1
|
A natural antisense transcript regulates acetylcholinesterase gene expression via epigenetic modification in Hepatocellular Carcinoma. Int J Biochem Cell Biol 2014; 55:242-51. [DOI: 10.1016/j.biocel.2014.09.012] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2014] [Revised: 09/03/2014] [Accepted: 09/09/2014] [Indexed: 11/22/2022]
|
2
|
Gust M, Fortier M, Garric J, Fournier M, Gagné F. Effects of short-term exposure to environmentally relevant concentrations of different pharmaceutical mixtures on the immune response of the pond snail Lymnaea stagnalis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2013; 445-446:210-218. [PMID: 23333517 DOI: 10.1016/j.scitotenv.2012.12.057] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2012] [Revised: 12/13/2012] [Accepted: 12/13/2012] [Indexed: 05/28/2023]
Abstract
Pharmaceuticals are pollutants of potential concern in the aquatic environment where they are commonly introduced as complex mixtures via municipal effluents. Many reports underline the effects of pharmaceuticals on immune system of non target species. Four drug mixtures were tested, and regrouped pharmaceuticals by main therapeutic use: psychiatric (venlafaxine, carbamazepine, diazepam), antibiotic (ciprofloxacine, erythromycin, novobiocin, oxytetracycline, sulfamethoxazole, trimethoprim), hypolipemic (atorvastatin, gemfibrozil, benzafibrate) and antihypertensive (atenolol, furosemide, hydrochlorothiazide, lisinopril). Their effects were then compared with a treated municipal effluent known for its contamination, and its effects on the immune response of Lymnaea stagnalis. Adult L. stagnalis were exposed for 3 days to an environmentally relevant concentration of the four mixtures individually and as a global mixture. Effects on immunocompetence (hemocyte viability and count, ROS and thiol levels, phagocytosis) and gene expression were related to the immune response and oxidative stress: catalase (CAT), superoxide dismutase (SOD), glutathione reductase (GR), Selenium-dependent glutathione peroxidase (SeGPx), two isoforms of the nitric oxide synthetase gene (NOS1 and NOS2), molluscan defensive molecule (MDM), Toll-like receptor 4 (TLR4), allograft inflammatory factor-1 (AIF) and heat-shock protein 70 (HSP70). Immunocompetence was differently affected by the therapeutic class mixtures compared to the global mixture, which increased hemocyte count, ROS levels and phagocytosis, and decreased intracellular thiol levels. TLR4 gene expression was the most strongly increased, especially by psychiatric mixture (19-fold), while AIF-1, GR and CAT genes were downregulated. A decision tree analysis revealed that the immunotoxic responses caused by the municipal effluent were comparable to those obtained with the global pharmaceutical mixture, and the latter shared similarity with the antibiotic mixture. This suggests that pharmaceutical mixtures in municipal effluents represent a risk for gastropods at the immunocompetence levels and the antibiotic group could represent a model therapeutic class for municipal effluent toxicity studies in L. stagnalis.
Collapse
Affiliation(s)
- M Gust
- IRSTEA, UR MAEP, Laboratoire d'écotoxicologie, 3 bis quai Chauveau, 69009 Lyon, France.
| | | | | | | | | |
Collapse
|
3
|
Axonal trafficking of an antisense RNA transcribed from a pseudogene is regulated by classical conditioning. Sci Rep 2013; 3:1027. [PMID: 23293742 PMCID: PMC3537157 DOI: 10.1038/srep01027] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2012] [Accepted: 12/12/2012] [Indexed: 11/23/2022] Open
Abstract
Natural antisense transcripts (NATs) are endogenous RNA molecules that are complementary to known RNA transcripts. The functional significance of NATs is poorly understood, but their prevalence in the CNS suggests a role in brain function. Here we investigated a long NAT (antiNOS-2 RNA) associated with the regulation of nitric oxide (NO) production in the CNS of Lymnaea, an established model for molecular analysis of learning and memory. We show the antiNOS-2 RNA is axonally trafficked and demonstrate that this is regulated by classical conditioning. Critically, a single conditioning trial changes the amount of antiNOS-2 RNA transported along the axon. This occurs within the critical time window when neurotransmitter NO is required for memory formation. Our data suggest a role for the antiNOS-2 RNA in establishing memories through the regulation of NO signaling at the synapse.
Collapse
|
4
|
Abstract
The importance of various classes of regulatory non-protein-coding RNA molecules (ncRNAs) in the normal functioning of the CNS is becoming increasingly evident. ncRNAs are involved in neuronal cell specification and patterning during development, but also in higher cognitive processes, such as structural plasticity and memory formation in the adult brain. We discuss advances in understanding of the function of ncRNAs in the CNS, with a focus on the potential involvement of specific species, such as microRNAs, endogenous small interfering RNAs, long intergenic non-coding RNAs, and natural antisense transcripts, in various neurodegenerative disorders. This emerging field is anticipated to profoundly affect clinical research, diagnosis, and therapy in neurology.
Collapse
|
5
|
Abstract
We are in the midst of a revolution in the genomic sciences that will forever change the way we view biology and medicine, particularly with respect to brain form, function, development, evolution, plasticity, neurological disease pathogenesis and neural regenerative potential. The application of epigenetic principles has already begun to identify and characterize previously unrecognized molecular signatures of disease latency, onset and progression, mechanisms underlying disease pathogenesis, and responses to new and evolving therapeutic modalities. Moreover, epigenomic medicine promises to usher in a new era of neurological therapeutics designed to promote disease prevention and recovery of seemingly lost neurological function via reprogramming of stem cells, redirecting cell fate decisions and dynamically modulating neural network plasticity and connectivity.
Collapse
Affiliation(s)
- Mark F Mehler
- Institute for Brain Disorders and Neural Regeneration, Albert Einstein College of Medicine, Bronx, NY 10461, USA.
| |
Collapse
|
6
|
Vrijens K, Van Camp G, Van Laer L. Characterization of the murine Dfna5 promoter and regulatory regions. Gene 2008; 432:82-90. [PMID: 19095048 DOI: 10.1016/j.gene.2008.11.017] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2008] [Revised: 10/30/2008] [Accepted: 11/10/2008] [Indexed: 01/17/2023]
Abstract
Mutations in DFNA5 cause a non-syndromic autosomal dominant type of hearing loss. Although not much is known regarding the physiological function of DFNA5, it is not only related to hearing loss. A clear link with cancer exists. For example, methylation of the 5' flanking region of DFNA5 was detected in breast, colorectal and gastric cancer. So far, this 5' flanking region has not been studied in detail. Here, we describe the identification of the cochlear transcription initiation site (TIS), the identification of the core promoter region between -120 and +70 relative to the TIS and the identification of an enhancer (between -121 and -356 bp) and a silencer element (between -356 and -670 bp). Results were similar in HEK293 cells and in the organ of Corti cell line OC-k3. Transfection with a reversely-oriented construct resulted in high transcriptional activity. We subsequently confirmed this antisense activity and identified a novel antisense transcript partly overlapping Dfna5.
Collapse
Affiliation(s)
- Karen Vrijens
- Department of Medical Genetics, University of Antwerp, Campus Drie Eiken, Universiteitsplein 1, B-2610 Antwerp, Belgium
| | | | | |
Collapse
|
7
|
Savvateeva-Popova E, Medvedeva A, Popov A, Evgen'ev M. Role of non-coding RNAs in neurodegeneration and stress response in Drosophila. Biotechnol J 2008; 3:1010-21. [PMID: 18702036 DOI: 10.1002/biot.200800120] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The inherent limitations of genetic analysis in humans and other mammals as well as striking conservation of most genes controlling nervous system functioning in flies and mammals made Drosophila an attractive model to investigate various aspects of brain diseases. Since RNA research has made great progress in recent years here we present an overview of studies demonstrating the role of various non-coding RNAs in neurodegeneration and stress response in Drosophila as a model organism. We put special emphasis on the role of non-coding micro RNAs, hsr-omega transcripts, and artificial small highly structured RNAs as triggers of neuropathology including aggregates formation, cognitive abnormalities and other symptoms. Cellular stress is a conspicuous feature of many neurodegenerative diseases and the production of specialized proteins protects the nerve cells against aggregates formation. Therefore, herein we describe some data implicating various classes of non-coding RNAs in stress response in Drosophila. All these findings highlight Drosophila as an important model system to investigate various brain diseases potentially mediated by some non-coding RNAs including polyglutamine diseases, Alzheimer's disease, Huntigton's disease, and many others.
Collapse
|
8
|
Korneev SA, Korneeva EI, Lagarkova MA, Kiselev SL, Critchley G, O'Shea M. Novel noncoding antisense RNA transcribed from human anti-NOS2A locus is differentially regulated during neuronal differentiation of embryonic stem cells. RNA 2008; 14:2030-7. [PMID: 18820242 PMCID: PMC2553742 DOI: 10.1261/rna.1084308] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Here, we report on the discovery of a locus in the human genome, which evolved by gene duplication followed by an internal DNA inversion. This locus exhibits high sequence similarity to the gene for the inducible isoform of NOS protein (NOS2A) and is transcribed into a noncoding RNA containing a region of significant antisense homology with the NOS2A mRNA. We show that this antisense transcript (anti-NOS2A RNA) is expressed in different types of brain tumors, including meningiomas and glioblastomas. More importantly, we demonstrate that the expression profiles of the anti-NOS2A RNA and the NOS2A mRNA exhibit concurrent reciprocal changes in undifferentiated human embryonic stem cells (hESCs) and in hESCs induced to differentiate into neurogenic precursors such as neurospheres. As NOS2A has a role in neurogenesis, our results suggest that the anti-NOS2A RNA is involved in the regulation of neuronal differentiation of hESCs through the modulation of NOS2A gene expression.
Collapse
Affiliation(s)
- Sergei A Korneev
- Sussex Centre for Neuroscience, School of Life Sciences, University of Sussex, Brighton BN1 9QG, United Kingdom.
| | | | | | | | | | | |
Collapse
|
9
|
Non-coding RNA as a trigger of neuropathologic disorder phenotypes in transgenic Drosophila. J Neural Transm (Vienna) 2008; 115:1629-42. [PMID: 18779919 DOI: 10.1007/s00702-008-0078-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2008] [Accepted: 06/01/2008] [Indexed: 10/21/2022]
Abstract
At most, many protein-misfolding diseases develop as environmentally induced sporadic disorders. Recent studies indicate that the dynamic interplay between a wide repertoire of noncoding RNAs and the environment play an important role in brain development and pathogenesis of brain disorders. To elucidate this new issue, novel animal models which reproduce the most prominent disease manifestations are required. For this, transgenic Drosophila strains were constructed to express small highly structured, non-coding RNA under control of a heat shock promoter. Expression of the RNA induced formation of intracellular aggregates revealed by Thioflafin T in embryonic cell culture and Congo Red in the brain of transgenic flies. Also, this strongly perturbed the brain control of locomotion monitored by the parameters of sound production and memory retention of young 5-day-old males. This novel model demonstrates that expression of non-coding RNA alone is sufficient to trigger neuropathology.
Collapse
|
10
|
SCA8 mRNA expression suggests an antisense regulation of KLHL1 and correlates to SCA8 pathology. Brain Res 2008; 1233:176-84. [PMID: 18708037 DOI: 10.1016/j.brainres.2008.07.096] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2008] [Revised: 07/22/2008] [Accepted: 07/22/2008] [Indexed: 12/22/2022]
Abstract
An increasing number of inherited neurodegenerative diseases are known to be caused by the expansion of unstable trinucleotide repeat tracts. Spinocerebellar ataxia type 8 (SCA8) has been identified as being partly caused by a CTG expansion in an untranslated, endogenous antisense RNA that overlaps the Kelch-like 1 (KLHL1) gene. Clinically, SCA8 patients show similar features to those with the other SCAs, including limb and truncal ataxia, ataxic dysarthria and horizontal nystagmus, all of which are signs of dysfunction of the cerebellar system. However, allele sizes within the SCA8 proposed pathogenic range have been reported in patients with ataxia of unknown etiology, in individuals from pedigrees with other SCA or Friedreich's ataxia, and in patients with Alzheimer's disease, schizophrenia or parkinsonism. These observations suggest that mutation of the SCA8 locus might affect neurons other than the cerebellum. Antisense transcripts are known to regulate complementary sense transcripts and are involved in several biologic functions, such as development, adaptive response, and viral infection. In order to test whether SCA8 affects the KLHL1 expression by antisense RNA in brain cells, we examined the expression pattern of KLHL1 and SCA8 in human tissues and in mouse brain regions. SCA8 expression was colocalized with KLHL1 transcript in many brain regions whose functions are correlated to the clinical symptoms of SCA8 patients. These findings lead to the hypothesis of a possible relevance that SCA8 transcript downregulates KLHL1 expression through an antisense mechanism, which then leads to SCA8 neuropathogenesis.
Collapse
|
11
|
Pruunsild P, Kazantseva 1 A, Aid T, Palm K, Timmusk T. Dissecting the human BDNF locus: bidirectional transcription, complex splicing, and multiple promoters. Genomics 2007; 90:397-406. [PMID: 17629449 PMCID: PMC2568880 DOI: 10.1016/j.ygeno.2007.05.004] [Citation(s) in RCA: 506] [Impact Index Per Article: 29.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2007] [Revised: 05/13/2007] [Accepted: 05/14/2007] [Indexed: 12/11/2022]
Abstract
Brain-derived neurotrophic factor (BDNF), a member of the nerve growth factor family of neurotrophins, has central roles in the development, physiology, and pathology of the nervous system. We have elucidated the structure of the human BDNF gene, identified alternative transcripts, and studied their expression in adult human tissues and brain regions. In addition, the transcription initiation sites for human BDNF transcripts were determined and the activities of BDNF promoters were analyzed in transient overexpression assays. Our results show that the human BDNF gene has 11 exons and nine functional promoters that are used tissue and brain-region specifically. Furthermore, noncoding natural antisense RNAs that display complex splicing and expression patterns are transcribed in the BDNF gene locus from the antiBDNF gene (approved gene symbol BDNFOS). We show that BDNF and antiBDNF transcripts form dsRNA duplexes in the brain in vivo, suggesting an important role for antiBDNF in regulating BDNF expression in human.
Collapse
|
12
|
Mehler MF, Mattick JS. Noncoding RNAs and RNA Editing in Brain Development, Functional Diversification, and Neurological Disease. Physiol Rev 2007; 87:799-823. [PMID: 17615389 DOI: 10.1152/physrev.00036.2006] [Citation(s) in RCA: 224] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
The progressive maturation and functional plasticity of the nervous system in health and disease involve a dynamic interplay between the transcriptome and the environment. There is a growing awareness that the previously unexplored molecular and functional interface mediating these complex gene-environmental interactions, particularly in brain, may encompass a sophisticated RNA regulatory network involving the twin processes of RNA editing and multifaceted actions of numerous subclasses of non-protein-coding RNAs. The mature nervous system encompasses a wide range of cell types and interconnections. Long-term changes in the strength of synaptic connections are thought to underlie memory retrieval, formation, stabilization, and effector functions. The evolving nervous system involves numerous developmental transitions, such as neurulation, neural tube patterning, neural stem cell expansion and maintenance, lineage elaboration, differentiation, axonal path finding, and synaptogenesis. Although the molecular bases for these processes are largely unknown, RNA-based epigenetic mechanisms appear to be essential for orchestrating these precise and versatile biological phenomena and in defining the etiology of a spectrum of neurological diseases. The concerted modulation of RNA editing and the selective expression of non-protein-coding RNAs during seminal as well as continuous state transitions may comprise the plastic molecular code needed to couple the intrinsic malleability of neural network connections to evolving environmental influences to establish diverse forms of short- and long-term memory, context-specific behavioral responses, and sophisticated cognitive capacities.
Collapse
Affiliation(s)
- Mark F Mehler
- Institute for Brain Disorders and Neural Regeneration, Department of Neurology, Einstein Cancer Center, Albert Einstein College of Medicine, Bronx, New York 10461, USA.
| | | |
Collapse
|
13
|
Abstract
SUMMARY
It is usually thought that the development of complex organisms is controlled by protein regulatory factors and morphogenetic signals exchanged between cells and differentiating tissues during ontogeny. However, it is now evident that the majority of all animal genomes is transcribed, apparently in a developmentally regulated manner, suggesting that these genomes largely encode RNA machines and that there may be a vast hidden layer of RNA regulatory transactions in the background. I propose that the epigenetic trajectories of differentiation and development are primarily programmed by feed-forward RNA regulatory networks and that most of the information required for multicellular development is embedded in these networks, with cell–cell signalling required to provide important positional information and to correct stochastic errors in the endogenous RNA-directed program.
Collapse
Affiliation(s)
- John S Mattick
- ARC Centre for Functional and Applied Genomics, Institute for Molecular Bioscience, University of Queensland, St Lucia QLD 4072, Australia.
| |
Collapse
|
14
|
Osato N, Suzuki Y, Ikeo K, Gojobori T. Transcriptional interferences in cis natural antisense transcripts of humans and mice. Genetics 2007; 176:1299-306. [PMID: 17409075 PMCID: PMC1894591 DOI: 10.1534/genetics.106.069484] [Citation(s) in RCA: 102] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
For a significant fraction of mRNAs, their expression is regulated by other RNAs, including cis natural antisense transcripts (cis-NATs) that are complementary mRNAs transcribed from opposite strands of DNA at the same genomic locus. The regulatory mechanism of mRNA expression by cis-NATs is unknown, although a few possible explanations have been proposed. To understand this regulatory mechanism, we conducted a large-scale analysis of the currently available data and examined how the overlapping arrangements of cis-NATs affect their expression level. Here, we show that for both human and mouse the expression level of cis-NATs decreases as the length of the overlapping region increases. In particular, the proportions of the highly expressed cis-NATs in all cis-NATs examined were approximately 36 and 47% for human and mouse, respectively, when the overlapping region was <200 bp. However, both proportions decreased to virtually zero when the overlapping regions were >2000 bp in length. Moreover, the distribution of the expression level of cis-NATs changes according to different types of the overlapping pattern of cis-NATs in the genome. These results are consistent with the transcriptional collision model for the regulatory mechanism of gene expression by cis-NATs.
Collapse
Affiliation(s)
| | | | | | - Takashi Gojobori
- Corresponding author: Center for Information Biology and DNA Data Bank of Japan, National Institutes of Genetics, Yata 1111, Mishima, Shizuoka 411-8540, Japan. E-mail:
| |
Collapse
|
15
|
Abstract
Natural antisense transcripts (NATs) are reverse complementary at least in part to the sequences of other endogenous sense transcripts. Most NATs are transcribed from opposite strands of their sense partners. They regulate sense genes at multiple levels and are implicated in various diseases. Using an improved whole-genome computational pipeline, we identified abundant cis-encoded exon-overlapping sense-antisense (SA) gene pairs in human (7356), mouse (6806), fly (1554), and eight other eukaryotic species (total 6534). We developed NATsDB (Natural Antisense Transcripts DataBase, http://natsdb.cbi.pku.edu.cn/) to enable efficient browsing, searching and downloading of this currently most comprehensive collection of SA genes, grouped into six classes based on their overlapping patterns. NATsDB also includes non-exon-overlapping bidirectional (NOB) genes and non-bidirectional (NBD) genes. To facilitate the study of functions, regulations and possible pathological implications, NATsDB includes extensive information about gene structures, poly(A) signals and tails, phastCons conservation, homologues in other species, repeat elements, expressed sequence tag (EST) expression profiles and OMIM disease association. NATsDB supports interactive graphical display of the alignment of all supporting EST and mRNA transcripts of the SA and NOB genes to the genomic loci. It supports advanced search by species, gene name, sequence accession number, chromosome location, coding potential, OMIM association and sequence similarity.
Collapse
Affiliation(s)
| | | | | | | | - Qing-Rong Liu
- Molecular Neurobiology Branch, National Institute on Drug Abuse-Intramural Research Program (NIDA-IRP), NIH, Department of Health and Human Services (DHHS)Box 5180, Baltimore, MD 21224, USA
| | - Liping Wei
- To whom correspondence should be addressed. Tel: +1 86 10 6276 4970; Fax: +1 86 10 6275 2438;
| |
Collapse
|
16
|
Zhang Y, Liu XS, Liu QR, Wei L. Genome-wide in silico identification and analysis of cis natural antisense transcripts (cis-NATs) in ten species. Nucleic Acids Res 2006; 34:3465-75. [PMID: 16849434 PMCID: PMC1524920 DOI: 10.1093/nar/gkl473] [Citation(s) in RCA: 134] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
We developed a fast, integrative pipeline to identify cis natural antisense transcripts (cis-NATs) at genome scale. The pipeline mapped mRNAs and ESTs in UniGene to genome sequences in GoldenPath to find overlapping transcripts and combining information from coding sequence, poly(A) signal, poly(A) tail and splicing sites to deduce transcription orientation. We identified cis-NATs in 10 eukaryotic species, including 7830 candidate sense–antisense (SA) genes in 3915 SA pairs in human. The abundance of SA genes is remarkably low in worm and does not seem to be caused by the prevalence of operons. Hundreds of SA pairs are conserved across different species, even maintaining the same overlapping patterns. The convergent SA class is prevalent in fly, worm and sea squirt, but not in human or mouse as reported previously. The percentage of SA genes among imprinted genes in human and mouse is 24–47%, a range between the two previous reports. There is significant shortage of SA genes on Chromosome X in human and mouse but not in fly or worm, supporting X-inactivation in mammals as a possible cause. SA genes are over-represented in the catalytic activities and basic metabolism functions. All candidate cis-NATs can be downloaded from .
Collapse
Affiliation(s)
| | - X. Shirley Liu
- Department of Biostatistics and Computational Biology, Dana-Farber Cancer Institute, Harvard School of Public Health44 Binney Street, M1B22, Boston, MA 02115, USA
| | - Qing-Rong Liu
- Molecular Neurobiology Branch, National Institute on Drug Abuse-Intramural Research Program (NIDA-IRP), NIH, Department of Health and Human Services (DHHS)Box 5180, Baltimore, MD 21224, USA
| | - Liping Wei
- To whom correspondence should be addressed. Tel: +86 10 6276 4970; Fax: +86 10 6275 2438;
| |
Collapse
|
17
|
Abstract
Increasing evidence suggests that the development and function of the nervous system is heavily dependent on RNA editing and the intricate spatiotemporal expression of a wide repertoire of non-coding RNAs, including micro RNAs, small nucleolar RNAs and longer non-coding RNAs. Non-coding RNAs may provide the key to understanding the multi-tiered links between neural development, nervous system function, and neurological diseases.
Collapse
Affiliation(s)
- Mark F Mehler
- ARC Special Research Centre for Functional and Applied Genomics, Institute for Molecular Bioscience, University of Queensland, St Lucia, QLD 4072, Australia
| | | |
Collapse
|