1
|
Eldakhakhny B, Bima A, Alamoudi AA, Alnami A, Abo-Elkhair SM, Sakr H, Almoghrabi Y, Ghoneim FM, Nagib RM, Elsamanoudy A. The role of low-carbohydrate, high-fat diet in modulating autophagy and endoplasmic reticulum stress in aortic endothelial dysfunction of metabolic syndrome animal model. Front Nutr 2024; 11:1467719. [PMID: 39610878 PMCID: PMC11603365 DOI: 10.3389/fnut.2024.1467719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Accepted: 10/30/2024] [Indexed: 11/30/2024] Open
Abstract
Background Endothelial dysfunction (ED) is induced by insulin resistance, mediated by endoplasmic reticulum (ER) stress and disturbed autophagy. This study investigates the protective role of a low-carbohydrate, high-fat (LCHF) diet on ED, ER stress, and autophagy dysregulation in an experimental animal model of metabolic syndrome. Methods Forty male Sprague-Dawley rats were divided into four groups: a Control group (standard diet) and three Dexamethasone (DEX) treated groups. Group II continued the standard diet, Group III received an LCHF diet, and Group IV received a high-carbohydrate, low-fat (HCLF) diet. At the end of the experiment, aortic tissue samples were obtained and used for histological, immunohistochemical (Endothelin and PCNA, biochemical MDA, TCA, NO, 8-OH-dG, and Nrf2/ARE protein) and molecular (Endothelin, eNOS, Nrf-2 α, p62, LC3, BECN-1, PINK1, CHOP, BNIP3, PCNA) analysis. Results Oxidative stress, autophagy markers, and ED markers are increased in the metabolic syndrome group. LCHF diet mitigates the adverse effects of DEX on endothelial dysfunction and oxidative stress, as evidenced by reduced BMI, HOMA-IR, and improved histological and molecular parameters. Conclusion Oxidative stress, autophagy dysregulation, and ER stress play crucial roles in the pathogenesis of insulin resistance-induced endothelial dysfunction. An LCHF diet offers protective benefits against insulin resistance and related comorbidities, including endothelial dysfunction.
Collapse
Affiliation(s)
- Basmah Eldakhakhny
- Department of Clinical Biochemistry, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
- Food, Nutrition, and Lifestyle Research Unit, King Fahd for Medical Research Centre, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Abdulhadi Bima
- Department of Clinical Biochemistry, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Aliaa A. Alamoudi
- Department of Clinical Biochemistry, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
- Regenerative Medicine Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Abrar Alnami
- Department of Clinical Biochemistry, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Salwa Mohamed Abo-Elkhair
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Hussein Sakr
- Department of Physiology, College of Medicine and Health Sciences, Sultan Qaboos University, Muscat, Oman
- Department of Medical Physiology, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Yousef Almoghrabi
- Department of Clinical Biochemistry, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
- Regenerative Medicine Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Fatma Mohamed Ghoneim
- MBBS Program, Department of Physiological Sciences, Fakeeh College for Medical Sciences, Jeddah, Saudi Arabia
- Department of Medical Histology and Cell Biology, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Reham Mohamed Nagib
- Department of Anatomical Pathology, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Ayman Elsamanoudy
- Department of Clinical Biochemistry, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
- Food, Nutrition, and Lifestyle Research Unit, King Fahd for Medical Research Centre, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| |
Collapse
|
2
|
Tao C, Li Y, An N, Liu H, Liu Z, Sun Y, Qian Y, Li N, Xing Y, Gao Y. Pathological mechanisms and future therapeutic directions of thrombin in intracerebral hemorrhage: a systematic review. Front Pharmacol 2024; 15:1293428. [PMID: 38698822 PMCID: PMC11063263 DOI: 10.3389/fphar.2024.1293428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 03/05/2024] [Indexed: 05/05/2024] Open
Abstract
Intracerebral hemorrhage (ICH), a common subtype of hemorrhagic stroke, often causes severe disability or death. ICH induces adverse events that might lead to secondary brain injury (SBI), and there is currently a lack of specific effective treatment strategies. To provide a new direction for SBI treatment post-ICH, the systematic review discussed how thrombin impacts secondary injury after ICH through several potentially deleterious or protective mechanisms. We included 39 studies and evaluated them using SYRCLE's ROB tool. Subsequently, we explored the potential molecular mechanisms of thrombin-mediated effects on SBI post-ICH in terms of inflammation, iron deposition, autophagy, and angiogenesis. Furthermore, we described the effects of thrombin in endothelial cells, astrocytes, pericytes, microglia, and neurons, as well as the harmful and beneficial effects of high and low thrombin concentrations on ICH. Finally, we concluded the current research status of thrombin therapy for ICH, which will provide a basis for the future clinical application of thrombin in the treatment of ICH.
Collapse
Affiliation(s)
- Chenxi Tao
- Key Laboratory of Chinese Internal Medicine of Ministry of Education, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
- Institute for Brain Disorders, Beijing University of Chinese Medicine, Beijing, China
| | - Yuanyuan Li
- Key Laboratory of Chinese Internal Medicine of Ministry of Education, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
- Institute for Brain Disorders, Beijing University of Chinese Medicine, Beijing, China
| | - Na An
- Key Laboratory of Chinese Internal Medicine of Ministry of Education, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Haoqi Liu
- Key Laboratory of Chinese Internal Medicine of Ministry of Education, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Zhenhong Liu
- Key Laboratory of Chinese Internal Medicine of Ministry of Education, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
- Institute for Brain Disorders, Beijing University of Chinese Medicine, Beijing, China
| | - Yikun Sun
- Key Laboratory of Chinese Internal Medicine of Ministry of Education, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Ying Qian
- Key Laboratory of Chinese Internal Medicine of Ministry of Education, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Na Li
- Key Laboratory of Chinese Internal Medicine of Ministry of Education, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Yanwei Xing
- Guang’an Men Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yonghong Gao
- Key Laboratory of Chinese Internal Medicine of Ministry of Education, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
- Institute for Brain Disorders, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
3
|
Sun JL, Cho W, Oh H, Abd El-Aty AM, Hong SA, Jeong JH, Jung TW. Interleukin-38 alleviates hepatic steatosis through AMPK/autophagy-mediated suppression of endoplasmic reticulum stress in obesity models. J Cell Physiol 2024; 239:e31184. [PMID: 38197464 DOI: 10.1002/jcp.31184] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 12/05/2023] [Accepted: 12/12/2023] [Indexed: 01/11/2024]
Abstract
Interleukin-38 (IL-38), recently recognized as a cytokine with anti-inflammatory properties that mitigate type 2 diabetes, has been associated with indicators of insulin resistance and nonalcoholic fatty liver disease (NAFLD). This study investigated the impact of IL-38 on hepatic lipid metabolism and endoplasmic reticulum (ER) stress. We assessed protein expression levels using Western blot analysis, while monodansylcadaverine staining was employed to detect autophagosomes in hepatocytes. Oil red O staining was utilized to examine lipid deposition. The study revealed elevated serum IL-38 levels in high-fat diet (HFD)-fed mice and IL-38 secretion from mouse keratinocytes. IL-38 treatment attenuated lipogenic lipid accumulation and ER stress markers in hepatocytes exposed to palmitate. Furthermore, IL-38 treatment increased AMP-activated protein kinase (AMPK) phosphorylation and autophagy. The effects of IL-38 on lipogenic lipid deposition and ER stress were nullified in cultured hepatocytes by suppressing AMPK through small interfering (si) RNA or 3-methyladenine (3MA). In animal studies, IL-38 administration mitigated hepatic steatosis by suppressing the expression of lipogenic proteins and ER stress markers while reversing AMPK phosphorylation and autophagy markers in the livers of HFD-fed mice. Additionally, AMPK siRNA, but not 3MA, mitigated IL-38-enhanced fatty acid oxidation in hepatocytes. In summary, IL-38 alleviates hepatic steatosis through AMPK/autophagy signaling-dependent attenuation of ER stress and enhancement of fatty acid oxidation via the AMPK pathway, suggesting a therapeutic strategy for treating NAFLD.
Collapse
Affiliation(s)
- Jaw Long Sun
- Department of Pharmacology, Chung-Ang University, Seoul, Republic of Korea
| | - Wonjun Cho
- Department of Pharmacology, Chung-Ang University, Seoul, Republic of Korea
| | - Heeseung Oh
- Department of Pharmacology, Chung-Ang University, Seoul, Republic of Korea
| | - A M Abd El-Aty
- Department of Pharmacology, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
- Department of Medical Pharmacology, Medical Faculty, Ataturk University, Erzurum, Turkey
| | - Soon Auck Hong
- Department of Pathology, College of Medicine, Chung-Ang University, Seoul, Republic of Korea
| | - Ji Hoon Jeong
- Department of Pharmacology, Chung-Ang University, Seoul, Republic of Korea
- Department of Global Innovative Drugs, Graduate School of Chung-Ang University, Seoul, Republic of Korea
| | - Tae Woo Jung
- Department of Pharmacology, Chung-Ang University, Seoul, Republic of Korea
| |
Collapse
|
4
|
Sarkar P, Jassar O, Ghanim M. The plant pathogenic bacterium Candidatus Liberibacter solanacearum induces calcium-regulated autophagy in midgut cells of its insect vector Bactericera trigonica. Microbiol Spectr 2023; 11:e0130123. [PMID: 37768086 PMCID: PMC10581152 DOI: 10.1128/spectrum.01301-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Accepted: 08/11/2023] [Indexed: 09/29/2023] Open
Abstract
Autophagy plays an important role against pathogen infection in many organisms; however, little has been done with regard to vector-borne plant and animal pathogens, that sometimes replicate and cause deleterious effects in their vectors. Candidatus Liberibacter solanacearum (CLso) is a fastidious gram-negative phloem-restricted plant pathogen and vectored by the carrot psyllid, Bactericera trigonica. The plant disease caused by this bacterium is called carrot yellows and has recently gained much importance due to worldwide excessive economical losses. Here, we demonstrate that calcium ATPase, cytosolic calcium, and most importantly Beclin-1 have a role in regulating autophagy and its association with Liberibacter inside the psyllid. The presence of CLso generates reactive oxygen species and induces the expression of detoxification enzymes in the psyllid midguts, a main site for bacteria transmission. CLso also induces the expression of both sarco/endoplasmic reticulum Ca2+pump (SERCA) and 1,4,5-trisphosphate receptors (ITPR) in midguts, resulting in high levels of calcium in the cellular cytosol. Silencing these genes individually disrupted the calcium levels in the cytosol and resulted in direct effects on autophagy and subsequently on Liberibacter persistence and transmission. Inhibiting Beclin1-phosphorylation through different calcium-induced kinases altered the expression of autophagy and CLso titers and persistence. Based on our results obtained from the midgut, we suggest the existence of a direct correlation between cytosolic calcium levels, autophagy, and CLso persistence and transmission by the carrot psyllid. IMPORTANCE Plant diseases caused by vector-borne Liberibacter species are responsible for the most important economic losses in many agricultural sectors. Preventing these diseases relies mostly on chemical sprays against the insect vectors. Knowledge-based interference with the bacteria-vector interaction remains a promising approach as a sustainable solution. For unravelling how Liberibacter exploits molecular pathways in its insect vector for transmission, here, we show that the bacterium manipulates calcium levels on both sides of the endoplasmic reticulum membrane, resulting in manipulating autophagy. Silencing genes associated with these pathways disrupted the calcium levels in the cytosol and resulted in direct effects on autophagy and Liberibacter transmission. These results demonstrate major pathways that could be exploited for manipulating and controlling the disease transmission.
Collapse
Affiliation(s)
- Poulami Sarkar
- Department of Entomology, Volcani Institute, Rishon LeZion, Israel
| | - Ola Jassar
- Department of Entomology, Volcani Institute, Rishon LeZion, Israel
- Robert H. Smith Faculty of Agriculture, Food and Environment, Hebrew University of Jerusalem, Rehovot, Israel
| | - Murad Ghanim
- Department of Entomology, Volcani Institute, Rishon LeZion, Israel
| |
Collapse
|
5
|
He B, Zhang Z, Huang Z, Duan X, Wang Y, Cao J, Li L, He K, Nice EC, He W, Gao W, Shen Z. Protein persulfidation: Rewiring the hydrogen sulfide signaling in cell stress response. Biochem Pharmacol 2023; 209:115444. [PMID: 36736962 DOI: 10.1016/j.bcp.2023.115444] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 01/27/2023] [Accepted: 01/27/2023] [Indexed: 02/04/2023]
Abstract
The past few decades have witnessed significant progress in the discovery of hydrogen sulfide (H2S) as a ubiquitous gaseous signaling molecule in mammalian physiology, akin to nitric oxide and carbon monoxide. As the third gasotransmitter, H2S is now known to exert a wide range of physiological and cytoprotective functions in the biological systems. However, endogenous H2S concentrations are usually low, and its potential biologic mechanisms responsible have not yet been fully clarified. Recently, a growing body of evidence has demonstrated that protein persulfidation, a posttranslational modification of cysteine residues (RSH) to persulfides (RSSH) elicited by H2S, is a fundamental mechanism of H2S-mediated signaling pathways. Persulfidation, as a biological switch for protein function, plays an important role in the maintenance of cell homeostasis in response to various internal and external stress stimuli and is also implicated in numerous diseases, such as cardiovascular and neurodegenerative diseases and cancer. In this review, the biological significance of protein persulfidation by H2S in cell stress response is reviewed providing a framework for understanding the multifaceted roles of H2S. A mechanism-guided perspective can help open novel avenues for the exploitation of therapeutics based on H2S-induced persulfidation in the context of diseases.
Collapse
Affiliation(s)
- Bo He
- West China School of Basic Medical Sciences & Forensic Medicine, and State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu 610041, China
| | - Zhe Zhang
- West China School of Basic Medical Sciences & Forensic Medicine, and State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu 610041, China
| | - Zhao Huang
- West China School of Basic Medical Sciences & Forensic Medicine, and State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu 610041, China
| | - Xirui Duan
- Department of Oncology, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China
| | - Yu Wang
- West China School of Basic Medical Sciences & Forensic Medicine, and State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu 610041, China
| | - Jiangjun Cao
- West China School of Basic Medical Sciences & Forensic Medicine, and State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu 610041, China
| | - Lei Li
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Kai He
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Edouard C Nice
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, Australia
| | - Weifeng He
- Institute of Burn Research, Southwest Hospital, State Key Laboratory of Trauma, Burn and Combined Injury, Chongqing Key Laboratory for Disease Proteomics, Army Military Medical University, Chongqing 400038, China.
| | - Wei Gao
- Clinical Genetics Laboratory, Affiliated Hospital & Clinical Medical College of Chengdu University, Chengdu 610081, China.
| | - Zhisen Shen
- Department of Otorhinolaryngology and Head and Neck Surgery, Affiliated Lihuili Hospital, Ningbo University, Ningbo 315040, Zhejiang, China.
| |
Collapse
|
6
|
He C, Xu Y, Sun J, Li L, Zhang JH, Wang Y. Autophagy and Apoptosis in Acute Brain Injuries: From Mechanism to Treatment. Antioxid Redox Signal 2023; 38:234-257. [PMID: 35579958 DOI: 10.1089/ars.2021.0094] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Significance: Autophagy and apoptosis are two important cellular mechanisms behind brain injuries, which are severe clinical situations with increasing incidences worldwide. To search for more and better treatments for brain injuries, it is essential to deepen the understanding of autophagy, apoptosis, and their interactions in brain injuries. This article first analyzes how autophagy and apoptosis participate in the pathogenetic processes of brain injuries respectively and mutually, then summarizes some promising treatments targeting autophagy and apoptosis to show the potential clinical applications in personalized medicine and precision medicine in the future. Recent Advances: Most current studies suggest that apoptosis is detrimental to brain recovery. Several studies indicate that autophagy can cause unnecessary death of neurons after brain injuries, while others show that autophagy is beneficial for acute brain injuries (ABIs) by facilitating the removal of damaged proteins and organelles. Whether autophagy is beneficial or detrimental in ABIs depends on many factors, and the results from different research groups are diverse or even controversial, making this topic more appealing to be explored further. Critical Issues: Neuronal autophagy and apoptosis are two primary pathological processes in ABIs. How they interact with each other and how their regulations affect the outcome and prognosis of brain injuries remain uncertain, making these answers more critical. Future Directions: Insights into the interplay between autophagy and apoptosis and the accurate regulations of their balance in ABIs may promote personalized and precise treatments in the field of brain injuries. Antioxid. Redox Signal. 38, 234-257.
Collapse
Affiliation(s)
- Chuyu He
- Department of Physiology, Basic Medical and Public Health School, Jinan University, Guangzhou, China
| | - Yanjun Xu
- Department of Physiology, Basic Medical and Public Health School, Jinan University, Guangzhou, China
| | - Jing Sun
- Department of Physiology, Basic Medical and Public Health School, Jinan University, Guangzhou, China
| | - Layla Li
- Faculty of Medicine, International School, Jinan University, Guangzhou, China
| | - John H Zhang
- Department of Physiology & Pharmacology, Loma Linda University, Loma Linda, California, USA.,Department of Neurosurgery, Loma Linda University, Loma Linda, California, USA
| | - Yuechun Wang
- Department of Physiology, Basic Medical and Public Health School, Jinan University, Guangzhou, China
| |
Collapse
|
7
|
Li F, Gao J, Kohls W, Geng X, Ding Y. Perspectives on benefit of early and prereperfusion hypothermia by pharmacological approach in stroke. Brain Circ 2022; 8:69-75. [PMID: 35909706 PMCID: PMC9336590 DOI: 10.4103/bc.bc_27_22] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 06/01/2022] [Accepted: 06/01/2022] [Indexed: 11/18/2022] Open
Abstract
Stroke kills or disables approximately 15 million people worldwide each year. It is the leading cause of brain injury, resulting in persistent neurological deficits and profound physical handicaps. In spite of over 100 clinical trials, stroke treatment modalities are limited in applicability and efficacy, and therefore, identification of new therapeutic modalities is required to combat this growing problem. Poststroke oxidative damage and lactic acidosis are widely-recognized forms of brain ischemia/reperfusion injury. However, treatments directed at these injury mechanisms have not been effective. In this review, we offer a novel approach combining these well-established damage mechanisms with new insights into brain glucose handling. Specifically, emerging evidence of brain gluconeogenesis provides a missing link for understanding oxidative injury and lactate toxicity after ischemia. Therefore, dysfunctional gluconeogenesis may substantially contribute to oxidative and lactate damage. We further review that hypothermia initiated early in ischemia and before reperfusion may ameliorate gluconeogenic dysfunction and subsequently provide an important mechanism of hypothermic protection. We will focus on the efficacy of pharmacologically assisted hypothermia and suggest a combination that minimizes side effects. Together, this study will advance our knowledge of basic mechanisms of ischemic damage and apply this knowledge to develop new therapeutic strategies that are desperately needed in the clinical treatment of stroke.
Collapse
Affiliation(s)
- Fengwu Li
- Department of Neurology, Luhe Hospital, Capital Medical University, Beijing, China
| | - Jie Gao
- Department of Neurology, Luhe Hospital, Capital Medical University, Beijing, China
| | - Wesley Kohls
- Department of Neurosurgery, Wayne State University School of Medicine, Detroit, MI, USA
| | - Xiaokun Geng
- Department of Neurology, Luhe Hospital, Capital Medical University, Beijing, China.,Department of Neurosurgery, Wayne State University School of Medicine, Detroit, MI, USA.,Department of Neurology, China-America Institute of Neuroscience, Luhe Hospital, Capital Medical University, Beijing, China
| | - Yuchuan Ding
- Department of Neurosurgery, Wayne State University School of Medicine, Detroit, MI, USA
| |
Collapse
|
8
|
Mao S, Huang H, Chen X. lncRNA H19 Aggravates Brain Injury in Rats following Experimental Intracerebral Hemorrhage via NF- κB Pathway. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2022; 2022:3017312. [PMID: 35075368 PMCID: PMC8783741 DOI: 10.1155/2022/3017312] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 12/16/2021] [Accepted: 12/27/2021] [Indexed: 01/25/2023]
Abstract
OBJECTIVE To explore the effect of long noncoding RNA H19 (lncRNA H19) on brain injury in rats following experimental intracerebral hemorrhage (ICH). METHODS Rat ICH model was established with type IV collagenase. The neurological function scores were evaluated, and the water content in brain tissue was measured. The nerve injury indexes, inflammatory factors, and oxidative stress indexes were also measured. Moreover, the expression of lncRNA H19 was determined by qRT-PCR, and Western blot detected NF-κB pathway-related protein expression. RESULTS Compared with the sham group, the neurological function scores, the water content in brain tissue, and levels of injury indicators myelin basic protein (MBP), S-100B, and neuron-specific enolase (NSE) in the ICH rats were significantly increased. Meanwhile, the levels of TNF-α, IL-6, IL-1β, ROS, and MDA were significantly increased, but the levels of SOD were significantly decreased. In addition, the expression of lncRNA H19 in the brain tissue in the ICH group was significantly higher than that in the sham group. After further interference with lncRNA H19 expression (sh-H19 group), the levels of all the above indicators were reversed and the neurological damage was improved. Western blot results showed that the expression of NF-κBp65 and IKKβ was significantly higher, and IκBα expression was lower in the perivascular hematoma tissue in the ICH group compared with the sham group. Compared with the sh-NC group, NF-κBp65 and IKKβ expression were significantly lower and IκBα was significantly higher in the sh-H19 group. CONCLUSION lncRNA H19 exacerbated brain injury in rats with ICH by promoting neurological impairment, brain edema, and releasing inflammatory responses and oxidative stress. This may be related to the activation of NF-κB signaling pathway.
Collapse
Affiliation(s)
- Shuaidong Mao
- Department of Neurosurgery, Shanghai Tenth People's Hospital Chongming Branch, Shanghai 202157, China
| | - Huan Huang
- Department of Neurosurgery, Shanghai Tenth People's Hospital Chongming Branch, Shanghai 202157, China
| | - Xianzheng Chen
- Department of Neurosurgery, Shanghai Tenth People's Hospital, Shanghai 200072, China
| |
Collapse
|
9
|
Liu P, Yu X, Dai X, Zou W, Yu X, Niu M, Chen Q, Teng W, Kong Y, Guan R, Liu X. Scalp Acupuncture Attenuates Brain Damage After Intracerebral Hemorrhage Through Enhanced Mitophagy and Reduced Apoptosis in Rats. Front Aging Neurosci 2022; 13:718631. [PMID: 34987374 PMCID: PMC8720963 DOI: 10.3389/fnagi.2021.718631] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 11/18/2021] [Indexed: 11/13/2022] Open
Abstract
To study the effect of scalp acupuncture (SA) on the mitophagy signaling pathway in the caudate nucleus of Sprague-Dawley rats following intracerebral hemorrhage (ICH). An ICH model was established by injecting autologous arterial blood into the caudate nucleus in 200 male Sprague-Dawley rats, which were divided into five groups: sham, ICH, 3-methyladenine group (3-MA, 30 mg/kg), SA, and SA+3-MA. Animals were analyzed at 6 and 24 h as well as at 3 and 7 days. Composite neurological scale score was significantly higher in the SA group than in the ICH group. Transmission electron microscopy showed less structural damage and more autophagic vacuoles within brain in the SA group than in the ICH group. SA group showed higher levels of Beclin1, Parkin, PINK1, NIX protein, and a lower level of Caspase-9 in brain tissue. These animals consequently showed less neural cell apoptosis. Compared with the SA group, however, the neural function score and levels of mitophagy protein in the SA+3-MA group were decreased, neural cell apoptosis was increased with more severe structural damage, which suggested that 3-MA may antagonize the protective effect of SA on brain in rats with ICH. SA may mitigate the neurologic impairment after ICH by enhancing mitophagy and reducing apoptosis.
Collapse
Affiliation(s)
- Peng Liu
- First Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Xinyang Yu
- First Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin, China.,Clinical Key Laboratory of Integrated Traditional Chinese and Western Medicine, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Xiaohong Dai
- First Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Wei Zou
- First Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin, China.,Clinical Key Laboratory of Integrated Traditional Chinese and Western Medicine, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Xueping Yu
- First Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Mingming Niu
- Structural Biology and Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN, United States
| | - Qiuxin Chen
- First Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Wei Teng
- First Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Ying Kong
- Second Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Ruiqiao Guan
- Integrated Chinese and Western Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Xiaoying Liu
- First Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin, China
| |
Collapse
|
10
|
Li M, Huang S, Zhang Y, Song Z, Fu H, Lin Z, Huang X. Regulation of the unfolded protein response transducer IRE1α by SERPINH1 aggravates periodontitis with diabetes mellitus via prolonged ER stress. Cell Signal 2022; 91:110241. [PMID: 34998932 DOI: 10.1016/j.cellsig.2022.110241] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Revised: 12/31/2021] [Accepted: 12/31/2021] [Indexed: 12/18/2022]
Abstract
The hyperglycemic microenvironment induced by diabetes mellitus aggravates the inflammatory response, in which the IRE1α signal transduction pathway of the unfolded protein response (UPR) participates. However, the mechanism by which hyperglycemia regulates the IRE1α signaling pathway and affects endoplasmic reticulum (ER) homeostasis in human gingival epithelium in periodontitis with diabetes mellitus remains unknown. Our current data provide evidence that diabetes mellitus causes a hyperinflammatory response in the gingival epithelium, which accelerates periodontal inflammation. Next, we assessed UPR-IRE1α signaling in periodontitis with diabetes mellitus by examining human clinical gingival epithelium samples from healthy subjects, subjects with periodontitis and subjects with periodontitis with diabetes mellitus and by in vitro challenge of human epithelial cells with a hyperglycemic microenvironment. The results showed that a hyperglycemic microenvironment inhibited the IRE1α/XBP1 axis, decreased the expression of a UPR target gene (GRP78), and ultimately impaired the UPR, causing ER stress to be prolonged or more severe in human gingival epithelium. Subsequently, RNA sequencing (RNA-seq) data was analyzed to investigate the expression of ER-related genes in human gingival epithelium. Experiments verified that the mechanism by which periodontitis is aggravated in individuals with diabetes mellitus may involve decreased SERPINH1 expression. Furthermore, experiments in SERPINH1-knockdown and SERPINH1-overexpression models established in vitro indicated that SERPINH1 might act as an activator of IRE1α, maintaining human gingival epithelium homeostasis and reducing proinflammatory cytokine expression by preventing prolonged ER stress induced by high-glucose conditions. In conclusion, regulation of the UPR transducer IRE1α by SERPINH1 alleviates periodontitis with diabetes mellitus by mitigating prolonged ER stress. This finding provides evidence for the further study of periodontitis with diabetes mellitus.
Collapse
Affiliation(s)
- Mengdi Li
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong, China; Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong, China.
| | - Shuheng Huang
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong, China; Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong, China.
| | - Yong Zhang
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong, China; Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong, China.
| | - Zhi Song
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong, China; Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong, China.
| | - Haijun Fu
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong, China; Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong, China.
| | - Zhengmei Lin
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong, China; Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong, China.
| | - Xin Huang
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong, China; Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong, China.
| |
Collapse
|
11
|
|
12
|
Koller A, Preishuber-Pflügl J, Runge C, Ladek AM, Brunner SM, Aigner L, Reitsamer H, Trost A. Chronobiological activity of cysteinyl leukotriene receptor 1 during basal and induced autophagy in the ARPE-19 retinal pigment epithelial cell line. Aging (Albany NY) 2021; 13:25670-25693. [PMID: 34919533 PMCID: PMC8751616 DOI: 10.18632/aging.203787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 12/08/2021] [Indexed: 01/18/2023]
Abstract
Autophagy is an important cellular mechanism for maintaining cellular homeostasis, and its impairment correlates highly with age and age-related diseases. Retinal pigment epithelial (RPE) cells of the eye represent a crucial model for studying autophagy, as RPE functions and integrity are highly dependent on an efficient autophagic process. Cysteinyl leukotriene receptor 1 (CysLTR1) acts in immunoregulation and cellular stress responses and is a potential regulator of basal and adaptive autophagy. As basal autophagy is a dynamic process, the aim of this study was to define the role of CysLTR1 in autophagy regulation in a chronobiologic context using the ARPE-19 human RPE cell line. Effects of CysLTR1 inhibition on basal autophagic activity were analyzed at inactive/low and high lysosomal degradation activity with the antagonists zafirlukast (ZTK) and montelukast (MTK) at a dosage of 100 nM for 3 hours. Abundances of the autophagy markers LC3-II and SQSTM1 and LC3B particles were analyzed in the absence and presence of lysosomal inhibitors using western blot analysis and immunofluorescence microscopy. CysLTR1 antagonization revealed a biphasic effect of CysLTR1 on autophagosome formation and lysosomal degradation that depended on the autophagic activity of cells at treatment initiation. ZTK and MTK affected lysosomal degradation, but only ZTK regulated autophagosome formation. In addition, dexamethasone treatment and serum shock induced autophagy, which was repressed by CysLTR1 antagonization. As a newly identified autophagy modulator, CysLTR1 appears to be a key player in the chronobiological regulation of basal autophagy and adaptive autophagy in RPE cells.
Collapse
Affiliation(s)
- Andreas Koller
- Research Program for Experimental Ophthalmology, Department of Ophthalmology and Optometry, University Hospital of the Paracelsus Medical University, Salzburg 5020, Austria
| | - Julia Preishuber-Pflügl
- Research Program for Experimental Ophthalmology, Department of Ophthalmology and Optometry, University Hospital of the Paracelsus Medical University, Salzburg 5020, Austria
| | - Christian Runge
- Research Program for Experimental Ophthalmology, Department of Ophthalmology and Optometry, University Hospital of the Paracelsus Medical University, Salzburg 5020, Austria
| | - Anja-Maria Ladek
- Research Program for Experimental Ophthalmology, Department of Ophthalmology and Optometry, University Hospital of the Paracelsus Medical University, Salzburg 5020, Austria
| | - Susanne Maria Brunner
- Research Program for Experimental Ophthalmology, Department of Ophthalmology and Optometry, University Hospital of the Paracelsus Medical University, Salzburg 5020, Austria
| | - Ludwig Aigner
- Institute of Molecular Regenerative Medicine, Spinal Cord Injury and Tissue Regeneration Center, Paracelsus Medical University, Salzburg 5020, Austria
| | - Herbert Reitsamer
- Research Program for Experimental Ophthalmology, Department of Ophthalmology and Optometry, University Hospital of the Paracelsus Medical University, Salzburg 5020, Austria
| | - Andrea Trost
- Research Program for Experimental Ophthalmology, Department of Ophthalmology and Optometry, University Hospital of the Paracelsus Medical University, Salzburg 5020, Austria
| |
Collapse
|
13
|
Liu H, Zhang B, Li XW, Du J, Feng PP, Cheng C, Zhu ZH, Lou KL, Ruan C, Zhou C, Sun XW. Acupuncture inhibits mammalian target of rapamycin, promotes autophagy and attenuates neurological deficits in a rat model of hemorrhagic stroke. Acupunct Med 2021; 40:59-67. [PMID: 34284645 DOI: 10.1177/09645284211028873] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Intracerebral hemorrhage (ICH) accounts for approximately 15% of all stroke cases. Previous studies suggested that acupuncture may improve ICH-induced neurological deficits. Therefore, we investigated the effects of acupuncture on neurological deficits in an animal model of ICH. METHODS Adult male Sprague-Dawley rats were injected with autologous blood (50 μL) into the right caudate nucleus. Additional rats underwent sham surgery as controls. ICH rats either received acupuncture (GV20 through GB7 on the side of the lesion) or sham acupuncture (1 cm to the right side of the traditional acupuncture point locations). Some ICH rats received acupuncture plus rapamycin injection into the right lateral ventricle. Neurological deficits in the various groups were assessed based on composite neurological score. The perihemorrhagic penumbra was analyzed by histopathology following hematoxylin-eosin staining. Levels of autophagy-related proteins light chain (LC)3 and p62 as well as of mammalian target of rapamycin (mTOR)-related proteins, and phosphorylated (p)-mTOR and p-S6K1 (ribosomal protein S6 kinase beta-1), were assessed by Western blotting. RESULTS Acupuncture significantly improved composite neurological scores 7 days after ICH (17.7 ± 1.49 vs 14.8 ± 1.32, p < 0.01). Acupuncture augmented autophagosome and autolysosome accumulation based on transmission electron microscopy. Acupuncture significantly increased expression of LC3 (p < 0.01) but decreased expression of p62 (p < 0.01). Acupuncture also reduced levels of p-mTOR and p-S6K1 (both p < 0.01). CONCLUSION Acupuncture improved neurological deficits in a rat model of ICH, possibly by inhibiting the mTOR pathway and activating autophagy.
Collapse
Affiliation(s)
- Hao Liu
- Department of Acupuncture and Moxibustion, Tongde Hospital of Zhejiang Province, Hangzhou, China.,Zhejiang Academy of Traditional Chinese Medicine, Hangzhou, China
| | - Beng Zhang
- Heilongjiang University of Chinese Medicine, Harbin, China.,First Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Xin-Wei Li
- Department of Acupuncture and Moxibustion, Tongde Hospital of Zhejiang Province, Hangzhou, China.,Zhejiang Academy of Traditional Chinese Medicine, Hangzhou, China
| | - Jia Du
- Department of Acupuncture and Moxibustion, Tongde Hospital of Zhejiang Province, Hangzhou, China.,Zhejiang Academy of Traditional Chinese Medicine, Hangzhou, China
| | - Pei-Pei Feng
- Department of Acupuncture and Moxibustion, Tongde Hospital of Zhejiang Province, Hangzhou, China.,Zhejiang Academy of Traditional Chinese Medicine, Hangzhou, China
| | - Chen Cheng
- Department of Acupuncture and Moxibustion, Tongde Hospital of Zhejiang Province, Hangzhou, China.,Zhejiang Academy of Traditional Chinese Medicine, Hangzhou, China
| | - Zhong-Hua Zhu
- Department of Acupuncture and Moxibustion, Tongde Hospital of Zhejiang Province, Hangzhou, China.,Zhejiang Academy of Traditional Chinese Medicine, Hangzhou, China
| | - Ke-Lang Lou
- Department of Acupuncture and Moxibustion, Tongde Hospital of Zhejiang Province, Hangzhou, China.,Zhejiang Academy of Traditional Chinese Medicine, Hangzhou, China
| | - Chen Ruan
- Department of Acupuncture and Moxibustion, Tongde Hospital of Zhejiang Province, Hangzhou, China.,Zhejiang Academy of Traditional Chinese Medicine, Hangzhou, China
| | - Chi Zhou
- Department of Acupuncture and Moxibustion, Tongde Hospital of Zhejiang Province, Hangzhou, China.,Zhejiang Academy of Traditional Chinese Medicine, Hangzhou, China
| | - Xiao-Wei Sun
- Heilongjiang University of Chinese Medicine, Harbin, China.,First Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin, China
| |
Collapse
|
14
|
Guan R, Li Z, Dai X, Zou W, Yu X, Liu H, Chen Q, Teng W, Liu P, Liu X, Dong S. Electroacupuncture at GV20‑GB7 regulates mitophagy to protect against neurological deficits following intracerebral hemorrhage via inhibition of apoptosis. Mol Med Rep 2021; 24:492. [PMID: 33955500 PMCID: PMC8127033 DOI: 10.3892/mmr.2021.12131] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 02/24/2021] [Indexed: 01/07/2023] Open
Abstract
The acupuncture penetrating line of Baihui (GV20) to Qubin (GB7) spans the parietal, frontal and temporal lobes. The present study aimed to elucidate the mechanism by which electroacupuncture (EA) at GV20‑GB7 regulates mitophagy in intracerebral hemorrhage (ICH) and whether it serves a neuroprotective role. A whole blood‑induced ICH model was used. Mitophagy‑regulating proteins, including BCL/adenovirus E1B 19 kDa‑interacting protein 3 (BNIP3), PTEN‑induced putative kinase 1 (PINK1), Parkin and apoptosis‑associated proteins were detected by western blotting; autophagy following ICH was evaluated by immunofluorescent techniques; morphological characteristics of mitophagy were observed using transmission electron microscopy; and TUNEL assay was performed to determine the number of apoptotic cells. Immunohistochemistry was used to detect p53 expression. The protective role of EA (GV20‑GB7) via enhanced mitophagy and suppressed apoptosis in ICH was further confirmed by decreased modified neurological severity score. The results showed that EA (GV20‑GB7) treatment upregulated mitochondrial autophagy following ICH and inhibited apoptotic cell death. The mechanism underlying EA (GV20‑GB7) treatment may involve inhibition of p53, an overlapping protein of autophagy and apoptosis. EA (GV20‑GB7) treatment decreased neurobehavioral deficits following ICH but pretreatment with 3‑methyladenine counteracted the beneficial effects of EA (GV20‑GB7) treatment. In conclusion, EA (GV20‑GB7) improved recovery from ICH by regulating the balance between mitophagy and apoptosis.
Collapse
Affiliation(s)
- Ruiqiao Guan
- Department of Integrated Chinese and Western Medicine, Zhongshan Hospital, Fudan University, Shanghai 200032, P.R. China
- Department of Clinical Medicine, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang 150040, P.R. China
- The Third Department of Acupuncture and Moxibustion, First Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang 150040, P.R. China
- Clinical Key Laboratory of Integrated Chinese and Western Medicine, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang 150040, P.R. China
- Department of Traditional Chinese Medicine, London South Bank University, London SE1 6RD, UK
- The Clinic of Traditional Chinese Medicine, London Confucius Institute of Traditional Chinese Medicine, London SE1 0AA, UK
| | - Zhihao Li
- Department of Acupuncture and Moxibustion, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Chinese Medicine, Shanghai 200437, P.R. China
| | - Xiaohong Dai
- Department of Clinical Medicine, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang 150040, P.R. China
- The Third Department of Acupuncture and Moxibustion, First Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang 150040, P.R. China
| | - Wei Zou
- Department of Clinical Medicine, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang 150040, P.R. China
- The Third Department of Acupuncture and Moxibustion, First Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang 150040, P.R. China
| | - Xueping Yu
- Department of Clinical Medicine, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang 150040, P.R. China
- The Third Department of Acupuncture and Moxibustion, First Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang 150040, P.R. China
| | - Hao Liu
- Department of Acupuncture and Moxibustion, Tongde Hospital of Zhejiang Province, Hangzhou, Zhejiang 315099, P.R. China
| | - Qiuxin Chen
- Department of Clinical Medicine, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang 150040, P.R. China
- The Third Department of Acupuncture and Moxibustion, First Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang 150040, P.R. China
- Clinical Key Laboratory of Integrated Chinese and Western Medicine, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang 150040, P.R. China
| | - Wei Teng
- Department of Clinical Medicine, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang 150040, P.R. China
- The Third Department of Acupuncture and Moxibustion, First Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang 150040, P.R. China
| | - Peng Liu
- Department of Clinical Medicine, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang 150040, P.R. China
- The Third Department of Acupuncture and Moxibustion, First Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang 150040, P.R. China
| | - Xiaoying Liu
- Department of Clinical Medicine, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang 150040, P.R. China
- The Third Department of Acupuncture and Moxibustion, First Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang 150040, P.R. China
| | - Shanshan Dong
- Department of Clinical Medicine, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang 150040, P.R. China
- The Third Department of Acupuncture and Moxibustion, First Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang 150040, P.R. China
- Clinical Key Laboratory of Integrated Chinese and Western Medicine, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang 150040, P.R. China
| |
Collapse
|
15
|
Lin PBC, Wang PK, Pang CY, Hu WF, Tsai APY, Oblak AL, Liew HK. Moderate Ethanol Pre-treatment Mitigates ICH-Induced Injury via ER Stress Modulation in Rats. Front Mol Neurosci 2021; 14:682775. [PMID: 34248500 PMCID: PMC8267178 DOI: 10.3389/fnmol.2021.682775] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 05/26/2021] [Indexed: 11/29/2022] Open
Abstract
Intracerebral hemorrhage (ICH) is a life-threatening type of stroke that disrupts the normal neurological function of the brain. Clinical studies have reported a non-linear J-shaped association between alcohol consumption levels and the occurrence of cerebral stroke. Specifically, alcohol intoxication increases stroke incidence, while moderate alcohol pre-conditioning decreases stroke frequency and improves outcomes. Although alcohol pre-consumption is likely a crucial player in ICH, the underlying mechanism remains unclear. We performed 1-h alcohol pre-conditioning followed by ICH induction in Sprague-Dawley (SD) rats to investigate the role of alcohol pre-conditioning in ICH. Interestingly, behavioral test analysis found that ethanol intoxication (3 g/kg) aggravated ICH-induced neurological deficits, but moderate ethanol pre-conditioning (0.75 g/kg) ameliorated ICH-induced neurological deficits by reducing the oxidative stress and proinflammatory cytokines release. Moreover, we found that moderate ethanol pretreatment improved the striatal endoplasmic reticulum (ER) homeostasis by increasing the chaperone protein expression and reducing oxidative stress and apoptosis caused by ICH. Our findings show that the mechanism regulated by moderate ethanol pre-conditioning might be beneficial for ICH, indicating the importance of ER homeostasis, oxidative stress, and differential cytokines release in ICH.
Collapse
Affiliation(s)
- Peter Bor-Chian Lin
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Po-Kai Wang
- Department of Anesthesiology, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan.,School of Medicine, Tzu Chi University, Hualien, Taiwan
| | - Cheng-Yoong Pang
- Department of Medical Research, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan.,Institute of Medical Sciences, Tzu Chi University, Hualien, Taiwan
| | - Wei-Fen Hu
- Department of Pharmacology and Toxicology, Tzu Chi University, Hualien, Taiwan
| | - Andy Po-Yi Tsai
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Adrian L Oblak
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Hock-Kean Liew
- Department of Medical Research, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan.,Department of Pharmacology and Toxicology, Tzu Chi University, Hualien, Taiwan.,Neuro-Medical Scientific Center, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
| |
Collapse
|
16
|
Mechanisms of Oxidative Stress and Therapeutic Targets following Intracerebral Hemorrhage. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:8815441. [PMID: 33688394 PMCID: PMC7920740 DOI: 10.1155/2021/8815441] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 01/17/2021] [Accepted: 02/10/2021] [Indexed: 12/17/2022]
Abstract
Oxidative stress (OS) is induced by the accumulation of reactive oxygen species (ROS) following intracerebral hemorrhage (ICH) and plays an important role in secondary brain injury caused by the inflammatory response, apoptosis, autophagy, and blood-brain barrier (BBB) disruption. This review summarizes the current state of knowledge regarding the pathogenic mechanisms of brain injury after ICH, markers for detecting OS, and therapeutic strategies that target OS to mitigate brain injury.
Collapse
|
17
|
Wu M, Gao R, Dang B, Chen G. The Blood Component Iron Causes Neuronal Apoptosis Following Intracerebral Hemorrhage via the PERK Pathway. Front Neurol 2021; 11:588548. [PMID: 33424743 PMCID: PMC7793836 DOI: 10.3389/fneur.2020.588548] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Accepted: 11/05/2020] [Indexed: 01/31/2023] Open
Abstract
PERK signaling pathway plays an important role in neuronal apoptosis after Intracerebral hemorrhage (ICH). ICH can cause the release of blood components into the brain. However, which component in the blood plays a major role still unclear. This study was designed to investigate the activation of the PERK pathway in different blood components after ICH and explore which components have major relationships with neuronal apoptosis. Eighty-five Sprague-Dawley rats were used to establish an ICH model. Western blot (WB) and immunofluorescence (IF) were used to evaluate the expression of the PERK pathway. TUNEL staining, FJC staining and neurological score were used to evaluate neuronal apoptosis and necrosis after ICH. The results showed that protein levels of p-PERK and p-eIF2α were upregulated following ICH with the injection of Fe3+ and Fe2+ after 48 h. Then, deferoxamine (DFX) was used to study the roles of Fe3+ in ICH through the PERK signaling pathway. The results showed that injection of DFX reversed increasing protein levels and prevented neuronal apoptosis. Thus, iron plays an important role in ICH through the PERK signaling pathway. Furthermore, the reduction of iron demonstrates neuroprotective effects in ICH. This suggests that targeting intervention of the iron and PERK pathway could be an effective treatment strategy to improve ICH prognosis.
Collapse
Affiliation(s)
- Muyao Wu
- Department of Rehabilitation, Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Suzhou, China
| | - Rong Gao
- Department of Neurosurgery, Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Suzhou, China
| | - Baoqi Dang
- Department of Rehabilitation, Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Suzhou, China
| | - Gang Chen
- Department of Neurosurgery and Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, China
| |
Collapse
|
18
|
Wu L, Liang C, Huang X, Deng X, Jiang J, Luo Z. Salubrinal Regulates the Apoptosis of Adrenocortical Carcinoma Cells via the PERK/eIF2 α/ATF4 Signaling Pathway. Int J Endocrinol 2021; 2021:5038130. [PMID: 34567111 PMCID: PMC8461226 DOI: 10.1155/2021/5038130] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 08/15/2021] [Accepted: 08/19/2021] [Indexed: 01/22/2023] Open
Abstract
The protein-kinase-R- (PKR-) like endoplasmic reticulum kinase (PERK) signaling pathway is a well-known promoter of cell apoptosis. In this study, we aimed to determine whether salubrinal (Sal), a selective activator of eukaryotic translation initiation factor 2 (eIF2α), can induce apoptosis of human adrenocortical carcinoma (ACC) cell via activating the PERK/eIF2α/ATF4 signaling pathway, and the potential mechanisms of this action were explored. The ACC cell lines, including SW-13 and NCI-H295 R, were used. 3-(4,5)-Dimethylthiazol(-z-y1)-3,5-di-phenytetrazoliumromide (MTT) assay, cell scratch experiments, flow cytometry, and JC-1 staining assays were performed to detect the cell viability, cell migration, and cell apoptosis. The expression of PERK/eIF2α/ATF4 signaling-pathway-related proteins and apoptosis-related proteins was detected by western blot (WB). Intracellular Ca2+ ion concentration was determined by a confocal laser scanning microscope. The results showed that Sal inhibited the migration and proliferation of ACC cells. Sal remarkably increased the influx of Ca2+ ion and the apoptosis rate of ACC cells in vitro. Furthermore, the expression levels of PERK/eIF2α/ATF4 signaling-related proteins and apoptosis-related proteins were upregulated in the treatment of Sal. The research demonstrated that Sal reduces the cell viability, increases the intracellular calcium concentration, and promotes the apoptosis of ACC cells in vitro through increasing the phosphorylation level of eIF2α and activating the PERK/eIF2α/ATF4 signaling. PERK/eIF2α/ATF4 is expected to act as a potential therapeutic target for the treatment of adrenocortical carcinoma.
Collapse
Affiliation(s)
- Lili Wu
- Department of Endocrinology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, China
- Department of Integrated Medicine, Guangxi Medical University Cancer Hospital, Nanning, Guangxi 530021, China
| | - Chunfeng Liang
- Department of Endocrinology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, China
| | - Xuemei Huang
- Department of Endocrinology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, China
| | - Xiujun Deng
- Department of Endocrinology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, China
| | - Jiming Jiang
- Department of Analysis for Cosmetics (Dietary Supplements), Guangxi Institute for Food and Drug Control, Nanning, Guangxi 530021, China
| | - Zuojie Luo
- Department of Endocrinology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, China
| |
Collapse
|
19
|
Molecular Correlates of Hemorrhage and Edema Volumes Following Human Intracerebral Hemorrhage Implicate Inflammation, Autophagy, mRNA Splicing, and T Cell Receptor Signaling. Transl Stroke Res 2020; 12:754-777. [PMID: 33206327 PMCID: PMC8421315 DOI: 10.1007/s12975-020-00869-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 10/02/2020] [Accepted: 10/18/2020] [Indexed: 12/16/2022]
Abstract
Intracerebral hemorrhage (ICH) and perihematomal edema (PHE) volumes are major determinants of ICH outcomes as is the immune system which plays a significant role in damage and repair. Thus, we performed whole-transcriptome analyses of 18 ICH patients to delineate peripheral blood genes and networks associated with ICH volume, absolute perihematomal edema (aPHE) volume, and relative PHE (aPHE/ICH; rPHE). We found 440, 266, and 391 genes correlated with ICH and aPHE volumes and rPHE, respectively (p < 0.005, partial-correlation > |0.6|). These mainly represented inflammatory pathways including NF-κB, TREM1, and Neuroinflammation Signaling-most activated with larger volumes. Weighted Gene Co-Expression Network Analysis identified seven modules significantly correlated with these measures (p < 0.05). Most modules were enriched in neutrophil, monocyte, erythroblast, and/or T cell-specific genes. Autophagy, apoptosis, HIF-1α, inflammatory and neuroinflammatory response (including Toll-like receptors), cell adhesion (including MMP9), platelet activation, T cell receptor signaling, and mRNA splicing were represented in these modules (FDR p < 0.05). Module hub genes, potential master regulators, were enriched in neutrophil-specific genes in three modules. Hub genes included NCF2, NCF4, STX3, and CSF3R, and involved immune response, autophagy, and neutrophil chemotaxis. One module that correlated negatively with ICH volume correlated positively with rPHE. Its genes and hubs were enriched in T cell-specific genes including hubs LCK and ITK, Src family tyrosine kinases whose modulation improved outcomes and reduced BBB dysfunction following experimental ICH. This study uncovers molecular underpinnings associated with ICH and PHE volumes and pathophysiology in human ICH, where knowledge is scarce. The identified pathways and hub genes may represent novel therapeutic targets.
Collapse
|
20
|
Malko P, Jiang LH. TRPM2 channel-mediated cell death: An important mechanism linking oxidative stress-inducing pathological factors to associated pathological conditions. Redox Biol 2020; 37:101755. [PMID: 33130440 PMCID: PMC7600390 DOI: 10.1016/j.redox.2020.101755] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 08/17/2020] [Accepted: 10/08/2020] [Indexed: 12/26/2022] Open
Abstract
Oxidative stress resulting from the accumulation of high levels of reactive oxygen species is a salient feature of, and a well-recognised pathological factor for, diverse pathologies. One common mechanism for oxidative stress damage is via the disruption of intracellular ion homeostasis to induce cell death. TRPM2 is a non-selective Ca2+-permeable cation channel with a wide distribution throughout the body and is highly sensitive to activation by oxidative stress. Recent studies have collected abundant evidence to show its important role in mediating cell death induced by miscellaneous oxidative stress-inducing pathological factors, both endogenous and exogenous, including ischemia/reperfusion and the neurotoxicants amyloid-β peptides and MPTP/MPP+ that cause neuronal demise in the brain, myocardial ischemia/reperfusion, proinflammatory mediators that disrupt endothelial function, diabetogenic agent streptozotocin and diabetes risk factor free fatty acids that induce loss of pancreatic β-cells, bile acids that damage pancreatic acinar cells, renal ischemia/reperfusion and albuminuria that are detrimental to kidney cells, acetaminophen that triggers hepatocyte death, and nanoparticles that injure pericytes. Studies have also shed light on the signalling mechanisms by which these pathological factors activate the TRPM2 channel to alter intracellular ion homeostasis leading to aberrant initiation of various cell death pathways. TRPM2-mediated cell death thus emerges as an important mechanism in the pathogenesis of conditions including ischemic stroke, neurodegenerative diseases, cardiovascular diseases, diabetes, pancreatitis, chronic kidney disease, liver damage and neurovascular injury. These findings raise the exciting perspective of targeting the TRPM2 channel as a novel therapeutic strategy to treat such oxidative stress-associated diseases.
Collapse
Affiliation(s)
- Philippa Malko
- School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, UK
| | - Lin-Hua Jiang
- Sino-UK Joint Laboratory of Brain Function and Injury of Henan Province and Department of Physiology and Pathophysiology, Xinxiang Medical University, PR China; School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, UK.
| |
Collapse
|
21
|
Chen G, Gao C, Yan Y, Wang T, Luo C, Zhang M, Chen X, Tao L. Inhibiting ER Stress Weakens Neuronal Pyroptosis in a Mouse Acute Hemorrhagic Stroke Model. Mol Neurobiol 2020; 57:5324-5335. [PMID: 32880859 DOI: 10.1007/s12035-020-02097-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Accepted: 08/25/2020] [Indexed: 01/17/2023]
Abstract
Intracerebral hemorrhage (ICH) is a form of stroke, characterized by high morbidity and mortality and currently lacks specific therapy. ICH leads to endoplasmic reticulum (ER) stress, which can induce neurological impairment through crosstalk with programmed cell death (PCD). Pyroptosis, a newly discovered form of PCD, has received attention because of its close relationship with some certain diseases, such as traumatic brain injury and ischemic and hemorrhagic stroke. However, the relationship between ER stress and pyroptosis in ICH remains unclear. In this study, we investigated the role of ER stress in evoking neuronal pyroptosis and related mechanisms in a mouse ICH model. We used tauroursodeoxycholic acid (TUDCA) to inhibit ER stress and observed that TUDCA reduces neuronal pyroptosis and has a neuroprotective role. We explored the potential mechanisms underlying the regulation of neuronal pyroptosis by ER stress through testing the expression of interleukin-13 (IL-13). We found that ER stress inhibition alleviates neuronal pyroptosis through decreasing the expression of IL-13 after ICH. In summary, this study revealed that IL-13 is involved in ER stress-induced neuronal pyroptosis after ICH, pointing to IL-13 as a novel therapeutic target for ICH treatment.
Collapse
Affiliation(s)
- Guang Chen
- Department of Forensic Medicine, Medical School of Soochow University, 178 East Ganjiang Road, Suzhou, 215213, China
| | - Cheng Gao
- Department of Forensic Medicine, Medical School of Soochow University, 178 East Ganjiang Road, Suzhou, 215213, China
| | - Ya'nan Yan
- Department of Forensic Medicine, Medical School of Soochow University, 178 East Ganjiang Road, Suzhou, 215213, China
| | - Tao Wang
- Department of Forensic Medicine, Medical School of Soochow University, 178 East Ganjiang Road, Suzhou, 215213, China
| | - Chengliang Luo
- Department of Forensic Medicine, Medical School of Soochow University, 178 East Ganjiang Road, Suzhou, 215213, China
| | - Mingyang Zhang
- Department of Forensic Medicine, Medical School of Soochow University, 178 East Ganjiang Road, Suzhou, 215213, China
| | - Xiping Chen
- Department of Forensic Medicine, Medical School of Soochow University, 178 East Ganjiang Road, Suzhou, 215213, China.
| | - Luyang Tao
- Department of Forensic Medicine, Medical School of Soochow University, 178 East Ganjiang Road, Suzhou, 215213, China.
| |
Collapse
|
22
|
Yang Z, Zhou C, Shi H, Zhang N, Tang B, Ji N. Heme Induces BECN1/ATG5-Mediated Autophagic Cell Death via ER Stress in Neurons. Neurotox Res 2020; 38:1037-1048. [PMID: 32840757 DOI: 10.1007/s12640-020-00275-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 07/11/2020] [Accepted: 08/19/2020] [Indexed: 12/11/2022]
Abstract
Intracerebral hemorrhage (ICH) is a serious medical problem, and effective treatment is limited. Hemorrhaged blood is highly toxic to the brain, and heme, which is mainly released from hemoglobin, plays a vital role in neurotoxicity. However, the specific mechanism involved in heme-mediated neurotoxicity has not been well studied. In this study, we investigated the neurotoxicity of heme in neurons. Neurons were treated with heme, and cell death, autophagy, and endoplasmic reticulum (ER) stress were analyzed. In addition, the relationship between autophagy and apoptosis in heme-induced cell death and the downstream effects were also assessed. We showed that heme induced cell death and autophagy in neurons. The suppression of autophagy using either pharmacological inhibitors (3-methyladenine) or RNA interference of essential autophagy genes (BECN1 and ATG5) decreased heme-induced cell death in neurons. Moreover, the ER stress activator thapsigargin increased cell autophagy and the cell death ratio following heme treatment. Autophagy promoted heme-induced cell apoptosis and cell death through the BECN1/ATG5 pathway. Our findings suggest that heme potentiates neuronal autophagy via ER stress, which in turn induces cell death via the BECN1/ATG5 pathway. Targeting ER stress-mediated autophagy might be a promising therapeutic strategy for ICH.
Collapse
Affiliation(s)
- Zhao Yang
- Department of Neurology and Chongqing Key Laboratory of Cerebrovascular Disease, Yongchuan Hospital, Chongqing Medical University, Chongqing, 402160, China
| | - Changlong Zhou
- Department of Neurology and Chongqing Key Laboratory of Cerebrovascular Disease, Yongchuan Hospital, Chongqing Medical University, Chongqing, 402160, China
| | - Hui Shi
- Department of Neurology and Chongqing Key Laboratory of Cerebrovascular Disease, Yongchuan Hospital, Chongqing Medical University, Chongqing, 402160, China
| | - Nan Zhang
- Department of Urology, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, China
| | - Bin Tang
- Department of General Surgery, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, 401120, China.
| | - Na Ji
- Department of Anesthesia, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, China.
| |
Collapse
|
23
|
Shang FF, Luo L, Yan J, Yu Q, Guo Y, Wen Y, Min XL, Jiang L, He X, Liu W. CircRNA_0001449 disturbs phosphatidylinositol homeostasis and AKT activity by enhancing Osbpl5 translation in transient cerebral ischemia. Redox Biol 2020; 34:101459. [PMID: 32086008 PMCID: PMC7327991 DOI: 10.1016/j.redox.2020.101459] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Revised: 02/02/2020] [Accepted: 02/07/2020] [Indexed: 12/26/2022] Open
Abstract
Phosphatidylinositol-3,4,5-trisphosphate [PI(3,4,5)P3] is a phosphorylated derivative of phosphatidylinositol 4-phosphate [PI(4)P] and phosphatidylinositol 4,5-bisphosphate [PI(4,5)P2], which recruit and activate AKT in the plasma membrane (PM) to promote cellular survival. ORP5 anchors at the endoplasmic reticulum (ER)-PM contact sites and acts as a PI(4)P and PI(4,5)P2/phosphatidylserine (PS) exchanger. Here, a lipidomics analysis of the sensorimotor cortex revealed that transient middle cerebral artery occlusion (tMCAO) disturbs the homeostasis of phosphatidylinositols (PIs) and PS between the PM and ER. Conditional knockout mice showed that ORP5 contributes to this abnormal distribution. Abolishing the ORP5 gene significantly inhibited apoptosis and autophagy. RNA sequencing and RNA pull down analyses confirmed a competing endogenous RNA pathway in which circ_0001449 sponges miR-124-3p and miR-32-5p to promote Osbpl5 translation. Our data showed that circRNA_0001449 regulates membrane homeostasis via ORP5 and is involved in the AKT survival pathway.
Collapse
Affiliation(s)
- Fei-Fei Shang
- Institute of Life Science, Chongqing Medical University, Chongqing, 400016, China
| | - Li Luo
- Institute of Life Science, Chongqing Medical University, Chongqing, 400016, China
| | - Jianghong Yan
- Institute of Life Science, Chongqing Medical University, Chongqing, 400016, China
| | - Qiubo Yu
- Institute of Life Science, Chongqing Medical University, Chongqing, 400016, China
| | - Yongzheng Guo
- Division of Cardiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Yuchen Wen
- Institute of Life Science, Chongqing Medical University, Chongqing, 400016, China
| | - Xiao-Li Min
- Department of Cerebrovascular Diseases, The Second Affiliated Hospital of Kunming Medical University, Kunming, Yunnan Province, 650101, China
| | - Ling Jiang
- Department of Anesthesiology, Guizhou Provincial People's Hospital, Guiyang, Guizhou Province, 550002, China
| | - Xiang He
- Department of Anesthesiology, Guizhou Provincial People's Hospital, Guiyang, Guizhou Province, 550002, China; Department of Neuroscience, Yale School of Medicine, New Haven, CT, 06510, USA.
| | - Wei Liu
- Department of Anesthesiology, Huashan Hospital, Fudan University, Shanghai, 200040, China.
| |
Collapse
|
24
|
Gao C, Meng Y, Chen G, Chen W, Chen XS, Luo CL, Zhang MY, Wang ZF, Wang T, Tao LY. Chronic restraint stress exacerbates neurological deficits and disrupts the remodeling of the neurovascular unit in a mouse intracerebral hemorrhage model. Stress 2020; 23:338-348. [PMID: 31591949 DOI: 10.1080/10253890.2019.1678023] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
Abstract
Growing evidences have shown that patients recovering from stroke experience high and unremitting stress. Chronic restraint stress (CRS) has been found to exacerbate neurological impairments in an experimental focal cortical ischemia model. However, there have been no studies reporting the effect and mechanism of CRS on intracerebral hemorrhage (ICH). This study aimed to evaluate the effect of CRS on a mouse ICH model. Adult male C57BL mice were subjected to infusion of collagenase IV (to induce ICH) or saline (for sham) into the left striatum. After ICH, animals were stressed with application of CRS protocol for 21 days. Our results showed that CRS significantly exacerbated neurological deficits (Garcia test, corner turn test, and wire grip test) and the ipsilateral brain atrophy and reduced body weight gain after ICH. Immunofluorescence staining indicated that CRS exerted significant suppressive effects on neuron, astrocyte, vascular endothelial cell and pericyte and excessively activated microglia post ICH. All of the key cellular components mentioned above are involved in the neurovascular unit (NVU) remodeling in the peri-hemorrhagic region after ICH. Western blot results showed that matrix metalloproteinase (MMP)-9 and tight junction (TJ) proteins including zonula occludens-1, occludin and claudin-5 were increased after ICH, but MMP-9 protein was further up-regulated and TJ-related proteins were down-regulated by CRS. In addition, ICH-induced activation of endoplasmic reticulum stress and apoptosis were further strengthened by CRS. Collectively, CRS exacerbates neurological deficits and disrupts the remodeling of the peri-hemorrhagic NVU after ICH, which may be associated with TJ proteins degradation and excessive activation of MMP-9 and endoplasmic reticulum stress-apoptosis.LAY SUMMARYCRS exacerbates neurological deficits and disrupts the remodeling of the NVU in the recovery stage after ICH, which suggest that monitoring chronic stress levels in patients recovering from ICH may merit consideration in the future.
Collapse
Affiliation(s)
- Cheng Gao
- Shanghai Key Laboratory of Forensic Medicine, Shanghai Forensic Service Platform, Academy of Forensic Science, Shanghai, China
- Department of Forensic Medicine, Medical School of Soochow University, Suzhou, China
| | - Ying Meng
- Community Health Center, Suzhou Western Eco-City, Suzhou, China
| | - Guang Chen
- Department of Forensic Medicine, Medical School of Soochow University, Suzhou, China
| | - Wei Chen
- Department of Forensic Medicine, Medical School of Soochow University, Suzhou, China
| | - Xue-Shi Chen
- Department of Forensic Medicine, Medical School of Soochow University, Suzhou, China
| | - Cheng-Liang Luo
- Department of Forensic Medicine, Medical School of Soochow University, Suzhou, China
| | - Ming-Yang Zhang
- Department of Forensic Medicine, Medical School of Soochow University, Suzhou, China
| | - Zu-Feng Wang
- Department of Forensic Medicine, Medical School of Soochow University, Suzhou, China
| | - Tao Wang
- Shanghai Key Laboratory of Forensic Medicine, Shanghai Forensic Service Platform, Academy of Forensic Science, Shanghai, China
- Department of Forensic Medicine, Medical School of Soochow University, Suzhou, China
- School of Pharmacy, Soochow University, Suzhou, China
| | - Lu-Yang Tao
- Department of Forensic Medicine, Medical School of Soochow University, Suzhou, China
| |
Collapse
|
25
|
Mohammed Thangameeran SI, Tsai ST, Hung HY, Hu WF, Pang CY, Chen SY, Liew HK. A Role for Endoplasmic Reticulum Stress in Intracerebral Hemorrhage. Cells 2020; 9:cells9030750. [PMID: 32204394 PMCID: PMC7140640 DOI: 10.3390/cells9030750] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 03/15/2020] [Accepted: 03/17/2020] [Indexed: 12/14/2022] Open
Abstract
The endoplasmic reticulum (ER) is an intracellular organelle that performs multiple functions, such as lipid biosynthesis, protein folding, and maintaining intracellular calcium homeostasis. Thus, conditions wherein the ER is unable to fold proteins is defined as ER stress, and an inbuilt quality control mechanism, called the unfolded protein response (UPR), is activated during ER stress, which serves as a recovery system that inhibits protein synthesis. Further, based on the severity of ER stress, the response could involve both proapoptotic and antiapoptotic phases. Intracerebral hemorrhage (ICH) is the second most common subtype of cerebral stroke and many lines of evidence have suggested a role for the ER in major neurological disorders. The injury mechanism during ICH includes hematoma formation, which in turn leads to inflammation, elevated intracranial pressure, and edema. A proper understanding of the injury mechanism(s) is required to effectively treat ICH and closing the gap between our current understanding of ER stress mechanisms and ICH injury can lead to valuable advances in the clinical management of ICH.
Collapse
Affiliation(s)
| | - Sheng-Tzung Tsai
- Institute of Medical Sciences, Tzu Chi University, Hualien 970, Taiwan; (S.I.M.T.); (S.-T.T.); (C.-Y.P.); (S.-Y.C.)
- Department of Neurosurgery, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien 970, Taiwan;
- Neuro-Medical Scientific Center, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien 970, Taiwan
| | - Hsiang-Yi Hung
- Department of Neurosurgery, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien 970, Taiwan;
- Neuro-Medical Scientific Center, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien 970, Taiwan
| | - Wei-Fen Hu
- PhD Program in Pharmacology and Toxicology, Tzu Chi University, Hualien 970, Taiwan;
| | - Cheng-Yoong Pang
- Institute of Medical Sciences, Tzu Chi University, Hualien 970, Taiwan; (S.I.M.T.); (S.-T.T.); (C.-Y.P.); (S.-Y.C.)
- Neuro-Medical Scientific Center, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien 970, Taiwan
- Department of Medical Research, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien 970, Taiwan
- CardioVascular Research Center, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien 970, Taiwan
| | - Shin-Yuan Chen
- Institute of Medical Sciences, Tzu Chi University, Hualien 970, Taiwan; (S.I.M.T.); (S.-T.T.); (C.-Y.P.); (S.-Y.C.)
- Department of Neurosurgery, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien 970, Taiwan;
- Neuro-Medical Scientific Center, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien 970, Taiwan
| | - Hock-Kean Liew
- Neuro-Medical Scientific Center, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien 970, Taiwan
- PhD Program in Pharmacology and Toxicology, Tzu Chi University, Hualien 970, Taiwan;
- Department of Medical Research, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien 970, Taiwan
- CardioVascular Research Center, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien 970, Taiwan
- Correspondence: or ; Tel.: +886-3-856-1825 (ext. 15911); Fax: +886-3-8560-2019
| |
Collapse
|
26
|
Abd Aziz NAW, Iezhitsa I, Agarwal R, Abdul Kadir RF, Abd Latiff A, Ismail NM. Neuroprotection by trans-resveratrol against collagenase-induced neurological and neurobehavioural deficits in rats involves adenosine A1 receptors. Neurol Res 2020; 42:189-208. [PMID: 32013788 DOI: 10.1080/01616412.2020.1716470] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Objective: Trans-resveratrol has been shown to have neuroprotective effects and could be a promising therapeutic agent in the treatment of intracerebral haemorrhage (ICH). This study aimed to investigate the involvement of the adenosine A1 receptor (A1R) in trans-resveratrol-induced neuroprotection in rats with collagenase-induced ICH.Methods: Sixty male Sprague-Dawley rats weighing 330-380 g were randomly divided into five groups (n = 12): (i) control, (ii) sham-operated rats, (iii) ICH rats pretreated with vehicle (0.1% DMSO saline, i.c.v.), (iv) ICH rats pretreated with trans-resveratrol (0.9 µg, i.c.v.) and (v) ICH rats pretreated with trans-resveratrol (0.9 µg) and the A1R antagonist, DPCPX (2.5 µg, i.c.v.). Thirty minutes after pretreatment, ICH was induced by intrastriatal injection of collagenase (0.04 U). Forty-eight hours after ICH, the rats were assessed using a variety of neurobehavioural tests. Subsequently, rats were sacrificed and brains were subjected to gross morphological examination of the haematoma area and histological examination of the damaged area.Results: Severe neurobehavioural deficits and haematoma with diffuse oedema were observed after intrastriatal collagenase injection. Pretreatment with trans-resveratrol partially restored general locomotor activity, muscle strength and coordination, which was accompanied with reduction of haematoma volume by 73.22% (P < 0.05) and damaged area by 60.77% (P < 0.05) in comparison to the vehicle-pretreated ICH group. The trans-resveratrol-induced improvement in neurobehavioural outcomes and morphological features of brain tissues was inhibited by DPCPX pretreatment.Conclusion: This study demonstrates that the A1R activation is possibly the mechanism underlying the trans-resveratrol-induced neurological and neurobehavioural protection in rats with ICH.
Collapse
Affiliation(s)
- Noor Azliza Wani Abd Aziz
- Centre for Neuroscience Research, Faculty of Medicine, Universiti Teknologi MARA, Sungai Buloh, Malaysia.,Centre of PreClinical Science Studies, Faculty of Dentistry, Universiti Teknologi MARA, Sungai Buloh, Malaysia
| | - Igor Iezhitsa
- Centre for Neuroscience Research, Faculty of Medicine, Universiti Teknologi MARA, Sungai Buloh, Malaysia.,Research Centre for Innovative Medicines, Volgograd State Medical University, Volgograd, Russia.,Institute for Pathology, Laboratory and Forensic Medicine (I-PPerForM), Universiti Teknologi MARA, Sungai Buloh, Malaysia
| | - Renu Agarwal
- School of Medicine, International Medical University, Kuala Lumpur, Malaysia
| | | | - Azian Abd Latiff
- Department of Anatomy, Faculty of Medicine, Universiti Teknologi MARA, Sungai Buloh, Malaysia
| | - Nafeeza Mohd Ismail
- School of Medicine, International Medical University, Kuala Lumpur, Malaysia
| |
Collapse
|
27
|
Thangaraj A, Sil S, Tripathi A, Chivero ET, Periyasamy P, Buch S. Targeting endoplasmic reticulum stress and autophagy as therapeutic approaches for neurological diseases. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2020; 350:285-325. [PMID: 32138902 DOI: 10.1016/bs.ircmb.2019.11.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
28
|
The PERK Pathway Plays a Neuroprotective Role During the Early Phase of Secondary Brain Injury Induced by Experimental Intracerebral Hemorrhage. ACTA NEUROCHIRURGICA. SUPPLEMENT 2019; 127:105-119. [PMID: 31407071 DOI: 10.1007/978-3-030-04615-6_17] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/11/2023]
Abstract
The protein kinase RNA-like endoplasmic reticulum kinase (PERK) pathway, which is a branch of the unfolded protein response, participates in a range of pathophysiological processes of neurological diseases. However, few studies have investigated the role of the PERK in intracerebral hemorrhage (ICH). The present study evaluated the role of the PERK pathway during the early phase of ICH-induced secondary brain injury (SBI) and its potential mechanisms. An autologous whole blood ICH model was established in rats, and cultured primary cortical neurons were treated with oxyhemoglobin to mimic ICH in vitro. We found that levels of phosphorylated alpha subunit of eukaryotic translation initiation factor 2 (p-eIF2α) and activating transcription factor 4 (ATF4) increased significantly and peaked at 12 h during the early phase of the ICH. To further elucidate the role of the PERK pathway, we assessed the effects of the PERK inhibitor, GSK2606414, and the eIF2α dephosphorylation antagonist, salubrinal, at 12 h after ICH both in vivo and in vitro. Inhibition of PERK with GSK2606414 suppressed the protein levels of p-eIF2α and ATF4, resulting in increase of transcriptional activator CCAAT/enhancer-binding protein homologous protein (CHOP) and caspase-12, which promoted apoptosis and reduced neuronal survival. Treatment with salubrinal yielded opposite results, which suggested that activation of the PERK pathway could promote neuronal survival and reduce apoptosis. In conclusion, the present study has demonstrated the neuroprotective effects of the PERK pathway during the early phase of ICH-induced SBI. These findings highlight the potential value of PERK pathway as a therapeutic target for ICH.
Collapse
|
29
|
Over-Activated Proteasome Mediates Neuroinflammation on Acute Intracerebral Hemorrhage in Rats. Cells 2019; 8:cells8111326. [PMID: 31717886 PMCID: PMC6912695 DOI: 10.3390/cells8111326] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 10/16/2019] [Accepted: 10/25/2019] [Indexed: 12/12/2022] Open
Abstract
Background: Neuroinflammation is a hallmark in intracerebral hemorrhage (ICH) that induces secondary brain injury, leading to neuronal cell death. ER stress-triggered apoptosis and proteostasis disruption caused neuroinflammation to play an important role in various neurological disorders. The consequences of ER stress and proteostasis disruption have rarely been studied during the course of ICH development. Methods: ICH was induced by collagenase VII-S intrastriatal infusion. Animals were sacrificed at 0, 3, 6, 24, and 72 h post-ICH. Rats were determined for body weight changes, hematoma volume, and neurological deficits. Brain tissues were harvested for molecular signaling analysis either for ELISA, immunoblotting, immunoprecipitation, RT-qPCR, protein aggregation, or for histological examination. A non-selective proteasome inhibitor, MG132, was administered into the right striatum three hours prior to ICH induction. Results: ICH-induced acute proteasome over-activation caused the early degradation of the endoplasmic reticulum (ER) chaperone GRP78 and IκB protein. These exacerbations were accompanied by the elevation of pro-apoptotic CCAAT-enhancer-binding protein homologous protein (CHOP) and pro-inflammatory cytokines expression via nuclear factor-kappa B (NF-κB) signal activation. Pre-treatment with proteasome inhibitor MG132 significantly ameliorated the ICH-induced ER stress/proteostasis disruption, pro-inflammatory cytokines, neuronal cells apoptosis, and neurological deficits. Conclusions: ICH induced rapid proteasome over-activation, leading to an exaggeration of the ER stress/proteostasis disruption, and neuroinflammation might be a critical event in acute ICH pathology.
Collapse
|
30
|
Tension induces intervertebral disc degeneration via endoplasmic reticulum stress-mediated autophagy. Biosci Rep 2019; 39:BSR20190578. [PMID: 31285389 PMCID: PMC6684951 DOI: 10.1042/bsr20190578] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2019] [Revised: 05/25/2019] [Accepted: 06/24/2019] [Indexed: 12/23/2022] Open
Abstract
Background: Intervertebral disc degeneration is a common degenerative disease. The present study aimed to explore the role and mechanism of tension-induced endoplasmic reticulum stress in intervertebral disc degeneration. Methods: Intervertebral disc degeneration models of SD rat were analyzed for apoptosis, the expression of Poly(ADP-ribose) polymerase (PARP), Caspase-12, Caspase-3, LC3, Beclin-1 and CHOP using immunohistochemistry, qPCR and Western blot analysis. Annulus fibrosus cells of intervertebral disc were isolated, subjected to cyclic deformation stress and analyzed for ROS and apoptosis, lysosome activity and expression of genes. The cells were knockdown with siRNA or treated with endoplasmic reticulum stress inhibitor 4-PBA and assayed for ROS, apoptosis, lysosome activity and gene expression. Results: Compared with the controls, intervertebral disc degeneration was observed through X-rays examinations and HS staining. Apoptosis and expression of PARP, Caspase-12, Caspase-3, LC3, Beclin-1 and CHOP were significantly increased in the intervertebral disc tissue of the models. In mechanic mimic experiments, the primary annulus fibrosus cells were subjected to 18% cyclic deformation, ROS and apoptosis as well as the activity of lysosome were increased. Similarly, the expression of PARP, Caspase-12, Caspase-3, LC3, Beclin-1 and CHOP was also increased significantly after deformation treatment. On other hand, when the cells were treated with 9 mM 4-PBA and/or CHOP-siRNA4, the apoptosis rate, ROS level, lysosome activity and expression of PARP, Caspase-12, Caspase-3, LC3, Beclin-1 and CHOP were significantly reduced. Conclusions: Autophagy reaction mediated by endoplasmic reticulum stress plays important rale in tension-induced intervertebral disc degeneration. Intervertebral disc degeneration likely results from interactions between autophagy, apoptosis and reticulum stress, and is ROS-dependent.
Collapse
|
31
|
de Lemos Muller CH, de Matos JR, Grigolo GB, Schroeder HT, Rodrigues-Krause J, Krause M. Exercise Training for the Elderly: Inflammaging and the Central Role for HSP70. ACTA ACUST UNITED AC 2019. [DOI: 10.1007/s42978-019-0015-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
32
|
King AP, Marker SC, Swanda RV, Woods JJ, Qian SB, Wilson JJ. A Rhenium Isonitrile Complex Induces Unfolded Protein Response-Mediated Apoptosis in Cancer Cells. Chemistry 2019; 25:9206-9210. [PMID: 31090971 DOI: 10.1002/chem.201902223] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Indexed: 12/31/2022]
Abstract
Complexes of the element Re have recently been shown to possess promising anticancer activity through mechanisms of action that are distinct from the conventional metal-based drug cisplatin. In this study, we report our investigations on the anticancer activity of the complex [Re(CO)3 (dmphen)(p-tol-ICN)]+ (TRIP) in which dmphen=2,9-dimethyl-1,10-phenanthroline and p-tol-ICN=para-tolyl isonitrile. TRIP was synthesized by literature methods and exhaustively characterized. This compound exhibited potent in vitro anticancer activity in a wide variety of cell lines. Flow cytometry and immunostaining experiments indicated that TRIP induces intrinsic apoptosis. Comprehensive biological mechanistic studies demonstrated that this compound triggers the accumulation of misfolded proteins, which causes endoplasmic reticulum (ER) stress, the unfolded protein response, and apoptotic cell death. Furthermore, TRIP induced hyperphosphorylation of eIF2α, translation inhibition, mitochondrial fission, and expression of proapoptotic ATF4 and CHOP. These results establish TRIP as a promising anticancer agent based on its potent cytotoxic activity and ability to induce ER stress.
Collapse
Affiliation(s)
- A Paden King
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, 14853, USA
| | - Sierra C Marker
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, 14853, USA
| | - Robert V Swanda
- Division of Nutritional Sciences, Cornell University, Ithaca, NY, 14853, USA
| | - Joshua J Woods
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, 14853, USA.,Robert F. Smith School for Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY, 14853, USA
| | - Shu-Bing Qian
- Division of Nutritional Sciences, Cornell University, Ithaca, NY, 14853, USA
| | - Justin J Wilson
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, 14853, USA
| |
Collapse
|
33
|
Chang MM, Pan BS, Wang CY, Huang BM. Cordycepin-induced unfolded protein response-dependent cell death, and AKT/MAPK-mediated drug resistance in mouse testicular tumor cells. Cancer Med 2019; 8:3949-3964. [PMID: 31145545 PMCID: PMC6639181 DOI: 10.1002/cam4.2285] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Revised: 04/19/2019] [Accepted: 05/10/2019] [Indexed: 02/06/2023] Open
Abstract
Testicular cancer is the most commonly diagnosed cancer in men at 15-44 years of age, and radical orchidectomy combined with chemotherapy is currently considered as the standard treatment. However, drugs resistance and side effects that impact the quality of life for patients with testicular cancer have not been markedly improved in recent decades. In this study, we characterized the pharmacological exacerbation of the unfolded protein response (UPR), which is an effective approach to kill testicular cancer cells, by carrying out a clustering analysis of mRNA expression profiles and the immunobloting examination of cordycepin-treated MA-10 cells. The UPR is executed in response to endoplasmic reticulum stress to complement by an apoptotic response if the defect cannot be resolved. Results showed that cordycepin significantly modulated FoxO/P15/P27, PERK-eIF2α (apoptotic), and the IRE1-XBP1 (adaptive) UPR pathways. Interestingly, a fraction of MA-10 cells survived after cordycepin treatment, the AKT, LC3 I/II, and MAPK signaling pathways were highly induced in attached cells as compared to the suspended cells, illustrating the drug resistance to cordycepin via activating AKT and MAPK pathways in MA-10 cells. In summary, PERK-eIF2α signaling pathway is required for pro-apoptotic UPR in MA-10 cell death following cordycepin treatment, suggesting a potential therapeutic application in treating testicular cancer. However, activation of AKT and MAPK pathways could possibly result in drug resistance to cordycepin in MA-10 cells.
Collapse
Affiliation(s)
- Ming-Min Chang
- Department of Cell Biology and Anatomy, College of Medicine, National Cheng Kung University, Tainan, Taiwan, Republic of China
| | - Bo-Syong Pan
- Department of Cell Biology and Anatomy, College of Medicine, National Cheng Kung University, Tainan, Taiwan, Republic of China
| | - Chia-Yih Wang
- Department of Cell Biology and Anatomy, College of Medicine, National Cheng Kung University, Tainan, Taiwan, Republic of China
| | - Bu-Miin Huang
- Department of Cell Biology and Anatomy, College of Medicine, National Cheng Kung University, Tainan, Taiwan, Republic of China.,Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan, Republic of China
| |
Collapse
|
34
|
Durocher M, Ander BP, Jickling G, Hamade F, Hull H, Knepp B, Liu DZ, Zhan X, Tran A, Cheng X, Ng K, Yee A, Sharp FR, Stamova B. Inflammatory, regulatory, and autophagy co-expression modules and hub genes underlie the peripheral immune response to human intracerebral hemorrhage. J Neuroinflammation 2019; 16:56. [PMID: 30836997 PMCID: PMC6399982 DOI: 10.1186/s12974-019-1433-4] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Accepted: 02/12/2019] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Intracerebral hemorrhage (ICH) has a high morbidity and mortality. The peripheral immune system and cross-talk between peripheral blood and brain have been implicated in the ICH immune response. Thus, we delineated the gene networks associated with human ICH in the peripheral blood transcriptome. We also compared the differentially expressed genes in blood following ICH to a prior human study of perihematomal brain tissue. METHODS We performed peripheral blood whole-transcriptome analysis of ICH and matched vascular risk factor control subjects (n = 66). Gene co-expression network analysis identified groups of co-expressed genes (modules) associated with ICH and their most interconnected genes (hubs). Mixed-effects regression identified differentially expressed genes in ICH compared to controls. RESULTS Of seven ICH-associated modules, six were enriched with cell-specific genes: one neutrophil module, one neutrophil plus monocyte module, one T cell module, one Natural Killer cell module, and two erythroblast modules. The neutrophil/monocyte modules were enriched in inflammatory/immune pathways; the T cell module in T cell receptor signaling genes; and the Natural Killer cell module in genes regulating alternative splicing, epigenetic, and post-translational modifications. One erythroblast module was enriched in autophagy pathways implicated in experimental ICH, and NRF2 signaling implicated in hematoma clearance. Many hub genes or module members, such as IARS, mTOR, S1PR1, LCK, FYN, SKAP1, ITK, AMBRA1, NLRC4, IL6R, IL17RA, GAB2, MXD1, PIK3CD, NUMB, MAPK14, DDX24, EVL, TDP1, ATG3, WDFY3, GSK3B, STAT3, STX3, CSF3R, PIP4K2A, ANXA3, DGAT2, LRP10, FLOT2, ANK1, CR1, SLC4A1, and DYSF, have been implicated in neuroinflammation, cell death, transcriptional regulation, and some as experimental ICH therapeutic targets. Gene-level analysis revealed 1225 genes (FDR p < 0.05, fold-change > |1.2|) have altered expression in ICH in peripheral blood. There was significant overlap of the 1225 genes with dysregulated genes in human perihematomal brain tissue (p = 7 × 10-3). Overlapping genes were enriched for neutrophil-specific genes (p = 6.4 × 10-08) involved in interleukin, neuroinflammation, apoptosis, and PPAR signaling. CONCLUSIONS This study delineates key processes underlying ICH pathophysiology, complements experimental ICH findings, and the hub genes significantly expand the list of novel ICH therapeutic targets. The overlap between blood and brain gene responses underscores the importance of examining blood-brain interactions in human ICH.
Collapse
Affiliation(s)
- Marc Durocher
- Department of Neurology, University of California Davis School of Medicine, Sacramento, CA 95817 USA
| | - Bradley P. Ander
- Department of Neurology, University of California Davis School of Medicine, Sacramento, CA 95817 USA
| | - Glen Jickling
- Department of Neurology, University of California Davis School of Medicine, Sacramento, CA 95817 USA
| | - Farah Hamade
- Department of Neurology, University of California Davis School of Medicine, Sacramento, CA 95817 USA
| | - Heather Hull
- Department of Neurology, University of California Davis School of Medicine, Sacramento, CA 95817 USA
| | - Bodie Knepp
- Department of Neurology, University of California Davis School of Medicine, Sacramento, CA 95817 USA
| | - Da Zhi Liu
- Department of Neurology, University of California Davis School of Medicine, Sacramento, CA 95817 USA
| | - Xinhua Zhan
- Department of Neurology, University of California Davis School of Medicine, Sacramento, CA 95817 USA
| | - Anh Tran
- Department of Neurology, University of California Davis School of Medicine, Sacramento, CA 95817 USA
| | - Xiyuan Cheng
- Department of Neurology, University of California Davis School of Medicine, Sacramento, CA 95817 USA
| | - Kwan Ng
- Department of Neurology, University of California Davis School of Medicine, Sacramento, CA 95817 USA
| | - Alan Yee
- Department of Neurology, University of California Davis School of Medicine, Sacramento, CA 95817 USA
| | - Frank R. Sharp
- Department of Neurology, University of California Davis School of Medicine, Sacramento, CA 95817 USA
| | - Boryana Stamova
- Department of Neurology, University of California Davis School of Medicine, Sacramento, CA 95817 USA
- MIND Institute Biosciences Building, 2805 50th Street, Sacramento, CA 95817 USA
| |
Collapse
|
35
|
miR-181b regulates ER stress induced neuron death through targeting Heat Shock Protein A5 following intracerebral haemorrhage. Immunol Lett 2018; 206:1-10. [PMID: 30503822 DOI: 10.1016/j.imlet.2018.11.014] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2018] [Revised: 11/01/2018] [Accepted: 11/28/2018] [Indexed: 11/22/2022]
Abstract
Endoplasmic reticulum (ER) stress acts as a protein folding and contributes to neuronal damage and neurological deterioration following intracerebral hemorrhage (ICH). Heat Shock Protein A5 (HSPA5) serves as an essential regulator of the endoplasmic reticulum (ER) stress response. However, the specific mechanism has not been will identified. Primary cortical neurons from C57BL/6 mice were subjected to erythrocyte lysates. Cell viability, microRNA and HSPA5 levels, and ER stress was detected. The interaction between microRNA and the target HSPA5 was identified by dual luciferase reporter gene assay. In addition, inflammatory cytokines, brain edema, and neurological functions in ICH mice were also assessed. Erythrocyte lysates induced ER stress and neuron damage, downregulated miR-181b and upregulated HSPA5 levels. MiR-181b suppressed HSPA5 expression by directly binding its 3'-untranslated region. Correspondingly, our data demonstrated that overexpression of miR-181b attenuated erythrocyte lysates induced neuronal necrosis and apoptosis. In vivo, downregulated miR-181b increased the HSPA5 level, along with significant elevations of pro-inflammatory cytokines, brain edema, and neurological injury following ICH. HSPA5 pathway plays an important role in ER stress induced brain damage following ICH. In addition, miR-181b has neuroprotective effects that alleviates neurological injury and represents a promising therapeutic strategy in ICH.
Collapse
|
36
|
Xu W, Lu X, Zheng J, Li T, Gao L, Lenahan C, Shao A, Zhang J, Yu J. Melatonin Protects Against Neuronal Apoptosis via Suppression of the ATF6/CHOP Pathway in a Rat Model of Intracerebral Hemorrhage. Front Neurosci 2018; 12:638. [PMID: 30283292 PMCID: PMC6156428 DOI: 10.3389/fnins.2018.00638] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Accepted: 08/27/2018] [Indexed: 12/11/2022] Open
Abstract
Neuronal apoptosis is an important factor accounting for the poor outcomes of intracerebral hemorrhage (ICH). This study first showed that inhibition of activating transcription factor 6 (ATF6) could alleviate secondary brain injury through anti-apoptosis after ICH in rats. Melatonin, ATF6 and CCAAT/enhancer-binding protein homologous protein (CHOP) siRNAs were applied in this study. Brain edema, neurological functions, blood-brain barrier (BBB) integrity were evaluated at 24 h after ICH. Western blot analysis was used to evaluate the protein level of target proteins (ATF6, CHOP, Bip, Bcl-2, Bax, and cleaved caspase-3). Reverse transcription-polymerase chain reaction (RT-PCR) was used to assess the mRNA level of ATF6, CHOP and cleaved caspase-3. Terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling (TUNEL) and caspase-3 immunofluorescence staining were applied to evaluate the neuronal cell death. The results suggested that the levels of ATF6 and its downstream protein, CHOP, were upregulated and reached the peak at 24 h after ICH. ATF6 was highly expressed in neurons. The administration of melatonin significantly decreased the mRNA and protein levels of ATF6, and its downstream targets, CHOP and cleaved caspase-3, but increased the Bcl-2/Bax ratio, which ameliorated the neurological functions. The CHOP siRNA significantly reversed the pro-apoptotic effect induced by the increased ATF6 level after ICH. Melatonin could protect against neuronal apoptosis via suppression of ATF6/CHOP arm of ER-stress-response pathway.
Collapse
Affiliation(s)
- Weilin Xu
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Xiaoyang Lu
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Jingwei Zheng
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Tao Li
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Liansheng Gao
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Cameron Lenahan
- Burrell College of Osteopathic Medicine, New Mexico State University, Las Cruces, NM, United States
| | - Anwen Shao
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Jianmin Zhang
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Brain Research Institute, Zhejiang University, Hangzhou, China.,Collaborative Innovation Center for Brain Science, Zhejiang University, Hangzhou, China
| | - Jun Yu
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
37
|
Jia J, Zhang M, Li Q, Zhou Q, Jiang Y. Long noncoding ribonucleic acid NKILA induces the endoplasmic reticulum stress/autophagy pathway and inhibits the nuclear factor‐k‐gene binding pathway in rats after intracerebral hemorrhage. J Cell Physiol 2018; 233:8839-8849. [PMID: 29893407 DOI: 10.1002/jcp.26798] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Accepted: 04/30/2018] [Indexed: 01/05/2023]
Affiliation(s)
- Jiaoying Jia
- Department of Neurosurgery The Second Xiangya Hospital of Central South University Changsha China
| | - Mingming Zhang
- Department of Neurosurgery The Second Xiangya Hospital of Central South University Changsha China
| | - Qi Li
- Department of Neurosurgery The Second Xiangya Hospital of Central South University Changsha China
| | - Qian Zhou
- Department of Neurosurgery The Second Xiangya Hospital of Central South University Changsha China
| | - Yugang Jiang
- Department of Neurosurgery The Second Xiangya Hospital of Central South University Changsha China
| |
Collapse
|
38
|
Meng C, Zhang J, Dang B, Li H, Shen H, Li X, Wang Z. PERK Pathway Activation Promotes Intracerebral Hemorrhage Induced Secondary Brain Injury by Inducing Neuronal Apoptosis Both in Vivo and in Vitro. Front Neurosci 2018. [PMID: 29541018 PMCID: PMC5835756 DOI: 10.3389/fnins.2018.00111] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The protein kinase R (PKR)-like endoplasmic reticulum kinase (PERK) signaling pathway was reported to exert an important role in neuronal apoptosis. The present study was designed to investigate the roles of the PERK signaling pathway in the secondary brain injury (SBI) induced by intracerebral hemorrhage (ICH) and its potential mechanisms. Sprague-Dawley rats were used to establish ICH models by injecting autologous blood (100 μl), and cultured primary rat cortical neurons were exposed to oxyhemoglobin (10 μM) to mimic ICH in vitro. The PERK antagonist, GSK2606414, and inhibitor of eukaryotic translation initiation factor 2 subunit α (eIF2α) dephosphorylation, salubrinal, were used to study the roles of PERK signaling pathway in ICH-induced SBI. Our results showed that the protein levels of p-eIF2α and ATF4 were upregulated following ICH, peaking at 48 h. Application of GSK2606414 reversed this increase in vivo and in vitro, thereby preventing ICH-induced neuronal apoptosis. On the contrary, salubrinal inhibited the dephosphorylation of eIF2α, resulting in the elevation of p-eIF2α, which could activate downstream of PERK signaling and induce neuronal apoptosis and necrosis following ICH in vitro and in vivo. Thus, PERK signaling pathway plays an important role in ICH-induced apoptosis and blocking its activation has neuroprotective effects that alleviates SBI, suggesting that targeting this pathway could be a promising therapeutic strategy for improving patient outcome after ICH.
Collapse
Affiliation(s)
- Chengjie Meng
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, China.,Department of Neurosurgery, Yancheng First Peoples' Hospital, Yancheng, China
| | - Juyi Zhang
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Baoqi Dang
- Department of Rehabilitation Medicine, Zhangjiagang Hospital of Traditional Chinese Medicine, Suzhou, China
| | - Haiying Li
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Haitao Shen
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Xiang Li
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Zhong Wang
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, China
| |
Collapse
|