheral nerve stimulation to determine central and peripheral fatigue. Corticospinal excitability (CSE), corticospinal inhibition and short interval intracortical inhibition (SICI) were estimated with transcranial magnetic stimulation. Participants then performed low-load leg press exercise at 30% of one-repetition maximum (LL); low-load leg press with BFR at 40% (BFR40) or 80% (BFR80) of limb occlusion pressure; or high-load leg press of four sets of 10 repetitions at 70% one-repetition maximum (HL). Measurements were repeated at 5, 45 min and 24 h post-exercise. There were no differences in CSE or SICI between conditions (all P > 0.05); however, corticospinal inhibition was reduced to a greater extent (11%-14%) in all low-load conditions compared to HL (P < 0.005). PPTs were 12%-16% greater at 5 min post-exercise in BFR40, BFR80 and HL compared to LL (P ≤ 0.016). Neuromuscular fatigue displayed no clear difference in the magnitude or time course between conditions (all P > 0.05). In summary, low-load BFR resistance exercise does not induce different acute neurophysiological responses to low-load, free-flow exercise but it does promote a greater degree of hypoalgesia and reduces corticospinal inhibition more than high-load exercise, making it a useful rehabilitation tool. The changes in neurophysiology following exercise were not related to changes in PPT.
Collapse
Affiliation(s)
- Ryan Norbury
- Faculty of Sport, Technology and Health SciencesSt Mary's UniversityTwickenhamUK
| | - Ian Grant
- Faculty of Sport, Technology and Health SciencesSt Mary's UniversityTwickenhamUK
| | - Alex Woodhead
- Faculty of Sport, Technology and Health SciencesSt Mary's UniversityTwickenhamUK
| | - Luke Hughes
- Department of Sport, Exercise and RehabilitationNorthumbria UniversityNewcastle‐Upon TyneUK
| | - Jamie Tallent
- School of Sport, Rehabilitation and Exercise SciencesUniversity of EssexColchesterUK
- Monash Exercise Neuroplasticity Research Unit, Department of Physiotherapy, School of Primary and Allied Health Care, Faculty of Medicine, Nursing and Health ScienceMonash UniversityMelbourneVAAustralia
| | - Stephen D. Patterson
- Faculty of Sport, Technology and Health SciencesSt Mary's UniversityTwickenhamUK
| |
Collapse
|
6
|
Elgueta-Cancino E, Evans E, Martinez-Valdes E, Falla D. The Effect of Resistance Training on Motor Unit Firing Properties: A Systematic Review and Meta-Analysis. Front Physiol 2022; 13:817631. [PMID: 35295567 PMCID: PMC8918924 DOI: 10.3389/fphys.2022.817631] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 01/24/2022] [Indexed: 11/13/2022] Open
Abstract
While neural changes are thought to be responsible for early increases in strength following resistance training (RT), the exact changes in motor unit (MU) firing properties remain unclear. This review aims to synthesize the available evidence on the effect of RT on MU firing properties. MEDLINE (OVID interface), EMBASE (OVID interface), Web of Science (all databases), Cochrane Library, EBSCO CINAHL Plus, PubMed, and EBSCO SportDiscus were searched from inception until June 2021. Randomized controlled trials and non-randomized studies of interventions that compared RT to no intervention (control) were included. Two reviewers independently extracted data from each trial, assessed the risk of bias and rated the cumulative quality of evidence. Motor unit discharge rate (MUDR), motor unit recruitment threshold (MURT), motor unit discharge rate variability (MUDRV), MU discharge rate at recruitment vs. recruitment threshold relationship, and MU discharge rate vs. recruitment threshold relationship were assessed. Seven trials including 167 participants met the inclusion criteria. Meta-analysis (four studies) revealed that MUDR did not change significantly (P = 0.43), but with considerable heterogeneity likely to be present (I 2 = 91). Low to moderate evidence supports changes in MUDRV, MUDR at recruitment vs. recruitment threshold relationship, and the MUDR vs. recruitment threshold relationship. Overall, this systematic review revealed that there is a lack of high-quality evidence for the effect of RT on MU firing properties. Heterogeneity across studies undermines the quality of the evidence for multiple outcomes and affects the conclusions that can be drawn.
Collapse
Affiliation(s)
| | | | | | - Deborah Falla
- Centre of Precision Rehabilitation for Spinal Pain (CPR Spine), School of Sport, Exercise and Rehabilitation Sciences, University of Birmingham, Birmingham, United Kingdom
| |
Collapse
|
7
|
Alibazi RJ, Frazer AK, Pearce AJ, Tallent J, Avela J, Kidgell DJ. Corticospinal and intracortical excitability is modulated in the knee extensors after acute strength training. J Sports Sci 2021; 40:561-570. [PMID: 34796778 DOI: 10.1080/02640414.2021.2004681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
The corticospinal responses to high-intensity and low-intensity strength-training of the upper limb are modulated in an intensity-dependent manner. Whether an intensity-dependent threshold occurs following acute strength training of the knee extensors (KE) remains unclear. We assessed the corticospinal responses following high-intensity (85% of maximal strength) or low-intensity (30% of maximal strength) KE strength-training with measures taken during an isometric KE task at baseline, post-5, 30 and 60-min. Twenty-eight volunteers (23 ± 3 years) were randomized to high-intensity (n = 11), low-intensity (n = 10) or to a control group (n = 7). Corticospinal responses were evoked with transcranial magnetic stimulation at intracortical and corticospinal levels. High- or low-intensity KE strength-training had no effect on maximum voluntary contraction force post-exercise (P > 0.05). High-intensity training increased corticospinal excitability (range 130-180%) from 5 to 60 min post-exercise compared to low-intensity training (17-30% increase). Large effect sizes (ES) showed that short-interval cortical inhibition (SICI) was reduced only for the high-intensity training group from 5-60 min post-exercise (24-44% decrease) compared to low-intensity (ES ranges 1-1.3). These findings show a training-intensity threshold is required to adjust CSE and SICI following strength training in the lower limb.
Collapse
Affiliation(s)
- Razie J Alibazi
- Department of Physiotherapy, School of Primary and Allied Health Care, Faculty of Medicine, Nursing and Health Science, Monash University, Melbourne, Australia
| | - Ashlyn K Frazer
- Department of Physiotherapy, School of Primary and Allied Health Care, Faculty of Medicine, Nursing and Health Science, Monash University, Melbourne, Australia
| | - Alan J Pearce
- College of Science, Health and Engineering, La Trobe University, Melbourne, Australia
| | - Jamie Tallent
- Department of Physiotherapy, School of Primary and Allied Health Care, Faculty of Medicine, Nursing and Health Science, Monash University, Melbourne, Australia.,School of Sport, Rehabilitation and Exercise Sciences, University of Essex, Colchester, UK
| | - Janne Avela
- NeuroMuscular Research Center, Faculty of Sport and Health Sciences, University of Jyväskylä, Jyvaskyla, Finland
| | - Dawson J Kidgell
- Department of Physiotherapy, School of Primary and Allied Health Care, Faculty of Medicine, Nursing and Health Science, Monash University, Melbourne, Australia
| |
Collapse
|
8
|
Chronic resistance training: is it time to rethink the time course of neural contributions to strength gain? Eur J Appl Physiol 2021; 121:2413-2422. [PMID: 34052876 DOI: 10.1007/s00421-021-04730-4] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 05/22/2021] [Indexed: 10/20/2022]
Abstract
Resistance training enhances muscular force due to a combination of neural plasticity and muscle hypertrophy. It has been well documented that the increase in strength over the first few weeks of resistance training (i.e. acute) has a strong underlying neural component and further enhancement in strength with long-term (i.e. chronic) resistance training is due to muscle hypertrophy. For obvious reasons, collecting long-term data on how chronic-resistance training affects the nervous system not feasible. As a result, the effect of chronic-resistance training on neural plasticity is less understood and has not received systematic exploration. Thus, the aim of this review is to provide rationale for investigating neural plasticity beyond acute-resistance training. We use cross-sectional work to highlight neural plasticity that occurs with chronic-resistance training at sites from the brain to spinal cord. Specifically, intra-cortical circuitry and the spinal motoneuron seem to be key sites for this plasticity. We then urge the need to further investigate the differential effects of acute versus chronic-resistance training on neural plasticity, and the role of this plasticity in increased strength. Such investigations may help in providing a clearer definition of the continuum of acute and chronic-resistance training, how the nervous system is altered during this continuum and the causative role of neural plasticity in changes in strength over the continuum of resistance training.
Collapse
|
9
|
Alibazi RJ, Pearce AJ, Rostami M, Frazer AK, Brownstein C, Kidgell DJ. Determining the Intracortical Responses After a Single Session of Aerobic Exercise in Young Healthy Individuals: A Systematic Review and Best Evidence Synthesis. J Strength Cond Res 2021; 35:562-575. [PMID: 33201155 DOI: 10.1519/jsc.0000000000003884] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
ABSTRACT Alibazi, RJ, Pearce, AJ, Rostami, M, Frazer, AK, Brownstein, C, and Kidgell, DJ. Determining the intracortical responses after a single session of aerobic exercise in young healthy individuals: a systematic review and best evidence synthesis. J Strength Cond Res 35(2): 562-575, 2021-A single bout of aerobic exercise (AE) may induce changes in the excitability of the intracortical circuits of the primary motor cortex (M1). Similar to noninvasive brain stimulation techniques, such as transcranial direct current stimulation, AE could be used as a priming technique to facilitate motor learning. This review examined the effect of AE on modulating intracortical excitability and inhibition in human subjects. A systematic review, according to PRISMA guidelines, identified studies by database searching, hand searching, and citation tracking between inception and the last week of February 2020. Methodological quality of included studies was determined using the Downs and Black quality index and Cochrane Collaboration of risk of bias tool. Data were synthesized and analyzed using best-evidence synthesis. There was strong evidence for AE not to change corticospinal excitability and conflicting evidence for increasing intracortical facilitation and reducing silent period and long-interval cortical inhibition. Aerobic exercise did reduce short-interval cortical inhibition, which suggests AE modulates the excitability of the short-latency inhibitory circuits within the M1; however, given the small number of included studies, it remains unclear how AE affects all circuits. In light of the above, AE may have important implications during periods of rehabilitation, whereby priming AE could be used to facilitate motor learning.
Collapse
Affiliation(s)
- Razie J Alibazi
- Non-invasive Brain Stimulation & Neuroplasticity Laboratory, Department of Physiotherapy, School of Primary and Allied Health Care, Faculty of Medicine, Nursing and Health Science, Monash University, Melbourne, Victoria, Australia
| | - Alan J Pearce
- College of Science, Health and Engineering, La Trobe University, Melbourne, Victoria, Australia
| | - Mohamad Rostami
- Department of Physiotherapy, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran; and
| | - Ashlyn K Frazer
- Non-invasive Brain Stimulation & Neuroplasticity Laboratory, Department of Physiotherapy, School of Primary and Allied Health Care, Faculty of Medicine, Nursing and Health Science, Monash University, Melbourne, Victoria, Australia
| | - Callum Brownstein
- University of Lyon, University Jean Monnet Saint-Etienne, Inter-university Laboratory of Human Movement Biology, Saint-Etienne, France
| | - Dawson J Kidgell
- Non-invasive Brain Stimulation & Neuroplasticity Laboratory, Department of Physiotherapy, School of Primary and Allied Health Care, Faculty of Medicine, Nursing and Health Science, Monash University, Melbourne, Victoria, Australia
| |
Collapse
|
10
|
Hortobágyi T, Granacher U, Fernandez-Del-Olmo M, Howatson G, Manca A, Deriu F, Taube W, Gruber M, Márquez G, Lundbye-Jensen J, Colomer-Poveda D. Functional relevance of resistance training-induced neuroplasticity in health and disease. Neurosci Biobehav Rev 2020; 122:79-91. [PMID: 33383071 DOI: 10.1016/j.neubiorev.2020.12.019] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 12/18/2020] [Accepted: 12/19/2020] [Indexed: 01/13/2023]
Abstract
Repetitive, monotonic, and effortful voluntary muscle contractions performed for just a few weeks, i.e., resistance training, can substantially increase maximal voluntary force in the practiced task and can also increase gross motor performance. The increase in motor performance is often accompanied by neuroplastic adaptations in the central nervous system. While historical data assigned functional relevance to such adaptations induced by resistance training, this claim has not yet been systematically and critically examined in the context of motor performance across the lifespan in health and disease. A review of muscle activation, brain and peripheral nerve stimulation, and imaging data revealed that increases in motor performance and neuroplasticity tend to be uncoupled, making a mechanistic link between neuroplasticity and motor performance inconclusive. We recommend new approaches, including causal mediation analytical and hypothesis-driven models to substantiate the functional relevance of resistance training-induced neuroplasticity in the improvements of gross motor function across the lifespan in health and disease.
Collapse
Affiliation(s)
- Tibor Hortobágyi
- Center for Human Movement Sciences, University of Groningen, University Medical CenterGroningen, Groningen, Netherlands.
| | - Urs Granacher
- Division of Training and Movement Sciences, Research Focus Cognition Sciences, University of Potsdam, Potsdam, Germany
| | - Miguel Fernandez-Del-Olmo
- Area of Sport Sciences, Faculty of Sports Sciences and Physical Education, Center for Sport Studies, King Juan Carlos University, Madrid, Spain
| | - Glyn Howatson
- Department of Sport, Exercise and Rehabilitation, Northumbria University, Newcastle, UK; Water Research Group, North West University, Potchefstroom, South Africa
| | - Andrea Manca
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy
| | - Franca Deriu
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy
| | - Wolfgang Taube
- Department of Neurosciences and Movement Sciences, University of Fribourg, Fribourg, Switzerland
| | - Markus Gruber
- Human Performance Research Centre, Department of Sport Science, University of Konstanz, Konstanz, Germany
| | - Gonzalo Márquez
- Department of Physical Education and Sport, Faculty of Sports Sciences and Physical Education, University of A Coruña, A Coruña, Spain
| | - Jesper Lundbye-Jensen
- Movement & Neuroscience, Department of Nutrition, Exercise & Sports Department of Neuroscience, University of Copenhagenk, Faculty of Health Science, Universidad Isabel I, Burgos, Spain
| | | |
Collapse
|
11
|
Reggiani C, Schiaffino S. Muscle hypertrophy and muscle strength: dependent or independent variables? A provocative review. Eur J Transl Myol 2020; 30:9311. [PMID: 33117512 PMCID: PMC7582410 DOI: 10.4081/ejtm.2020.9311] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Accepted: 08/23/2020] [Indexed: 01/02/2023] Open
Abstract
The question whether the muscle hypertrophy induced by resistance training, hormone administration or genetic manipulation is accompanied by a proportional increase in muscle strength is still open. This review summarizes and analyses data obtained in human and rodent muscles in studies that have monitored in parallel changes in muscle size and changes in muscle force, measured in isometric contractions in vivo, in isolated muscles ex vivo (in rodents) and in single muscle fibers. Although a general positive relation exists among the two variables, a number of studies show a clear dissociation with increase of muscle size with no change or even decrease in strength and, vice versa, increase in strength without increase in size. The possible mechanisms of such dissociation, which involves neural motor control and/or cellular and molecular adaptations of muscle fibers, are briefly discussed.
Collapse
Affiliation(s)
- Carlo Reggiani
- Department of Biomedical Sciences of the University of Padova, Padova, Italy.,Science and Research Centre Koper, Institute for Kinesiology Research, Koper, Slovenia
| | | |
Collapse
|
12
|
Neige C, Grosprêtre S, Martin A, Lebon F. Influence of Voluntary Contraction Level, Test Stimulus Intensity and Normalization Procedures on the Evaluation of Short-Interval Intracortical Inhibition. Brain Sci 2020; 10:brainsci10070433. [PMID: 32650395 PMCID: PMC7407177 DOI: 10.3390/brainsci10070433] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 07/02/2020] [Accepted: 07/06/2020] [Indexed: 12/13/2022] Open
Abstract
Short-interval intracortical inhibition (SICI) represents an inhibitory phenomenon acting at the cortical level. However, SICI estimation is based on the amplitude of a motor-evoked potential (MEP), which depends on the discharge of spinal motoneurones and the generation of compound muscle action potential (M-wave). In this study, we underpin the importance of taking into account the proportion of spinal motoneurones that are activated or not when investigating the SICI of the right flexor carpi radialis (normalization with maximal M-wave (Mmax) and MEPtest, respectively), in 15 healthy subjects. We probed SICI changes according to various MEPtest amplitudes that were modulated actively (four levels of muscle contraction: rest, 10%, 20% and 30% of maximal voluntary contraction (MVC)) and passively (two intensities of test transcranial magnetic stimulation (TMS): 120 and 130% of motor thresholds). When normalized to MEPtest, SICI remained unchanged by stimulation intensity and only decreased at 30% of MVC when compared with rest. However, when normalized to Mmax, we provided the first evidence of a strong individual relationship between SICI and MEPtest, which was ultimately independent from experimental conditions (muscle states and TMS intensities). Under similar experimental conditions, it is thus possible to predict SICI individually from a specific level of corticospinal excitability in healthy subjects.
Collapse
Affiliation(s)
- Cécilia Neige
- INSERM UMR1093-CAPS, Université Bourgogne Franche-Comté, UFR des Sciences du Sport, F-21078 Dijon, France; (A.M.); (F.L.)
- Correspondence: ; Tel.: +33-3-8039-6761
| | - Sidney Grosprêtre
- EA4660-C3S Laboratory—Culture, Sport, Health and Society, Université Bourgogne Franche-Comté, 25000 Besançon, France;
| | - Alain Martin
- INSERM UMR1093-CAPS, Université Bourgogne Franche-Comté, UFR des Sciences du Sport, F-21078 Dijon, France; (A.M.); (F.L.)
| | - Florent Lebon
- INSERM UMR1093-CAPS, Université Bourgogne Franche-Comté, UFR des Sciences du Sport, F-21078 Dijon, France; (A.M.); (F.L.)
| |
Collapse
|
13
|
Chan JPY, Krisnan L, Yusof A, Selvanayagam VS. Maximum isokinetic familiarization of the knee: Implication on bilateral assessment. Hum Mov Sci 2020; 71:102629. [PMID: 32452445 DOI: 10.1016/j.humov.2020.102629] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 01/24/2020] [Accepted: 04/23/2020] [Indexed: 11/28/2022]
Abstract
PURPOSE Familiarization is necessary for an accurate strength assessment as it reduces confounding factors such as learning and training effects. However, the number of contractions required for familiarization and whether cross-limb transfer during familiarization could affect bilateral assessment are unknown. This study aimed at identifying the number of maximum contractions required for isokinetic knee extension and flexion familiarization in both dominant (D) and non-dominant limb (ND). METHODS Twenty-eight right-limb dominant males (age: 22.64 ± 2.60 years, BMI: 23.82 ± 2.85 kg/m2) performed a total of 6 sets (each consisted of 5 continuous maximum contractions) at 60o/s for each limb. RESULTS The number of sets required for familiarization is determined when the average peak torque achieved stabilization from the series of contractions of each limb. For knee extension, 3 sets (15 contractions) were required for familiarization, whereas 2 sets (10 contractions) for knee flexion in both limbs. Interestingly, for knee extension in ND, the number of sets required for familiarization was reduced to 2 following contralateral contractions in D, however, for knee extension in D, there was no difference in the number of sets required for familiarization following contralateral contractions in ND. While for knee flexion, no cross-limb transfer was observed. These observations suggest the presence of cross-limb transfer from D to ND during familiarization which implies the involvement of the central nervous system. CONCLUSIONS Practically, familiarization for bilateral isokinetic strength assessment for knee extension and flexion at 60o/s should begin with the dominant limb for 3 sets to obtain accurate and reliable measurements.
Collapse
Affiliation(s)
- Jerusha Poe Yin Chan
- Centre for Sport and Exercise Sciences, University of Malaya, Kuala Lumpur 50603, Malaysia
| | - Logeswary Krisnan
- Centre for Sport and Exercise Sciences, University of Malaya, Kuala Lumpur 50603, Malaysia
| | - Ashril Yusof
- Centre for Sport and Exercise Sciences, University of Malaya, Kuala Lumpur 50603, Malaysia
| | | |
Collapse
|
14
|
Ansdell P, Brownstein CG, Škarabot J, Angius L, Kidgell D, Frazer A, Hicks KM, Durbaba R, Howatson G, Goodall S, Thomas K. Task‐specific strength increases after lower‐limb compound resistance training occurred in the absence of corticospinal changes in vastus lateralis. Exp Physiol 2020; 105:1132-1150. [DOI: 10.1113/ep088629] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Accepted: 04/30/2020] [Indexed: 12/17/2022]
Affiliation(s)
- Paul Ansdell
- Faculty of Health and Life SciencesNorthumbria University Newcastle upon Tyne UK
| | - Callum G. Brownstein
- Faculty of Health and Life SciencesNorthumbria University Newcastle upon Tyne UK
- Laboratoire Interuniversitaire de Biologie de la MotricitéUniversité Jean Monnet Saint Etienne, Université Lyon Lyon France
| | - Jakob Škarabot
- Faculty of Health and Life SciencesNorthumbria University Newcastle upon Tyne UK
- School of SportExercise and Health SciencesLoughborough University Loughborough UK
| | - Luca Angius
- Faculty of Health and Life SciencesNorthumbria University Newcastle upon Tyne UK
| | - Dawson Kidgell
- Department of PhysiotherapySchool of Primary and Allied Health CareFaculty of MedicineNursing and Health SciencesMonash University Melbourne Australia
| | - Ashlyn Frazer
- Department of PhysiotherapySchool of Primary and Allied Health CareFaculty of MedicineNursing and Health SciencesMonash University Melbourne Australia
| | - Kirsty M. Hicks
- Faculty of Health and Life SciencesNorthumbria University Newcastle upon Tyne UK
| | - Rade Durbaba
- Faculty of Health and Life SciencesNorthumbria University Newcastle upon Tyne UK
| | - Glyn Howatson
- Faculty of Health and Life SciencesNorthumbria University Newcastle upon Tyne UK
- Water Research GroupSchool of Biological SciencesNorth West University Potchefstroom South Africa
| | - Stuart Goodall
- Faculty of Health and Life SciencesNorthumbria University Newcastle upon Tyne UK
| | - Kevin Thomas
- Faculty of Health and Life SciencesNorthumbria University Newcastle upon Tyne UK
| |
Collapse
|
15
|
Task-dependent modulation of corticospinal excitability and inhibition following strength training. J Electromyogr Kinesiol 2020; 52:102411. [PMID: 32244044 DOI: 10.1016/j.jelekin.2020.102411] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 02/18/2020] [Accepted: 03/06/2020] [Indexed: 11/22/2022] Open
Abstract
This study determined whether there are task-dependent differences in cortical excitability following different types of strength training. Transcranial magnetic stimulation (TMS) measured corticospinal excitability (CSE) and intracortical inhibition (ICI) of the biceps brachii muscle in 42 healthy subjects that were randomised to either paced-strength-training (PST, n = 11), self-paced strength-training (SPST, n = 11), isometric strength-training (IST, n = 10) or to a control group (n = 10). Single-pulse and paired-pulse TMS were applied prior to and following 4-weeks of strength-training. PST increased CSE compared to SPST, IST and the control group (all P < 0.05). ICI was only reduced (60%) following PST. Dynamic strength increased by 18 and 25% following PST and SPST, whilst isometric strength increased by 20% following IST. There were no associations between the behavioural outcome measures and the change in CSE and ICI. The corticospinal responses to strength-training are task-dependent, which is a new finding. Strength-training that is performed slowly could promote use-dependent plasticity in populations with reduced volitional drive, such as during periods of limb immobilization, musculoskeletal injury or stroke.
Collapse
|
16
|
Tracking the corticospinal responses to strength training. Eur J Appl Physiol 2020; 120:783-798. [DOI: 10.1007/s00421-020-04316-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Accepted: 02/03/2020] [Indexed: 01/07/2023]
|
17
|
Colomer-Poveda D, Hortobágyi T, Keller M, Romero-Arenas S, Márquez G. Training intensity-dependent increases in corticospinal but not intracortical excitability after acute strength training. Scand J Med Sci Sports 2019; 30:652-661. [PMID: 31785009 DOI: 10.1111/sms.13608] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 11/04/2019] [Accepted: 11/25/2019] [Indexed: 11/27/2022]
Abstract
The purpose of this study was to determine whether the increases in corticospinal excitability (CSE) observed after one session of unilateral isometric strength training (ST) are related to changes in intracortical excitability measured by magnetic brain stimulation (TMS) in the trained and the contralateral untrained biceps brachii (BB) and whether such changes scale with training intensity. On three separate days, 15 healthy young men performed one ST session of 12 sets of eight isometric contractions of the right elbow flexors at 0% (control session), 25%, or 75% of the maximal voluntary contraction (MVC) in a random order. Before and after each session separated at least by 1 week, motor evoked potential (MEP) amplitude, short-interval intracortical inhibition (SICI), contralateral silent period (SP), and intracortical facilitation (ICF) generated by TMS were measured in the trained and the untrained BBs. Compared with baseline, MEPs recorded from the trained BB increased by ~47% after training at 75% of MVC (P < .05) but not after training at 0% (~4%) or 25% MVC (~5%, both P > .05). MEPs in the untrained BB and SICI, SP, and ICF in either BB did not change. Therefore, acute high-intensity but not low-intensity unilateral isometric ST increases CSE in the trained BB without modifications in intracortical inhibition or facilitation. Thus, increases in corticospinal neurons or α-α-motoneuron excitability could underlie the increases in CSE. Regardless of contraction intensity, acute isometric ST did not modify the excitability of the ipsilateral primary motor cortex measured by TMS.
Collapse
Affiliation(s)
- David Colomer-Poveda
- Department of Physical Education and Sport, Faculty of Sport, Catholic University of Murcia (UCAM), Murcia, Spain
| | - Tibor Hortobágyi
- Center for Human Movement Sciences, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Martin Keller
- Department of Sport, Exercise and Health, University of Basel, Basel, Switzerland
| | - Salvador Romero-Arenas
- Department of Physical Education and Sport, Faculty of Sport, Catholic University of Murcia (UCAM), Murcia, Spain
| | - Gonzalo Márquez
- Department of Physical Education and Sport, Faculty of Sport, Catholic University of Murcia (UCAM), Murcia, Spain
| |
Collapse
|
18
|
Colomer-Poveda D, Romero-Arenas S, Lundbye-Jensen J, Hortobágyi T, Márquez G. Contraction intensity-dependent variations in the responses to brain and corticospinal tract stimulation after a single session of resistance training in men. J Appl Physiol (1985) 2019; 127:1128-1139. [PMID: 31436513 DOI: 10.1152/japplphysiol.01106.2018] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The aim of this study was to determine the effects of acute resistance training (RT) intensity on motor-evoked potentials (MEPs) generated by transcranial magnetic brain stimulation and on cervicomedullary motor-evoked potentials (CMEPs) produced by electrical stimulation of the corticospinal tract. In four experimental sessions, 14 healthy young men performed 12 sets of eight isometric contractions of the elbow flexors at 0 (Control session), 25, 50, and 75% of the maximal voluntary contraction (MVC). Before and after each session, MEPs, CMEPs, and the associated twitch forces were recorded at rest. MEPs increased by 39% (P < 0.05 versus 25% in the control condition, Effect size (ES) = 1.04 and 1.76, respectively) after the 50% session and by 70% (P < 0.05 vs. all other conditions, ES = 0.91-2.49) after the 75% session. In contrast, CMEPs increased similarly after the 25%, 50%, and 75% sessions with an overall increase of 27% (P < 0.05 vs. control condition, ES = 1.34). The amplitude of maximal compound muscle action potentials (Mmax) was unchanged during the experiment. The MEP- and CMEP-associated twitch forces also increased after RT, but training intensity affected only the increases in MEP twitch forces. The data tentatively suggest that the intensity of muscle contraction used in acute bouts of RT affects cortical excitability.NEW & NOTEWORTHY Resistance training (RT) can acutely increase the efficacy of the corticospinal-motoneuronal synapse, motoneuron excitability and motor cortical excitability. We show that motor-evoked potential generated by transcranial magnetic stimulation but not cervicomedullary electrical stimulation increased in proportion to the intensity of training used during a single session of RT. The data suggest that the intensity of muscle contraction used in acute bouts of RT affects cortical excitability.
Collapse
Affiliation(s)
- David Colomer-Poveda
- Department of Physical Education and Sport, Faculty of Sport, Catholic University of Murcia, Murcia, Spain
| | - Salvador Romero-Arenas
- Department of Physical Education and Sport, Faculty of Sport, Catholic University of Murcia, Murcia, Spain
| | - Jesper Lundbye-Jensen
- Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, Denmark
| | - Tibor Hortobágyi
- Center for Human Movement Sciences, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Gonzalo Márquez
- Department of Physical Education and Sport, Faculty of Sport, Catholic University of Murcia, Murcia, Spain
| |
Collapse
|
19
|
Mason J, Howatson G, Frazer AK, Pearce AJ, Jaberzadeh S, Avela J, Kidgell DJ. Modulation of intracortical inhibition and excitation in agonist and antagonist muscles following acute strength training. Eur J Appl Physiol 2019; 119:2185-2199. [DOI: 10.1007/s00421-019-04203-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Accepted: 07/31/2019] [Indexed: 10/26/2022]
|