1
|
Fenech C, Winters BL, Otsu Y, Aubrey KR. Supraspinal glycinergic neurotransmission in pain: A scoping review of current literature. J Neurochem 2024; 168:3663-3684. [PMID: 39075923 DOI: 10.1111/jnc.16191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 07/16/2024] [Accepted: 07/16/2024] [Indexed: 07/31/2024]
Abstract
The neurotransmitter glycine is an agonist at the strychnine-sensitive glycine receptors. In addition, it has recently been discovered to act at two new receptors, the excitatory glycine receptor and metabotropic glycine receptor. Glycine's neurotransmitter roles have been most extensively investigated in the spinal cord, where it is known to play essential roles in pain, itch, and motor function. In contrast, less is known about supraspinal glycinergic functions, and their contributions to pain circuits are largely unrecognized. As glycinergic neurons are absent from cortical regions, a clearer understanding of how supraspinal glycine modulates pain could reveal new pharmacological targets. This review aims to synthesize the published research on glycine's role in the adult brain, highlighting regions where glycine signaling may modulate pain responses. This was achieved through a scoping review methodology identifying several key regions of supraspinal pain circuitry where glycine signaling is involved. Therefore, this review unveils critical research gaps for supraspinal glycine's potential roles in pain and pain-associated responses, encouraging researchers to consider glycinergic neurotransmission more widely when investigating neural mechanisms of pain.
Collapse
Affiliation(s)
- Caitlin Fenech
- Pain Management Research Institute, Kolling Institute, Royal North Shore Hospital, St Leonards, New South Wales, Australia
- Faculty of Medicine and Health, University of Sydney, Sydney, New South Wales, Australia
| | - Bryony L Winters
- Pain Management Research Institute, Kolling Institute, Royal North Shore Hospital, St Leonards, New South Wales, Australia
- Discipline of Pharmacology, School of Pharmacy, Faculty of Medicine and Health, University of Sydney, Sydney, New South Wales, Australia
| | - Yo Otsu
- Pain Management Research Institute, Kolling Institute, Royal North Shore Hospital, St Leonards, New South Wales, Australia
- Faculty of Medicine and Health, University of Sydney, Sydney, New South Wales, Australia
| | - Karin R Aubrey
- Pain Management Research Institute, Kolling Institute, Royal North Shore Hospital, St Leonards, New South Wales, Australia
- Faculty of Medicine and Health, University of Sydney, Sydney, New South Wales, Australia
| |
Collapse
|
2
|
Petukhova E, Ponomareva D, Rustler K, Koenig B, Bregestovski P. Action of the Photochrome Glyght on GABAergic Synaptic Transmission in Mouse Brain Slices. Int J Mol Sci 2022; 23:ijms231810553. [PMID: 36142469 PMCID: PMC9503965 DOI: 10.3390/ijms231810553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 09/02/2022] [Accepted: 09/05/2022] [Indexed: 11/16/2022] Open
Abstract
Glyght is a new photochromic compound described as an effective modulator of glycine receptors at heterologous expression, in brain slices and in zebrafish larvae. Glyght also caused weak inhibition of GABAA-mediated currents in a cell line expressing α1/β2/γ2 GABAA receptors. However, the effects of Glyght on GABAergic transmission in the brain have not been analysed, which does not allow a sufficiently comprehensive assessment of the effects of the compound on the nervous system. Therefore, in this study using whole-cell patch-clamp recording, we analysed the Glyght (100 µM) action on evoked GABAergic inhibitory postsynaptic currents (eIPSCs) in mice hippocampal slices. Two populations of cells were found: the first responded by reducing the GABAergic eIPSCs’ amplitude, whereas the second showed no sensitivity to the compound. Glyght did not affect the ionic currents’ amplitude induced by GABA application, suggesting the absence of action on postsynaptic GABA receptors. Additionally, Glyght had no impact on the paired-pulse modulation of GABAergic eIPSCs, indicating that Glyght does not modulate the neurotransmitter release mechanisms. In the presence of strychnine, an antagonist of glycine receptors, the Glyght effect on GABAergic synaptic transmission was absent. Our results suggest that Glyght can modulate GABAergic synaptic transmission via action on extrasynaptic glycine receptors.
Collapse
Affiliation(s)
- Elena Petukhova
- Institute of Neurosciences, Kazan State Medical University, 420111 Kazan, Russia
- OpenLab Gene and Cell Technologies, Institute of Fundamental Medicine and Biology, Kazan (Volga Region) Federal University, 420008 Kazan, Russia
| | - Daria Ponomareva
- Institute of Neurosciences, Kazan State Medical University, 420111 Kazan, Russia
- Institut de Neurosciences des Systèmes, Aix-Marseille University, INSERM, INS, 13005 Marseille, France
- Department of Normal Physiology, Kazan State Medical University, 420111 Kazan, Russia
| | - Karin Rustler
- Faculty of Chemistry and Pharmacy, University of Regensburg, 93053 Regensburg, Germany
| | - Burkhard Koenig
- Faculty of Chemistry and Pharmacy, University of Regensburg, 93053 Regensburg, Germany
| | - Piotr Bregestovski
- Institute of Neurosciences, Kazan State Medical University, 420111 Kazan, Russia
- Institut de Neurosciences des Systèmes, Aix-Marseille University, INSERM, INS, 13005 Marseille, France
- Department of Normal Physiology, Kazan State Medical University, 420111 Kazan, Russia
- Correspondence:
| |
Collapse
|
3
|
Solntseva EI, Bukanova JV, Skrebitsky VG, Kudova E. Pregnane neurosteroids exert opposite effects on GABA and glycine-induced chloride current in isolated rat neurons. Hippocampus 2022; 32:552-563. [PMID: 35703084 DOI: 10.1002/hipo.23449] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 05/16/2022] [Accepted: 06/01/2022] [Indexed: 11/11/2022]
Abstract
The ability of endogenous neurosteroids (NSs) with pregnane skeleton modified at positions C-3 and C-5 to modulate the functional activity of inhibitory glycine receptors (GlyR) and ionotropic ɣ-aminobutyric acid receptors (GABAA R) was estimated. The glycine and GABA-induced chloride current (IGly and IGABA ) were measured in isolated pyramidal neurons of the rat hippocampus and in isolated rat cerebellar Purkinje cells, respectively. Our experiments demonstrated that pregnane NSs affected IGABA and IGly in a different manner. At low concentrations (up to 5 μM), tested pregnane NSs increased or did not change the peak amplitude of the IGABA , but reduced the IGly by decreasing the peak amplitude and/or accelerating desensitization. Namely, allopregnanolone (ALLO), epipregnanolone (EPI), pregnanolone (PA), pregnanolone sulfate (PAS) and 5β-dihydroprogesterone (5β-DHP) enhanced the IGABA in Purkinje cells. Dose-response curves plotted in the concentration range from 1 nM to 100 μM were smooth for EPI and 5β-DHP, but bell-shaped for ALLO, PA and PAS. The peak amplitude of the IGly was reduced by PA, PAS, and 5α- and 5β-DHP. In contrast, ALLO, ISO and EPI did not modulate it. Dose-response curves for the inhibition of the IGly peak amplitude were smooth for all active compounds. All NSs accelerated desensitization of the IGly . The dose-response relationship for this effect was smooth for ALLO, PA, PAS and 5β-DHP, but it was U-shaped for EPI, 5α-DHP and ISO. These results, together with our previous results on NSs with androstane skeleton, offer comprehensive overview for understanding the mechanisms of effects of NSs on IGly and IGABA .
Collapse
Affiliation(s)
- Elena I Solntseva
- Functional Synaptology Laboratory, Brain Research Department, Research Center of Neurology, Moscow, Russia
| | - Julia V Bukanova
- Functional Synaptology Laboratory, Brain Research Department, Research Center of Neurology, Moscow, Russia
| | - Vladimir G Skrebitsky
- Functional Synaptology Laboratory, Brain Research Department, Research Center of Neurology, Moscow, Russia
| | - Eva Kudova
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Prague, Czech Republic
| |
Collapse
|
4
|
Bahrami S, Nordengen K, Shadrin AA, Frei O, van der Meer D, Dale AM, Westlye LT, Andreassen OA, Kaufmann T. Distributed genetic architecture across the hippocampal formation implies common neuropathology across brain disorders. Nat Commun 2022; 13:3436. [PMID: 35705537 PMCID: PMC9200849 DOI: 10.1038/s41467-022-31086-w] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 06/01/2022] [Indexed: 12/13/2022] Open
Abstract
Despite its major role in complex human functions across the lifespan, most notably navigation, learning and memory, much of the genetic architecture of the hippocampal formation is currently unexplored. Here, through multivariate genome-wide association analysis in volumetric data from 35,411 white British individuals, we reveal 177 unique genetic loci with distributed associations across the hippocampal formation. We identify genetic overlap with eight brain disorders with typical onset at different stages of life, where common genes suggest partly age- and disorder-independent mechanisms underlying hippocampal pathology.
Collapse
Affiliation(s)
- Shahram Bahrami
- Norwegian Centre for Mental Disorders Research, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Oslo, Norway.
| | - Kaja Nordengen
- Norwegian Centre for Mental Disorders Research, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Department of Neurology, Oslo University Hospital, Oslo, Norway
| | - Alexey A Shadrin
- Norwegian Centre for Mental Disorders Research, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- KG Jebsen Centre for Neurodevelopmental Disorders, University of Oslo, Oslo, Norway
| | - Oleksandr Frei
- Norwegian Centre for Mental Disorders Research, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Department of Informatics, University of Oslo, Oslo, Norway
| | - Dennis van der Meer
- Norwegian Centre for Mental Disorders Research, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- School of Mental Health and Neuroscience, Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, The Netherlands
| | - Anders M Dale
- Department of Radiology, School of Medicine, University of California, San Diego, CA, USA
- Department of Neurosciences, University of California San Diego, La Jolla, CA, USA
- Center for Multimodal Imaging and Genetics, University of California at San Diego, La Jolla, CA, USA
| | - Lars T Westlye
- Norwegian Centre for Mental Disorders Research, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- KG Jebsen Centre for Neurodevelopmental Disorders, University of Oslo, Oslo, Norway
- Department of Psychology, University of Oslo, Oslo, Norway
| | - Ole A Andreassen
- Norwegian Centre for Mental Disorders Research, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- KG Jebsen Centre for Neurodevelopmental Disorders, University of Oslo, Oslo, Norway
| | - Tobias Kaufmann
- Norwegian Centre for Mental Disorders Research, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Oslo, Norway.
- Department of Psychiatry and Psychotherapy, Tübingen Center for Mental Health, University of Tübingen, Tübingen, Germany.
| |
Collapse
|
5
|
Eulenburg V, Hülsmann S. Synergistic Control of Transmitter Turnover at Glycinergic Synapses by GlyT1, GlyT2, and ASC-1. Int J Mol Sci 2022; 23:ijms23052561. [PMID: 35269698 PMCID: PMC8909939 DOI: 10.3390/ijms23052561] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 02/21/2022] [Accepted: 02/23/2022] [Indexed: 01/25/2023] Open
Abstract
In addition to being involved in protein biosynthesis and metabolism, the amino acid glycine is the most important inhibitory neurotransmitter in caudal regions of the brain. These functions require a tight regulation of glycine concentration not only in the synaptic cleft, but also in various intracellular and extracellular compartments. This is achieved not only by confining the synthesis and degradation of glycine predominantly to the mitochondria, but also by the action of high-affinity large-capacity glycine transporters that mediate the transport of glycine across the membranes of presynaptic terminals or glial cells surrounding the synapses. Although most cells at glycine-dependent synapses express more than one transporter with high affinity for glycine, their synergistic functional interaction is only poorly understood. In this review, we summarize our current knowledge of the two high-affinity transporters for glycine, the sodium-dependent glycine transporters 1 (GlyT1; SLC6A9) and 2 (GlyT2; SLC6A5) and the alanine–serine–cysteine-1 transporter (Asc-1; SLC7A10).
Collapse
Affiliation(s)
- Volker Eulenburg
- Department for Anesthesiology and Intensive Care, Faculty of Medicine, University of Leipzig, Liebigstraße 20, D-04103 Leipzig, Germany
- Correspondence: (V.E.); (S.H.)
| | - Swen Hülsmann
- Department for Anesthesiology, University Medical Center, Georg-August University, Humboldtallee 23, D-37073 Göttingen, Germany
- Correspondence: (V.E.); (S.H.)
| |
Collapse
|
6
|
Bukanova JV, Solntseva EI, Kudova E. Neurosteroids as Selective Inhibitors of Glycine Receptor Activity: Structure-Activity Relationship Study on Endogenous Androstanes and Androstenes. Front Mol Neurosci 2020; 13:44. [PMID: 32265652 PMCID: PMC7098970 DOI: 10.3389/fnmol.2020.00044] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Accepted: 03/04/2020] [Indexed: 12/21/2022] Open
Abstract
The ability of androstane and androstene neurosteroids with modifications at C-17, C-5, and C-3 (compounds 1-9) to influence the functional activity of inhibitory glycine and γ-aminobutyric acid (GABA) receptors was estimated. The glycine- and GABA-induced chloride current (IGly and IGABA) were measured in isolated pyramidal neurons of the rat hippocampus and isolated rat cerebellar Purkinje cells, correspondingly, using the patch-clamp technique. Our results demonstrate that all the nine neurosteroids display similar biological activity, namely, they strongly inhibited IGly and weakly inhibited IGABA. The threshold concentration of neurosteroids inducing effects on IGly was 0.1 μM, and for effects on IGABA was 10–50 μM. Moreover, our compounds accelerated desensitization of the IGly with the IC50 values varying from 0.12 to 0.49 μM and decreased the peak amplitude with IC50 values varying from 16 to 22 μM. Interestingly, our study revealed that only compounds 4 (epiandrosterone) and 8 (dehydroepiandrosterone) were able to cause a significant change in IGABA in 10 μM concentration. Moreover, compounds 3 (testosterone), 5 (epitestosterone), 6 (dihydroandrostenedione), and 9 (etiocholanedione) did not modulate IGABA up to the concentration of 50 μM. Thus, we conclude that compounds 3, 5, 6, and 9 may be identified as selective modulators of IGly. Our results offer new avenues of investigation in the field of drug-like selective modulators of IGly.
Collapse
Affiliation(s)
| | | | - Eva Kudova
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Prague, Czechia
| |
Collapse
|
7
|
de Bartolomeis A, Manchia M, Marmo F, Vellucci L, Iasevoli F, Barone A. Glycine Signaling in the Framework of Dopamine-Glutamate Interaction and Postsynaptic Density. Implications for Treatment-Resistant Schizophrenia. Front Psychiatry 2020; 11:369. [PMID: 32477178 PMCID: PMC7240307 DOI: 10.3389/fpsyt.2020.00369] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Accepted: 04/14/2020] [Indexed: 12/14/2022] Open
Abstract
Treatment-resistant schizophrenia (TRS) or suboptimal response to antipsychotics affects almost 30% of schizophrenia (SCZ) patients, and it is a relevant clinical issue with significant impact on the functional outcome and on the global burden of disease. Among putative novel treatments, glycine-centered therapeutics (i.e. sarcosine, glycine itself, D-Serine, and bitopertin) have been proposed, based on a strong preclinical rationale with, however, mixed clinical results. Therefore, a better appraisal of glycine interaction with the other major players of SCZ pathophysiology and specifically in the framework of dopamine - glutamate interactions is warranted. New methodological approaches at cutting edge of technology and drug discovery have been applied to study the role of glycine in glutamate signaling, both at presynaptic and post-synaptic level and have been instrumental for unveiling the role of glycine in dopamine-glutamate interaction. Glycine is a non-essential amino acid that plays a critical role in both inhibitory and excitatory neurotransmission. In caudal areas of central nervous system (CNS), such as spinal cord and brainstem, glycine acts as a powerful inhibitory neurotransmitter through binding to its receptor, i.e. the Glycine Receptor (GlyR). However, glycine also works as a co-agonist of the N-Methyl-D-Aspartate receptor (NMDAR) in excitatory glutamatergic neurotransmission. Glycine concentration in the synaptic cleft is finely tuned by glycine transporters, i.e. GlyT1 and GlyT2, that regulate the neurotransmitter's reuptake, with the first considered a highly potential target for psychosis therapy. Reciprocal regulation of dopamine and glycine in forebrain, glycine modulation of glutamate, glycine signaling interaction with postsynaptic density proteins at glutamatergic synapse, and human genetics of glycinergic pathways in SCZ are tackled in order to highlight the exploitation of this neurotransmitters and related molecules in SCZ and TRS.
Collapse
Affiliation(s)
- Andrea de Bartolomeis
- Laboratory of Molecular Psychiatry and Translational Psychiatry, Unit of Treatment Resistant Psychosis, Section of Psychiatry, Department of Neuroscience, Reproductive Science and Odontostomatology, University School of Medicine of Napoli Federico II, Naples, Italy
| | - Mirko Manchia
- Section of Psychiatry, Department of Medical Science and Public Health, University of Cagliari, Cagliari, Italy.,Department of Pharmacology, Dalhousie University, Halifax, NS, Canada
| | - Federica Marmo
- Laboratory of Molecular Psychiatry and Translational Psychiatry, Unit of Treatment Resistant Psychosis, Section of Psychiatry, Department of Neuroscience, Reproductive Science and Odontostomatology, University School of Medicine of Napoli Federico II, Naples, Italy
| | - Licia Vellucci
- Laboratory of Molecular Psychiatry and Translational Psychiatry, Unit of Treatment Resistant Psychosis, Section of Psychiatry, Department of Neuroscience, Reproductive Science and Odontostomatology, University School of Medicine of Napoli Federico II, Naples, Italy
| | - Felice Iasevoli
- Laboratory of Molecular Psychiatry and Translational Psychiatry, Unit of Treatment Resistant Psychosis, Section of Psychiatry, Department of Neuroscience, Reproductive Science and Odontostomatology, University School of Medicine of Napoli Federico II, Naples, Italy
| | - Annarita Barone
- Laboratory of Molecular Psychiatry and Translational Psychiatry, Unit of Treatment Resistant Psychosis, Section of Psychiatry, Department of Neuroscience, Reproductive Science and Odontostomatology, University School of Medicine of Napoli Federico II, Naples, Italy
| |
Collapse
|
8
|
Woo J, Han YE, Koh W, Won J, Park MG, An H, Lee CJ. Pharmacological Dissection of Intrinsic Optical Signal Reveals a Functional Coupling between Synaptic Activity and Astrocytic Volume Transient. Exp Neurobiol 2019; 28:30-42. [PMID: 30853822 PMCID: PMC6401548 DOI: 10.5607/en.2019.28.1.30] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2019] [Revised: 02/12/2019] [Accepted: 02/14/2019] [Indexed: 11/19/2022] Open
Abstract
The neuronal activity-dependent change in the manner in which light is absorbed or scattered in brain tissue is called the intrinsic optical signal (IOS), and provides label-free, minimally invasive, and high spatial (~100 µm) resolution imaging for visualizing neuronal activity patterns. IOS imaging in isolated brain slices measured at an infrared wavelength (>700 nm) has recently been attributed to the changes in light scattering and transmittance due to aquaporin-4 (AQP4)-dependent astrocytic swelling. The complexity of functional interactions between neurons and astrocytes, however, has prevented the elucidation of the series of molecular mechanisms leading to the generation of IOS. Here, we pharmacologically dissected the IOS in the acutely prepared brain slices of the stratum radiatum of the hippocampus, induced by 1 s/20 Hz electrical stimulation of Schaffer-collateral pathway with simultaneous measurement of the activity of the neuronal population by field potential recordings. We found that 55% of IOSs peak upon stimulation and originate from postsynaptic AMPA and NMDA receptors. The remaining originated from presynaptic action potentials and vesicle fusion. Mechanistically, the elevated extracellular glutamate and K+ during synaptic transmission were taken up by astrocytes via a glutamate transporter and quinine-sensitive K2P channel, followed by an influx of water via AQP-4. We also found that the decay of IOS is mediated by the DCPIB- and NPPB-sensitive anion channels in astrocytes. Altogether, our results demonstrate that the functional coupling between synaptic activity and astrocytic transient volume change during excitatory synaptic transmission is the major source of IOS.
Collapse
Affiliation(s)
- Junsung Woo
- Center for Glia-Neuron Interaction, Korea Institute of Science and Technology (KIST), Seoul 02792, Korea
| | - Young-Eun Han
- Center for Glia-Neuron Interaction, Korea Institute of Science and Technology (KIST), Seoul 02792, Korea.,Department of Neuroscience, Division of Bio-medical Science & Technology, KIST School, Korea University of Science and Technology, Seoul 02792, Korea.,Center for Cognition and Sociality, Institute for Basic Science (IBS), Daejeon 34126, Korea
| | - Wuhyun Koh
- Center for Glia-Neuron Interaction, Korea Institute of Science and Technology (KIST), Seoul 02792, Korea.,Department of Neuroscience, Division of Bio-medical Science & Technology, KIST School, Korea University of Science and Technology, Seoul 02792, Korea.,Center for Cognition and Sociality, Institute for Basic Science (IBS), Daejeon 34126, Korea
| | - Joungha Won
- Center for Glia-Neuron Interaction, Korea Institute of Science and Technology (KIST), Seoul 02792, Korea.,Center for Cognition and Sociality, Institute for Basic Science (IBS), Daejeon 34126, Korea.,Department of Biological Sciences, Korea Advanced Institutes of Science and Technology (KAIST), Daejeon 34141, Korea
| | - Min Gu Park
- Center for Glia-Neuron Interaction, Korea Institute of Science and Technology (KIST), Seoul 02792, Korea.,Center for Cognition and Sociality, Institute for Basic Science (IBS), Daejeon 34126, Korea.,KU-KIST, Graduate School of Converging Science and Technology, Korea University, Seoul 02841, Korea
| | - Heeyoung An
- Center for Glia-Neuron Interaction, Korea Institute of Science and Technology (KIST), Seoul 02792, Korea.,Center for Cognition and Sociality, Institute for Basic Science (IBS), Daejeon 34126, Korea.,KU-KIST, Graduate School of Converging Science and Technology, Korea University, Seoul 02841, Korea
| | - C Justin Lee
- Center for Glia-Neuron Interaction, Korea Institute of Science and Technology (KIST), Seoul 02792, Korea.,Department of Neuroscience, Division of Bio-medical Science & Technology, KIST School, Korea University of Science and Technology, Seoul 02792, Korea.,Center for Cognition and Sociality, Institute for Basic Science (IBS), Daejeon 34126, Korea
| |
Collapse
|
9
|
Swayne A, Tjoa L, Broadley S, Dionisio S, Gillis D, Jacobson L, Woodhall MR, McNabb A, Schweitzer D, Tsang B, Vincent A, Irani SR, Wong R, Waters P, Blum S. Antiglycine receptor antibody related disease: a case series and literature review. Eur J Neurol 2018; 25:1290-1298. [PMID: 29904974 PMCID: PMC6282944 DOI: 10.1111/ene.13721] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Accepted: 05/23/2018] [Indexed: 11/28/2022]
Abstract
BACKGROUND AND PURPOSE Antibodies to glycine receptors (GlyR-Abs) were first defined in progressive encephalopathy with rigidity and myoclonus (PERM) but were subsequently identified in other clinical presentations. Our aim was to assess the clinical associations of all patients identified with GlyR-Abs in Queensland, Australia, between April 2014 and May 2017 and to compare these to cases reported in the literature. METHODS A literature review identified the clinical features of all published GlyR-Ab-positive cases through online databases. A case series was undertaken via collection of clinical information from all patients diagnosed or known to immunology, pathology or neurological services in Queensland during the study period of 3 years. RESULTS In all, 187 GlyR-Ab-positive cases were identified in the literature. The majority (47.6%) had PERM, 22.4% had epilepsy, but the remaining 30% included mixed phenotypes consisting of cerebellar ataxia, movement disorders, demyelination and encephalitis/cognitive dysfunction. By contrast, in our series of 14 cases, eight had clinical presentations consistent with seizures and epilepsy and only three cases had classical features of PERM. There was one case each of global fatiguable weakness with sustained clonus, laryngeal dystonia and movement disorder with hemiballismus and tics. The rate of response to immune therapy was similar in all groups. CONCLUSION Antibodies to glycine receptors are linked to a spectrum of neurological disease. The results of the literature review and our case series suggest a greater relationship between GlyR-Abs and epilepsy than previously reported.
Collapse
Affiliation(s)
- A Swayne
- Princess Alexandra Hospital Brisbane Australia, Wooloongabba, QLD, Australia.,School of Medicine, University of Queensland, Herston, QLD, Australia.,Mater Centre for Neuroscience, South Brisbane, QLD, Australia
| | - L Tjoa
- Mater Centre for Neuroscience, South Brisbane, QLD, Australia
| | - S Broadley
- Gold Coast University Hospital, Griffith University Medical School, Griffith University, QLD, Australia
| | - S Dionisio
- Princess Alexandra Hospital Brisbane Australia, Wooloongabba, QLD, Australia.,Mater Centre for Neuroscience, South Brisbane, QLD, Australia
| | - D Gillis
- Pathology Queensland, Brisbane, QLD, Australia.,Sunshine Coast University Hospital, Birtinya, QLD, Australia
| | - L Jacobson
- Oxford Autoimmune Neurology Group, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - M R Woodhall
- Oxford Autoimmune Neurology Group, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - A McNabb
- Cairns Base Hospital, Cairns, QLD, Australia
| | - D Schweitzer
- Mater Centre for Neuroscience, South Brisbane, QLD, Australia
| | - B Tsang
- Sunshine Coast University Hospital, Birtinya, QLD, Australia
| | - A Vincent
- Oxford Autoimmune Neurology Group, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - S R Irani
- Oxford Autoimmune Neurology Group, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - R Wong
- Princess Alexandra Hospital Brisbane Australia, Wooloongabba, QLD, Australia.,Pathology Queensland, Brisbane, QLD, Australia
| | - P Waters
- Oxford Autoimmune Neurology Group, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - S Blum
- Princess Alexandra Hospital Brisbane Australia, Wooloongabba, QLD, Australia.,School of Medicine, University of Queensland, Herston, QLD, Australia.,Mater Centre for Neuroscience, South Brisbane, QLD, Australia
| |
Collapse
|
10
|
Szabolcsi V, Albisetti GW, Celio MR. Parvalbumin-Neurons of the Ventrolateral Hypothalamic Parvafox Nucleus Receive a Glycinergic Input: A Gene-Microarray Study. Front Mol Neurosci 2017; 10:8. [PMID: 28167900 PMCID: PMC5253383 DOI: 10.3389/fnmol.2017.00008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Accepted: 01/06/2017] [Indexed: 12/30/2022] Open
Abstract
The ventrolateral hypothalamic parvafox (formerly called PV1-Foxb1) nucleus is an anatomical entity of recent discovery and unknown function. With a view to gaining an insight into its putative functional role(s), we conducted a gene-microarray analysis and, armed with the forthcoming data, controlled the results with the Allen databases and the murine BrainStars (B*) database. The parvafox nucleus was specifically sampled by laser-capture microdissection and the transcriptome was subjected to a microarray analysis on Affymetrix chips. Eighty-two relevant genes were found to be potentially more expressed in this brain region than in either the cerebral cortex or the hippocampus. When the expression patterns of these genes were counterchecked in the Allen-Database of in-situ hybridizations and in the B*-microarray database, their localization in the parvafox region was confirmed for thirteen. For nine novel genes, which are particularly interesting because of their possible involvement in neuromodulation, the expression was verified by quantitative real time-PCR. Of particular functional importance may be the occurrence of glycine receptors, the presence of which indicates that the activity of the parvafox nucleus is under ascending inhibitory control.
Collapse
Affiliation(s)
- Viktoria Szabolcsi
- Anatomy and Program in Neuroscience, Department of Medicine, University of Fribourg Fribourg, Switzerland
| | - Gioele W Albisetti
- Anatomy and Program in Neuroscience, Department of Medicine, University of Fribourg Fribourg, Switzerland
| | - Marco R Celio
- Anatomy and Program in Neuroscience, Department of Medicine, University of Fribourg Fribourg, Switzerland
| |
Collapse
|
11
|
Functional modulation of strychnine-sensitive glycine receptors in rat hippocampal pyramidal neurons by amyloid-β protein (1-42). Brain Res 2016; 1651:61-72. [DOI: 10.1016/j.brainres.2016.09.016] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Revised: 09/07/2016] [Accepted: 09/09/2016] [Indexed: 11/17/2022]
|
12
|
Cabrera-Pastor A, Taoro-Gonzalez L, Felipo V. Hyperammonemia alters glycinergic neurotransmission and modulation of the glutamate-nitric oxide-cGMP pathway by extracellular glycine in cerebellum in vivo. J Neurochem 2016; 137:539-48. [PMID: 26875688 DOI: 10.1111/jnc.13579] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Revised: 02/01/2016] [Accepted: 02/03/2016] [Indexed: 01/14/2023]
Abstract
The glutamate-nitric oxide (NO)-cGMP pathway modulates some forms of learning. How glycine modulates this pathway is unclear. Glycine could modulate the pathway biphasically, enhancing its function through NMDA receptor activation or reducing it through glycine receptor activation. Chronic hyperammonemia impairs the glutamate-NO-cGMP pathway in the cerebellum and induces cognitive impairment. The possible alterations in hyperammonemia of glycinergic neurotransmission and of glutamate-NO-cGMP pathway modulation by glycine remain unknown. The aims were to assess, by in vivo microdialysis in cerebellum: (i) the effects of different glycine concentrations, administered through the microdialysis probe, on the glutamate-NO-cGMP pathway function; (ii) the effects of tonic glycine receptors activation on the pathway function, by blocking them with strychnine; (iii) whether hyperammonemia alters the pathway modulation by glycine; (iv) and whether hyperammonemia alters extracellular glycine concentration and/or glycine receptor membrane expression. In control rats, low glycine levels reduce the pathway function, likely by activating glycine receptors, while 20 μM glycine enhances the pathway function, likely by enhancing NMDA receptor activation. In hyperammonemic rats, glycine did not reduce the pathway function, but enhanced it when administered at 1-20 μM. Hyperammonemia reduces extracellular glycine concentration by approximately 50% and glycine receptor membrane expression. However, tonic glycine receptor activation seems to be enhanced in hyperammonemic rats, as indicated by the larger increase in extracellular cGMP induced by strychnine. These data show that glycine modulates the glutamate-NO-cGMP pathway biphasically and that hyperammonemia strongly alters glycinergic neurotransmission and modulation by glycine of the glutamate-NO-cGMP pathway. These alterations may contribute to the cerebellar aspects of cognitive alterations in hyperammonemia. The findings reported in this study show that hyperammonemia alters glycinergic neurotransmission and the glutamate-NO-cGMP pathway modulation by glycine. In control rats, low glycine levels reduced the pathway function, likely by activating glycine receptors, while 20 μM glycine enhanced the pathway, likely by enhancing NMDA receptor activation. In hyperammonemic rats, glycine (administered at 1-20 μM) enhances the pathway, likely by activating NMDA receptors.
Collapse
Affiliation(s)
- Andrea Cabrera-Pastor
- Laboratorio de Neurobiología, Centro Investigación Príncipe Felipe de Valencia, Valencia, Spain
| | - Lucas Taoro-Gonzalez
- Laboratorio de Neurobiología, Centro Investigación Príncipe Felipe de Valencia, Valencia, Spain
| | - Vicente Felipo
- Laboratorio de Neurobiología, Centro Investigación Príncipe Felipe de Valencia, Valencia, Spain
| |
Collapse
|
13
|
Chen Z, Hu B, Wang F, Du L, Huang B, Li L, Qi J, Wang X. Glycine bidirectionally regulates ischemic tolerance via different mechanisms including NR2A-dependent CREB phosphorylation. J Neurochem 2015; 133:397-408. [PMID: 25418841 DOI: 10.1111/jnc.12994] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2014] [Revised: 11/07/2014] [Accepted: 11/12/2014] [Indexed: 10/24/2022]
Affiliation(s)
- Zheng Chen
- Division of Vascular Surgery, East Hospital; Tongji University School of Medicine; Shanghai China
- Department of Neurosurgery; First Affiliated Hospital of Nanjing Medical University; Nanjing China
- Laboratory of Brain Diseases; College of Basic Medicine; Nanjing University of Chinese Medicine; Nanjing China
| | - Bin Hu
- Jiangsu Key Laboratory of Brain Disease Bioinformation; Research Center for Biochemistry and Molecular Biology; Xuzhou Medical College; Xuzhou Jiangsu China
| | - Fuzhou Wang
- Department of Anesthesiology; Affiliated Nanjing Maternity and Child Health Care Hospital; Nanjing Medical University; Nanjing China
| | - Linlin Du
- Laboratory of Brain Diseases; College of Basic Medicine; Nanjing University of Chinese Medicine; Nanjing China
| | - Baosheng Huang
- Department of Neurosurgery; First Affiliated Hospital of Nanjing Medical University; Nanjing China
| | - Lixin Li
- Department of Neurosurgery; First Affiliated Hospital of Nanjing Medical University; Nanjing China
| | - Jia Qi
- Department of Pharmacy; Xinhua Hospital Affiliated to Shanghai Jiaotong University; Shanghai China
| | - Xiang Wang
- Division of Vascular Surgery, East Hospital; Tongji University School of Medicine; Shanghai China
| |
Collapse
|
14
|
Zhang XY, Ji F, Wang N, Chen LL, Tian T, Lu W. Glycine induces bidirectional modifications in N-methyl-D-aspartate receptor-mediated synaptic responses in hippocampal CA1 neurons. J Biol Chem 2014; 289:31200-11. [PMID: 25231980 DOI: 10.1074/jbc.m114.570630] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Glycine can persistently potentiate or depress AMPA responses through differential actions on two binding sites: NMDA and glycine receptors. Whether glycine can induce long-lasting modifications in NMDA responses, however, remains unknown. Here, we report that glycine induces long-term potentiation (LTP) or long-term depression (LTD) of NMDA responses (Gly-LTP(NMDA) or Gly-LTD(NMDA)) in a dose-dependent manner in hippocampal CA1 neurons. These modifications of NMDA responses depend on NMDAR activation. In addition, the induction of Gly-LTP(NMDA) requires binding of glycine with NMDARs, whereas Gly-LTD(NMDA) requires that glycine bind with both sites on NMDARs and GlyRs. Moreover, activity-dependent exocytosis and endocytosis of postsynaptic NMDARs underlie glycine-induced bidirectional modification of NMDA excitatory postsynaptic currents. Thus, we conclude that glycine at different levels induces bidirectional plasticity of NMDA responses through differentially regulating NMDA receptor trafficking. Our present findings reveal important functions of the two glycine binding sites in gating the direction of synaptic plasticity in NMDA responses.
Collapse
Affiliation(s)
- Xiao-Yan Zhang
- From the Department of Neurobiology, Nanjing Medical University, Nanjing, Jiangsu Province 210029
| | - Fang Ji
- From the Department of Neurobiology, Nanjing Medical University, Nanjing, Jiangsu Province 210029
| | - Ning Wang
- From the Department of Neurobiology, Nanjing Medical University, Nanjing, Jiangsu Province 210029, The Key Laboratory of Developmental Genes and Human Disease, Ministry of Education, Institute of Life Sciences, Southeast University, Nanjing, Jiangsu Province 210096, China, and
| | - Lin-Lin Chen
- From the Department of Neurobiology, Nanjing Medical University, Nanjing, Jiangsu Province 210029
| | - Tian Tian
- From the Department of Neurobiology, Nanjing Medical University, Nanjing, Jiangsu Province 210029
| | - Wei Lu
- From the Department of Neurobiology, Nanjing Medical University, Nanjing, Jiangsu Province 210029, The Key Laboratory of Developmental Genes and Human Disease, Ministry of Education, Institute of Life Sciences, Southeast University, Nanjing, Jiangsu Province 210096, China, and Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu Province 226001, China
| |
Collapse
|
15
|
Amyloid β peptide (25–35) in picomolar concentrations modulates the function of glycine receptors in rat hippocampal pyramidal neurons through interaction with extracellular site(s). Brain Res 2014; 1558:1-10. [DOI: 10.1016/j.brainres.2014.02.031] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2013] [Revised: 02/14/2014] [Accepted: 02/17/2014] [Indexed: 01/08/2023]
|
16
|
Maguire EP, Mitchell EA, Greig SJ, Corteen N, Balfour DJK, Swinny JD, Lambert JJ, Belelli D. Extrasynaptic glycine receptors of rodent dorsal raphe serotonergic neurons: a sensitive target for ethanol. Neuropsychopharmacology 2014; 39:1232-44. [PMID: 24264816 PMCID: PMC3957119 DOI: 10.1038/npp.2013.326] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2013] [Revised: 10/17/2013] [Accepted: 11/12/2013] [Indexed: 11/08/2022]
Abstract
Alcohol abuse is a significant medical and social problem. Several neurotransmitter systems are implicated in ethanol's actions, with certain receptors and ion channels emerging as putative targets. The dorsal raphe (DR) nucleus is associated with the behavioral actions of alcohol, but ethanol actions on these neurons are not well understood. Here, using immunohistochemistry and electrophysiology we characterize DR inhibitory transmission and its sensitivity to ethanol. DR neurons exhibit inhibitory 'phasic' post-synaptic currents mediated primarily by synaptic GABAA receptors (GABAAR) and, to a lesser extent, by synaptic glycine receptors (GlyR). In addition to such phasic transmission mediated by the vesicular release of neurotransmitter, the activity of certain neurons may be governed by a 'tonic' conductance resulting from ambient GABA activating extrasynaptic GABAARs. However, for DR neurons extrasynaptic GABAARs exert only a limited influence. By contrast, we report that unusually the GlyR antagonist strychnine reveals a large tonic conductance mediated by extrasynaptic GlyRs, which dominates DR inhibition. In agreement, for DR neurons strychnine increases their input resistance, induces membrane depolarization, and consequently augments their excitability. Importantly, this glycinergic conductance is greatly enhanced in a strychnine-sensitive fashion, by behaviorally relevant ethanol concentrations, by drugs used for the treatment of alcohol withdrawal, and by taurine, an ingredient of certain 'energy drinks' often imbibed with ethanol. These findings identify extrasynaptic GlyRs as critical regulators of DR excitability and a novel molecular target for ethanol.
Collapse
Affiliation(s)
- Edward P Maguire
- Division of Neuroscience, Medical Research Institute, Ninewells Hospital and Medical School, Dundee University, Dundee, UK
| | - Elizabeth A Mitchell
- Division of Neuroscience, Medical Research Institute, Ninewells Hospital and Medical School, Dundee University, Dundee, UK
| | - Scott J Greig
- Division of Neuroscience, Medical Research Institute, Ninewells Hospital and Medical School, Dundee University, Dundee, UK
| | - Nicole Corteen
- Institute for Biomedical and Biomolecular Sciences, School of Pharmacy and Biomedical Sciences, University of Portsmouth, Portsmouth, UK
| | - David J K Balfour
- Division of Neuroscience, Medical Research Institute, Ninewells Hospital and Medical School, Dundee University, Dundee, UK
| | - Jerome D Swinny
- Institute for Biomedical and Biomolecular Sciences, School of Pharmacy and Biomedical Sciences, University of Portsmouth, Portsmouth, UK
| | - Jeremy J Lambert
- Division of Neuroscience, Medical Research Institute, Ninewells Hospital and Medical School, Dundee University, Dundee, UK
| | - Delia Belelli
- Division of Neuroscience, Medical Research Institute, Ninewells Hospital and Medical School, Dundee University, Dundee, UK
| |
Collapse
|
17
|
Yu T, Chahrour M, Coulter M, Jiralerspong S, Okamura-Ikeda K, Ataman B, Schmitz-Abe K, Harmin D, Adli M, Malik A, D’Gama A, Lim E, Sanders S, Mochida G, Partlow J, Sunu C, Felie J, Rodriguez J, Nasir R, Ware J, Joseph R, Hill R, Kwan B, Al-Saffar M, Mukaddes N, Hashmi A, Balkhy S, Gascon G, Hisama F, LeClair E, Poduri A, Oner O, Al-Saad S, Al-Awadi S, Bastaki L, Ben-Omran T, Teebi A, Al-Gazali L, Eapen V, Stevens C, Rappaport L, Gabriel S, Markianos K, State M, Greenberg M, Taniguchi H, Braverman N, Morrow E, Walsh C. Using whole-exome sequencing to identify inherited causes of autism. Neuron 2013; 77:259-73. [PMID: 23352163 PMCID: PMC3694430 DOI: 10.1016/j.neuron.2012.11.002] [Citation(s) in RCA: 328] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/02/2012] [Indexed: 01/01/2023]
Abstract
Despite significant heritability of autism spectrum disorders (ASDs), their extreme genetic heterogeneity has proven challenging for gene discovery. Studies of primarily simplex families have implicated de novo copy number changes and point mutations, but are not optimally designed to identify inherited risk alleles. We apply whole-exome sequencing (WES) to ASD families enriched for inherited causes due to consanguinity and find familial ASD associated with biallelic mutations in disease genes (AMT, PEX7, SYNE1, VPS13B, PAH, and POMGNT1). At least some of these genes show biallelic mutations in nonconsanguineous families as well. These mutations are often only partially disabling or present atypically, with patients lacking diagnostic features of the Mendelian disorders with which these genes are classically associated. Our study shows the utility of WES for identifying specific genetic conditions not clinically suspected and the importance of partial loss of gene function in ASDs.
Collapse
Affiliation(s)
- T.W. Yu
- Division of Genetics, Department of Medicine, Boston Children’s Hospital, Boston, Massachusetts, USA, 02115
- Manton Center for Orphan Disease Research, Boston Children’s Hospital, Boston, Massachusetts, USA, 02115
- Howard Hughes Medical Institute, Boston Children’s Hospital, Boston, Massachusetts, USA, 02115
- The Autism Consortium, Boston, Massachusetts, USA, 02115
- Harvard Medical School, Boston, Massachusetts, USA, 02115
- Department of Neurology, Massachusetts General Hospital, Boston, Massachusetts, USA, 02114
| | - M.H. Chahrour
- Division of Genetics, Department of Medicine, Boston Children’s Hospital, Boston, Massachusetts, USA, 02115
- Manton Center for Orphan Disease Research, Boston Children’s Hospital, Boston, Massachusetts, USA, 02115
- Howard Hughes Medical Institute, Boston Children’s Hospital, Boston, Massachusetts, USA, 02115
- The Autism Consortium, Boston, Massachusetts, USA, 02115
- Harvard Medical School, Boston, Massachusetts, USA, 02115
| | - M.E. Coulter
- Division of Genetics, Department of Medicine, Boston Children’s Hospital, Boston, Massachusetts, USA, 02115
- Manton Center for Orphan Disease Research, Boston Children’s Hospital, Boston, Massachusetts, USA, 02115
- Howard Hughes Medical Institute, Boston Children’s Hospital, Boston, Massachusetts, USA, 02115
- Harvard Medical School, Boston, Massachusetts, USA, 02115
| | - S. Jiralerspong
- Department of Human Genetics and Pediatrics, McGill University, Montreal Children’s Hospital Research Institute, Montreal, Quebec, Canada, H3H1P3
| | - K. Okamura-Ikeda
- Institute for Enzyme Research, The University of Tokushima, Tokushima, Japan
| | - B. Ataman
- Department of Neurobiology, Harvard Medical School, Boston, Massachusetts, USA, 02115
| | - K. Schmitz-Abe
- Division of Genetics, Department of Medicine, Boston Children’s Hospital, Boston, Massachusetts, USA, 02115
- Manton Center for Orphan Disease Research, Boston Children’s Hospital, Boston, Massachusetts, USA, 02115
- Harvard Medical School, Boston, Massachusetts, USA, 02115
| | - D.A. Harmin
- Department of Neurobiology, Harvard Medical School, Boston, Massachusetts, USA, 02115
| | - M. Adli
- Department of Biochemistry and Molecular Genetics, School of Medicine, University of Virginia, Charlottesville, Virginia, USA, 22908
| | - A.N. Malik
- Department of Neurobiology, Harvard Medical School, Boston, Massachusetts, USA, 02115
| | - A.M. D’Gama
- Harvard Medical School, Boston, Massachusetts, USA, 02115
| | - E.T. Lim
- Analytic and Translational Genetics Unit, Center for Human Genetic Research, Massachusetts General Hospital, Boston, Massachusetts, USA, 02114
| | - S.J. Sanders
- Department of Genetics, Center for Human Genetics and Genomics and Program on Neurogenetics, Yale University School of Medicine, New Haven, Connecticut, USA, 06510
| | - G.H. Mochida
- Division of Genetics, Department of Medicine, Boston Children’s Hospital, Boston, Massachusetts, USA, 02115
- Manton Center for Orphan Disease Research, Boston Children’s Hospital, Boston, Massachusetts, USA, 02115
- Howard Hughes Medical Institute, Boston Children’s Hospital, Boston, Massachusetts, USA, 02115
- Harvard Medical School, Boston, Massachusetts, USA, 02115
- Department of Neurology, Massachusetts General Hospital, Boston, Massachusetts, USA, 02114
| | - J.N. Partlow
- Division of Genetics, Department of Medicine, Boston Children’s Hospital, Boston, Massachusetts, USA, 02115
- Manton Center for Orphan Disease Research, Boston Children’s Hospital, Boston, Massachusetts, USA, 02115
- Howard Hughes Medical Institute, Boston Children’s Hospital, Boston, Massachusetts, USA, 02115
| | - C.M. Sunu
- Division of Genetics, Department of Medicine, Boston Children’s Hospital, Boston, Massachusetts, USA, 02115
- Manton Center for Orphan Disease Research, Boston Children’s Hospital, Boston, Massachusetts, USA, 02115
- Howard Hughes Medical Institute, Boston Children’s Hospital, Boston, Massachusetts, USA, 02115
| | - J.M. Felie
- Division of Genetics, Department of Medicine, Boston Children’s Hospital, Boston, Massachusetts, USA, 02115
- Manton Center for Orphan Disease Research, Boston Children’s Hospital, Boston, Massachusetts, USA, 02115
- Howard Hughes Medical Institute, Boston Children’s Hospital, Boston, Massachusetts, USA, 02115
| | - J. Rodriguez
- Division of Genetics, Department of Medicine, Boston Children’s Hospital, Boston, Massachusetts, USA, 02115
- Manton Center for Orphan Disease Research, Boston Children’s Hospital, Boston, Massachusetts, USA, 02115
- Howard Hughes Medical Institute, Boston Children’s Hospital, Boston, Massachusetts, USA, 02115
| | - R.H. Nasir
- Harvard Medical School, Boston, Massachusetts, USA, 02115
- Division of Developmental Medicine, Boston Children’s Hospital, Boston, Massachusetts, USA, 02115
| | - J. Ware
- Harvard Medical School, Boston, Massachusetts, USA, 02115
- Division of Developmental Medicine, Boston Children’s Hospital, Boston, Massachusetts, USA, 02115
| | - R.M. Joseph
- The Autism Consortium, Boston, Massachusetts, USA, 02115
- Department of Anatomy and Neurobiology, Boston University School of Medicine, Boston, Massachusetts, USA, 02118
| | - R.S. Hill
- Division of Genetics, Department of Medicine, Boston Children’s Hospital, Boston, Massachusetts, USA, 02115
- Manton Center for Orphan Disease Research, Boston Children’s Hospital, Boston, Massachusetts, USA, 02115
- Howard Hughes Medical Institute, Boston Children’s Hospital, Boston, Massachusetts, USA, 02115
- Harvard Medical School, Boston, Massachusetts, USA, 02115
| | - B.Y. Kwan
- Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada, N6A 5C1
| | - M. Al-Saffar
- Division of Genetics, Department of Medicine, Boston Children’s Hospital, Boston, Massachusetts, USA, 02115
- Manton Center for Orphan Disease Research, Boston Children’s Hospital, Boston, Massachusetts, USA, 02115
- Department of Paediatrics, Faculty of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - N.M. Mukaddes
- Istanbul Faculty of Medicine, Department of Child Psychiatry, Istanbul University, Istanbul, Turkey
| | - A. Hashmi
- Armed Forces Hospital, King Abdulaziz Naval Base, Jubail, Kingdom of Saudi Arabia
| | - S. Balkhy
- Department of Neurosciences and Pediatrics, King Faisal Specialist Hospital and Research Center, Jeddah, Kingdom of Saudi Arabia
| | - G.G. Gascon
- Department of Neurology, Massachusetts General Hospital, Boston, Massachusetts, USA, 02114
- Istanbul Faculty of Medicine, Department of Child Psychiatry, Istanbul University, Istanbul, Turkey
- Clinical Neurosciences and Pediatrics, Brown University School of Medicine, Providence, Rhode Island, 02912
| | - F.M. Hisama
- Division of Medical Genetics, Department of Medicine, University of Washington, Seattle, Washington, USA, 98195
| | - E. LeClair
- Harvard Medical School, Boston, Massachusetts, USA, 02115
- Division of Developmental Medicine, Boston Children’s Hospital, Boston, Massachusetts, USA, 02115
| | - A. Poduri
- Harvard Medical School, Boston, Massachusetts, USA, 02115
- Department of Neurology, Boston Children’s Hospital, Boston, Massachusetts, USA,02115
| | - O. Oner
- Department of Child and Adolescent Psychiatry, Dr Sami Ulus Childrens’ Hospital, Telsizler, Ankara, Turkey
| | - S. Al-Saad
- Kuwait Center for Autism, Kuwait City, Kuwait
| | | | - L. Bastaki
- Kuwait Medical Genetics Center, Kuwait City, Kuwait
| | - T. Ben-Omran
- Section of Clinical and Metabolic Genetics, Department of Pediatrics, Hamad Medical Corporation, Doha, Qatar
- Departments of Pediatrics and Genetic Medicine, Weil-Cornell Medical College, New York and Doha, Qatar
| | - A. Teebi
- Section of Clinical and Metabolic Genetics, Department of Pediatrics, Hamad Medical Corporation, Doha, Qatar
- Departments of Pediatrics and Genetic Medicine, Weil-Cornell Medical College, New York and Doha, Qatar
| | - L. Al-Gazali
- Department of Paediatrics, Faculty of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - V. Eapen
- Academic Unit of Child Psychiatry South West Sydney (AUCS), University of New South Wales, Sydney, New South Wales, Australia
| | - C.R. Stevens
- Program in Medical and Population Genetics, Broad Institute of Massachusetts Institute of Technology and Harvard University, Cambridge, Massachusetts, USA, 02142
| | - L. Rappaport
- The Autism Consortium, Boston, Massachusetts, USA, 02115
- Harvard Medical School, Boston, Massachusetts, USA, 02115
- Division of Developmental Medicine, Boston Children’s Hospital, Boston, Massachusetts, USA, 02115
| | - S.B. Gabriel
- Program in Medical and Population Genetics, Broad Institute of Massachusetts Institute of Technology and Harvard University, Cambridge, Massachusetts, USA, 02142
| | - K. Markianos
- Division of Genetics, Department of Medicine, Boston Children’s Hospital, Boston, Massachusetts, USA, 02115
- Manton Center for Orphan Disease Research, Boston Children’s Hospital, Boston, Massachusetts, USA, 02115
- Harvard Medical School, Boston, Massachusetts, USA, 02115
| | - M.W. State
- Department of Genetics, Center for Human Genetics and Genomics and Program on Neurogenetics, Yale University School of Medicine, New Haven, Connecticut, USA, 06510
| | - M.E. Greenberg
- Department of Neurobiology, Harvard Medical School, Boston, Massachusetts, USA, 02115
| | - H. Taniguchi
- Institute for Enzyme Research, The University of Tokushima, Tokushima, Japan
| | - N.E. Braverman
- Department of Human Genetics and Pediatrics, McGill University, Montreal Children’s Hospital Research Institute, Montreal, Quebec, Canada, H3H1P3
| | - E.M. Morrow
- The Autism Consortium, Boston, Massachusetts, USA, 02115
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, Rhode Island, 02912
- Department of Psychiatry and Human Behavior, Brown University, Providence, Rhode Island, 02912
| | - C.A. Walsh
- Division of Genetics, Department of Medicine, Boston Children’s Hospital, Boston, Massachusetts, USA, 02115
- Manton Center for Orphan Disease Research, Boston Children’s Hospital, Boston, Massachusetts, USA, 02115
- Howard Hughes Medical Institute, Boston Children’s Hospital, Boston, Massachusetts, USA, 02115
- The Autism Consortium, Boston, Massachusetts, USA, 02115
- Harvard Medical School, Boston, Massachusetts, USA, 02115
| |
Collapse
|
18
|
Yao W, Ji F, Chen Z, Zhang N, Ren SQ, Zhang XY, Liu SY, Lu W. Glycine Exerts Dual Roles in Ischemic Injury Through Distinct Mechanisms. Stroke 2012; 43:2212-20. [DOI: 10.1161/strokeaha.111.645994] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Wen Yao
- From the Department of Neurobiology, Nanjing Medical University, Nanjing (W.Y., F.J., Z.C., S.R., X.Z., S.L., W.L.); State Key Laboratory of Reproductive Medicine (W.L.); Key Laboratory for Neurodegenerative Disease of Jiangsu Province, Nanjing Medical University, Nanjing (W.Y., F.J., Z.C., N.Z., S.R., X.Z., S.L., W.L.); and Key Laboratory for Human Functional Genomics of Jiangsu Province (W.L.), China
| | - Fang Ji
- From the Department of Neurobiology, Nanjing Medical University, Nanjing (W.Y., F.J., Z.C., S.R., X.Z., S.L., W.L.); State Key Laboratory of Reproductive Medicine (W.L.); Key Laboratory for Neurodegenerative Disease of Jiangsu Province, Nanjing Medical University, Nanjing (W.Y., F.J., Z.C., N.Z., S.R., X.Z., S.L., W.L.); and Key Laboratory for Human Functional Genomics of Jiangsu Province (W.L.), China
| | - Zheng Chen
- From the Department of Neurobiology, Nanjing Medical University, Nanjing (W.Y., F.J., Z.C., S.R., X.Z., S.L., W.L.); State Key Laboratory of Reproductive Medicine (W.L.); Key Laboratory for Neurodegenerative Disease of Jiangsu Province, Nanjing Medical University, Nanjing (W.Y., F.J., Z.C., N.Z., S.R., X.Z., S.L., W.L.); and Key Laboratory for Human Functional Genomics of Jiangsu Province (W.L.), China
| | - Nan Zhang
- From the Department of Neurobiology, Nanjing Medical University, Nanjing (W.Y., F.J., Z.C., S.R., X.Z., S.L., W.L.); State Key Laboratory of Reproductive Medicine (W.L.); Key Laboratory for Neurodegenerative Disease of Jiangsu Province, Nanjing Medical University, Nanjing (W.Y., F.J., Z.C., N.Z., S.R., X.Z., S.L., W.L.); and Key Laboratory for Human Functional Genomics of Jiangsu Province (W.L.), China
| | - Si-Qiang Ren
- From the Department of Neurobiology, Nanjing Medical University, Nanjing (W.Y., F.J., Z.C., S.R., X.Z., S.L., W.L.); State Key Laboratory of Reproductive Medicine (W.L.); Key Laboratory for Neurodegenerative Disease of Jiangsu Province, Nanjing Medical University, Nanjing (W.Y., F.J., Z.C., N.Z., S.R., X.Z., S.L., W.L.); and Key Laboratory for Human Functional Genomics of Jiangsu Province (W.L.), China
| | - Xiao-Yan Zhang
- From the Department of Neurobiology, Nanjing Medical University, Nanjing (W.Y., F.J., Z.C., S.R., X.Z., S.L., W.L.); State Key Laboratory of Reproductive Medicine (W.L.); Key Laboratory for Neurodegenerative Disease of Jiangsu Province, Nanjing Medical University, Nanjing (W.Y., F.J., Z.C., N.Z., S.R., X.Z., S.L., W.L.); and Key Laboratory for Human Functional Genomics of Jiangsu Province (W.L.), China
| | - Su-Yi Liu
- From the Department of Neurobiology, Nanjing Medical University, Nanjing (W.Y., F.J., Z.C., S.R., X.Z., S.L., W.L.); State Key Laboratory of Reproductive Medicine (W.L.); Key Laboratory for Neurodegenerative Disease of Jiangsu Province, Nanjing Medical University, Nanjing (W.Y., F.J., Z.C., N.Z., S.R., X.Z., S.L., W.L.); and Key Laboratory for Human Functional Genomics of Jiangsu Province (W.L.), China
| | - Wei Lu
- From the Department of Neurobiology, Nanjing Medical University, Nanjing (W.Y., F.J., Z.C., S.R., X.Z., S.L., W.L.); State Key Laboratory of Reproductive Medicine (W.L.); Key Laboratory for Neurodegenerative Disease of Jiangsu Province, Nanjing Medical University, Nanjing (W.Y., F.J., Z.C., N.Z., S.R., X.Z., S.L., W.L.); and Key Laboratory for Human Functional Genomics of Jiangsu Province (W.L.), China
| |
Collapse
|
19
|
Da Silva FHL, Gorter JA, Wadman WJ. Epilepsy as a dynamic disease of neuronal networks. HANDBOOK OF CLINICAL NEUROLOGY 2012; 107:35-62. [DOI: 10.1016/b978-0-444-52898-8.00003-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
20
|
Different presynaptic nicotinic receptor subtypes modulate in vivo and in vitro the release of glycine in the rat hippocampus. Neurochem Int 2011; 59:729-38. [DOI: 10.1016/j.neuint.2011.06.022] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2011] [Accepted: 06/27/2011] [Indexed: 01/04/2023]
|
21
|
Chen RQ, Wang SH, Yao W, Wang JJ, Ji F, Yan JZ, Ren SQ, Chen Z, Liu SY, Lu W. Role of glycine receptors in glycine-induced LTD in hippocampal CA1 pyramidal neurons. Neuropsychopharmacology 2011; 36:1948-58. [PMID: 21593734 PMCID: PMC3154115 DOI: 10.1038/npp.2011.86] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Glycine in the hippocampus can exert its effect on both synaptic NMDA receptors (NMDARs) and extrasynaptic functional glycine receptors (GlyRs) via distinct binding sites. Previous studies have reported that glycine induces long-term potentiation (LTP) through the activation of synaptic NMDARs. However, little is known about the potential role of the activated GlyRs that are largely located in extrasynaptic regions. We report here that relatively high levels of glycine achieved either by exogenous glycine application or by the elevation of endogenous glycine accumulation with an antagonist of the glycine transporter induced long-term depression (LTD) of excitatory postsynaptic currents (EPSCs) in hippocampal CA1 pyramidal neurons. The co-application of glycine with the selective GlyR antagonist strychnine changed glycine-induced LTD (Gly-LTD) to LTP. Blocking the postsynaptic GlyR-gated net chloride flux by manipulating intracellular chloride concentrations failed to elicit any changes in EPSCs. These results suggest that GlyRs are involved in Gly-LTD. Furthermore, this new form of chemical LTD was accompanied by the internalization of postsynaptic AMPA receptors and required the activation of NMDARs. Therefore, our present findings reveal an important function of GlyR activation and modulation in gating the direction of synaptic plasticity.
Collapse
Affiliation(s)
- Rong-Qing Chen
- Department of Neurobiology, Nanjing Medical University, Nanjing, Jiangsu, People's Republic of China,Key Laboratory for Neurodegenerative Disease of Jiangsu Province, Nanjing Medical University, Nanjing, Jiangsu, People's Republic of China
| | - Shan-Hui Wang
- Department of Neurobiology, Nanjing Medical University, Nanjing, Jiangsu, People's Republic of China,Key Laboratory for Neurodegenerative Disease of Jiangsu Province, Nanjing Medical University, Nanjing, Jiangsu, People's Republic of China
| | - Wen Yao
- Department of Neurobiology, Nanjing Medical University, Nanjing, Jiangsu, People's Republic of China,Key Laboratory for Neurodegenerative Disease of Jiangsu Province, Nanjing Medical University, Nanjing, Jiangsu, People's Republic of China
| | - Jing-Jing Wang
- Department of Neurobiology, Nanjing Medical University, Nanjing, Jiangsu, People's Republic of China,Key Laboratory for Neurodegenerative Disease of Jiangsu Province, Nanjing Medical University, Nanjing, Jiangsu, People's Republic of China
| | - Fang Ji
- Department of Neurobiology, Nanjing Medical University, Nanjing, Jiangsu, People's Republic of China,Key Laboratory for Neurodegenerative Disease of Jiangsu Province, Nanjing Medical University, Nanjing, Jiangsu, People's Republic of China
| | - Jing-Zhi Yan
- Department of Neurobiology, Nanjing Medical University, Nanjing, Jiangsu, People's Republic of China,Key Laboratory for Neurodegenerative Disease of Jiangsu Province, Nanjing Medical University, Nanjing, Jiangsu, People's Republic of China
| | - Si-Qiang Ren
- Department of Neurobiology, Nanjing Medical University, Nanjing, Jiangsu, People's Republic of China,Key Laboratory for Neurodegenerative Disease of Jiangsu Province, Nanjing Medical University, Nanjing, Jiangsu, People's Republic of China
| | - Zheng Chen
- Department of Neurobiology, Nanjing Medical University, Nanjing, Jiangsu, People's Republic of China,Key Laboratory for Neurodegenerative Disease of Jiangsu Province, Nanjing Medical University, Nanjing, Jiangsu, People's Republic of China
| | - Su-Yi Liu
- Department of Neurobiology, Nanjing Medical University, Nanjing, Jiangsu, People's Republic of China,Key Laboratory for Neurodegenerative Disease of Jiangsu Province, Nanjing Medical University, Nanjing, Jiangsu, People's Republic of China
| | - Wei Lu
- Department of Neurobiology, Nanjing Medical University, Nanjing, Jiangsu, People's Republic of China,Key Laboratory for Neurodegenerative Disease of Jiangsu Province, Nanjing Medical University, Nanjing, Jiangsu, People's Republic of China,Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, Jiangsu, People's Republic of China,Key Laboratory for Human Functional Genomics of Jiangsu Province, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, Jiangsu, People's Republic of China,Department of Neurobiology, Nanjing Medical University, Nanjing, Jiangsu 210029, People's Republic of China, Tel: +86 25 86862822, Fax: +86 25 86862822, E-mail:
| |
Collapse
|
22
|
Singer P, Boison D, Möhler H, Feldon J, Yee BK. Modulation of sensorimotor gating in prepulse inhibition by conditional brain glycine transporter 1 deletion in mice. Eur Neuropsychopharmacol 2011; 21:401-13. [PMID: 20647165 PMCID: PMC2980791 DOI: 10.1016/j.euroneuro.2010.06.014] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2009] [Revised: 06/21/2010] [Accepted: 06/23/2010] [Indexed: 01/07/2023]
Abstract
Inhibition of glycine transporter 1 (GlyT1) augments N-methyl-D-aspartate receptor (NMDAR)-mediated transmission and represents a potential antipsychotic drug target according to the NMDAR hypofunction hypothesis of schizophrenia. Preclinical evaluation of GlyT1 inhibiting drugs using the prepulse inhibition (PPI) test, however, has yielded mixed outcomes. Here, we tested for the first time the impact of two conditional knockouts of GlyT1 on PPI expression. Complete deletion of GlyT1 in the cerebral cortices confers resistance to PPI disruption induced by the NMDAR blocker MK-801 (0.2mg/kg, i.p.) without affecting PPI expression in unchallenged conditions. In contrast, restricting GlyT1 deletion to neurons in forebrain including the striatum significantly attenuated PPI, and the animals remained sensitive to the PPI-disruptive effect of MK-801 at the same dose. These results demonstrate in mice that depending on the regional and/or cell-type specificity, deletion of the GlyT1 gene could yield divergent effects on PPI.
Collapse
Affiliation(s)
- Philipp Singer
- Laboratory of Behavioural Neurobiology, Federal Institute of Technology Zurich, Schorenstrasse 16, CH-8603 Schwerzenbach, Switzerland
| | | | | | | | | |
Collapse
|
23
|
Neuroligin-4 is localized to glycinergic postsynapses and regulates inhibition in the retina. Proc Natl Acad Sci U S A 2011; 108:3053-8. [PMID: 21282647 DOI: 10.1073/pnas.1006946108] [Citation(s) in RCA: 157] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Neuroligins (NL1-NL4) are postsynaptic adhesion proteins that control the maturation and function of synapses in the central nervous system (CNS). Loss-of-function mutations in NL4 are linked to rare forms of monogenic heritable autism, but its localization and function are unknown. Using the retina as a model system, we show that NL4 is preferentially localized to glycinergic postsynapses and that the loss of NL4 is accompanied by a reduced number of glycine receptors mediating fast glycinergic transmission. Accordingly, NL4-deficient ganglion cells exhibit slower glycinergic miniature postsynaptic currents and subtle alterations in their stimulus-coding efficacy, and inhibition within the NL4-deficient retinal network is altered as assessed by electroretinogram recordings. These data indicate that NL4 shapes network activity and information processing in the retina by modulating glycinergic inhibition. Importantly, NL4 is also targeted to inhibitory synapses in other areas of the CNS, such as the thalamus, colliculi, brainstem, and spinal cord, and forms complexes with the inhibitory postsynapse proteins gephyrin and collybistin in vivo, indicating that NL4 is an important component of glycinergic postsynapses.
Collapse
|
24
|
Krowicki ZK, Kapusta DR. Microinjection of glycine into the hypothalamic paraventricular nucleus produces diuresis, natriuresis, and inhibition of central sympathetic outflow. J Pharmacol Exp Ther 2011; 337:247-55. [PMID: 21233196 DOI: 10.1124/jpet.110.175398] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Strychnine-sensitive glycine receptors and glycine-immunoreactive fibers are expressed in the hypothalamic paraventricular nucleus (PVN), yet the functional significance of this innervation is unclear. Therefore, these studies examined the changes in cardiovascular and renal function and renal sympathetic nerve activity (RSNA) produced by the microinjection of glycine (5 and 50 nmol) into the PVN of conscious Sprague-Dawley rats. Microinjection of glycine into, but not outside of, the PVN dose-dependently increased urine flow rate and urinary sodium excretion and decreased RSNA. At the higher dose, PVN glycine also decreased heart rate; neither 5 nor 50 nmol PVN glycine altered mean arterial pressure. The glycine (50 nmol)-evoked diuresis and natriuresis were abolished in rats continuously infused intravenously with [Arg(8)]-vasopressin. Furthermore, chronic bilateral renal denervation prevented the bradycardia and diuresis to PVN glycine and blunted the natriuresis. In other studies, unilateral PVN pretreatment with the glycine receptor antagonist strychnine (1.6 nmol) prevented the effects of PVN glycine (50 nmol) on heart rate, RSNA, and renal excretory function. When microinjected bilaterally, PVN strychnine (1.6 nmol per site) evoked a significant increase in heart rate and RSNA without altering renal excretory function. These findings demonstrate that in conscious rats glycine acts in the PVN to enhance the renal excretion of water and sodium and decrease central sympathetic outflow to the heart and kidneys. Although endogenous PVN glycine inputs elicit a tonic control of heart rate and RSNA, the renal excretory responses to PVN glycine seem to be caused primarily by the inhibition of arginine vasopressin secretion.
Collapse
Affiliation(s)
- Zbigniew K Krowicki
- Department of Pharmacology, Louisiana State University Health Sciences Center and MediProfile, Inc., New Orleans, LA 70118, USA.
| | | |
Collapse
|
25
|
Lynagh T, Lynch JW. An improved ivermectin-activated chloride channel receptor for inhibiting electrical activity in defined neuronal populations. J Biol Chem 2010; 285:14890-14897. [PMID: 20308070 PMCID: PMC2865309 DOI: 10.1074/jbc.m110.107789] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2010] [Revised: 03/02/2010] [Indexed: 11/06/2022] Open
Abstract
The ability to silence the electrical activity of defined neuronal populations in vivo is dramatically advancing our understanding of brain function. This technology may eventually be useful clinically for treating a variety of neuropathological disorders caused by excessive neuronal activity. Several neuronal silencing methods have been developed, with the bacterial light-activated halorhodopsin and the invertebrate allatostatin-activated G protein-coupled receptor proving the most successful to date. However, both techniques may be difficult to implement clinically due to their requirement for surgically implanted stimulus delivery methods and their use of nonhuman receptors. A third silencing method, an invertebrate glutamate-gated chloride channel receptor (GluClR) activated by ivermectin, solves the stimulus delivery problem as ivermectin is a safe, well tolerated drug that reaches the brain following systemic administration. However, the limitations of this method include poor functional expression, possibly due to the requirement to coexpress two different subunits in individual neurons, and the nonhuman origin of GluClR. Here, we describe the development of a modified human alpha1 glycine receptor as an improved ivermectin-gated silencing receptor. The crucial development was the identification of a mutation, A288G, which increased ivermectin sensitivity almost 100-fold, rendering it similar to that of GluClR. Glycine sensitivity was eliminated via the F207A mutation. Its large unitary conductance, homomeric expression, and human origin may render the F207A/A288G alpha1 glycine receptor an improved silencing receptor for neuroscientific and clinical purposes. As all known highly ivermectin-sensitive GluClRs contain an endogenous glycine residue at the corresponding location, this residue appears essential for exquisite ivermectin sensitivity.
Collapse
Affiliation(s)
- Timothy Lynagh
- Queensland Brain Institute and School of Biomedical Sciences, The University of Queensland, Brisbane QLD 4072, Australia
| | - Joseph W Lynch
- Queensland Brain Institute and School of Biomedical Sciences, The University of Queensland, Brisbane QLD 4072, Australia.
| |
Collapse
|
26
|
Abstract
Glycine transporter 1 (GLYT1) and GLYT2 are the glycine transporters in CNS. While GLYT2 is largely expressed in glycinergic neurons, GLYT1 has long been considered to be exclusively present in glial cells. There is increasing evidence that significant amounts of the 'glial' transporter also exist on neurons, particularly on pre-synaptic nerve endings of glutamatergic neurons. The functions of 'neuronal GLYT1' may be manifold and are discussed in this review. Of major interest are the interactions between neuronal GLYT1 and glutamatergic receptors of the NMDA type the activity of which is modulated not only by astrocytic GLYT1 but also by neuronal GLYT1. Pathophysiological roles and therapeutic implications of neuronal GLYT1 are emerging from recent studies with genetically modified mice, particularly with animals lacking forebrain neuron-specific GLYT1 transporters. These mutant mice exhibit promnesic phenotypes reflecting enhancement of NMDA receptor function, as it occurs following administration of GLYT1 inhibitors. Inactivation of neuronal GLYT1 in the forebrain may represent an effective therapeutic intervention for the treatment of schizophrenia.
Collapse
Affiliation(s)
- Luca Raiteri
- Department of Experimental Medicine, University of Genova, Genova, Italy.
| | | |
Collapse
|
27
|
Baer K, Waldvogel HJ, Faull RLM, Rees MI. Localization of glycine receptors in the human forebrain, brainstem, and cervical spinal cord: an immunohistochemical review. Front Mol Neurosci 2009; 2:25. [PMID: 19915682 PMCID: PMC2776491 DOI: 10.3389/neuro.02.025.2009] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2009] [Accepted: 10/15/2009] [Indexed: 11/26/2022] Open
Abstract
Inhibitory neurotransmitter receptors for glycine (GlyR) are heteropentameric chloride ion channels that are comprised of four functional subunits, alpha1–3 and beta and that facilitate fast-response, inhibitory neurotransmission in the mammalian brain and spinal cord. We have investigated the distribution of GlyRs in the human forebrain, brainstem, and cervical spinal cord using immunohistochemistry at light and confocal laser scanning microscopy levels. This review will summarize the present knowledge on the GlyR distribution in the human brain using our established immunohistochemical techniques. The results of our immunohistochemical labeling studies demonstrated GlyR immunoreactivity (IR) throughout the human basal ganglia, substantia nigra, various pontine regions, rostral medulla oblongata and the cervical spinal cord present an intense and abundant punctate IR along the membranes of the neuronal soma and dendrites. This work is part of a systematic study of inhibitory neurotransmitter receptor distribution in the human CNS, and provides a basis for additional detailed physiological and pharmacological studies on the inter-relationship of GlyR, GABAAR and gephyrin in the human brain. This basic mapping exercise, we believe, will provide important baselines for the testing of future pharmacotherapies and drug regimes that modulate neuroinhibitory systems. These findings provide new information for understanding the complexity of glycinergic functions in the human brain, which will translate into the contribution of inhibitory mechanisms in paroxysmal disorders and neurodegenerative diseases such as Epilepsy, Huntington's and Parkinson's Disease and Motor Neuron Disease.
Collapse
Affiliation(s)
- Kristin Baer
- Molecular Neuroscience, Institute of Life Science, School of Medicine, Swansea University Swansea, UK
| | | | | | | |
Collapse
|