1
|
Zolotareva K, Dotsenko PA, Podkolodnyy N, Ivanov R, Makarova AL, Chadaeva I, Bogomolov A, Demenkov PS, Ivanisenko V, Oshchepkov D, Ponomarenko M. Candidate SNP Markers Significantly Altering the Affinity of the TATA-Binding Protein for the Promoters of Human Genes Associated with Primary Open-Angle Glaucoma. Int J Mol Sci 2024; 25:12802. [PMID: 39684516 DOI: 10.3390/ijms252312802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 11/20/2024] [Accepted: 11/25/2024] [Indexed: 12/18/2024] Open
Abstract
Primary open-angle glaucoma (POAG) is the most common form of glaucoma. This condition leads to optic nerve degeneration and eventually to blindness. Tobacco smoking, alcohol consumption, fast-food diets, obesity, heavy weight lifting, high-intensity physical exercises, and many other bad habits are lifestyle-related risk factors for POAG. By contrast, moderate-intensity aerobic exercise and the Mediterranean diet can alleviate POAG. In this work, we for the first time estimated the phylostratigraphic age indices (PAIs) of all 153 POAG-related human genes in the NCBI Gene Database. This allowed us to separate them into two groups: POAG-related genes that appeared before and after the phylum Chordata, that is, ophthalmologically speaking, before and after the camera-type eye evolved. Next, in the POAG-related genes' promoters, we in silico predicted all 3835 candidate SNP markers that significantly change the TATA-binding protein (TBP) affinity for these promoters and, through this molecular mechanism, the expression levels of these genes. Finally, we verified our results against five independent web services-PANTHER, DAVID, STRING, MetaScape, and GeneMANIA-as well as the ClinVar database. It was concluded that POAG is likely to be a symptom of the human self-domestication syndrome, a downside of being civilized.
Collapse
Affiliation(s)
- Karina Zolotareva
- Institute of Cytology and Genetics, Siberian Branch, Russian Academy of Sciences (ICG SB RAS), Novosibirsk 630090, Russia
- Kurchatov Genome Center at the ICG SB RAS, Novosibirsk 630090, Russia
| | - Polina A Dotsenko
- Institute of Cytology and Genetics, Siberian Branch, Russian Academy of Sciences (ICG SB RAS), Novosibirsk 630090, Russia
- Kurchatov Genome Center at the ICG SB RAS, Novosibirsk 630090, Russia
- Department of Natural Sciences, Novosibirsk State University, Novosibirsk 630090, Russia
| | - Nikolay Podkolodnyy
- Institute of Cytology and Genetics, Siberian Branch, Russian Academy of Sciences (ICG SB RAS), Novosibirsk 630090, Russia
- Kurchatov Genome Center at the ICG SB RAS, Novosibirsk 630090, Russia
- Institute of Computational Mathematics and Mathematical Geophysics, SB RAS, Novosibirsk 630090, Russia
| | - Roman Ivanov
- Institute of Cytology and Genetics, Siberian Branch, Russian Academy of Sciences (ICG SB RAS), Novosibirsk 630090, Russia
| | - Aelita-Luiza Makarova
- Institute of Cytology and Genetics, Siberian Branch, Russian Academy of Sciences (ICG SB RAS), Novosibirsk 630090, Russia
| | - Irina Chadaeva
- Institute of Cytology and Genetics, Siberian Branch, Russian Academy of Sciences (ICG SB RAS), Novosibirsk 630090, Russia
- Kurchatov Genome Center at the ICG SB RAS, Novosibirsk 630090, Russia
| | - Anton Bogomolov
- Institute of Cytology and Genetics, Siberian Branch, Russian Academy of Sciences (ICG SB RAS), Novosibirsk 630090, Russia
- Department of Natural Sciences, Novosibirsk State University, Novosibirsk 630090, Russia
| | - Pavel S Demenkov
- Institute of Cytology and Genetics, Siberian Branch, Russian Academy of Sciences (ICG SB RAS), Novosibirsk 630090, Russia
- Kurchatov Genome Center at the ICG SB RAS, Novosibirsk 630090, Russia
| | - Vladimir Ivanisenko
- Institute of Cytology and Genetics, Siberian Branch, Russian Academy of Sciences (ICG SB RAS), Novosibirsk 630090, Russia
- Kurchatov Genome Center at the ICG SB RAS, Novosibirsk 630090, Russia
- Department of Natural Sciences, Novosibirsk State University, Novosibirsk 630090, Russia
| | - Dmitry Oshchepkov
- Institute of Cytology and Genetics, Siberian Branch, Russian Academy of Sciences (ICG SB RAS), Novosibirsk 630090, Russia
- Kurchatov Genome Center at the ICG SB RAS, Novosibirsk 630090, Russia
- Department of Natural Sciences, Novosibirsk State University, Novosibirsk 630090, Russia
| | - Mikhail Ponomarenko
- Institute of Cytology and Genetics, Siberian Branch, Russian Academy of Sciences (ICG SB RAS), Novosibirsk 630090, Russia
- Kurchatov Genome Center at the ICG SB RAS, Novosibirsk 630090, Russia
| |
Collapse
|
2
|
Sebbag L, Pe’er O. Role of Inflammation in Canine Primary Glaucoma. Animals (Basel) 2023; 14:110. [PMID: 38200841 PMCID: PMC10777923 DOI: 10.3390/ani14010110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 12/14/2023] [Accepted: 12/26/2023] [Indexed: 01/12/2024] Open
Abstract
Primary glaucoma is a painful, progressive, and blinding disease reported in many canine breeds, characterized by intraocular pressure (IOP) elevation in the absence of antecedent intraocular disease. Clinical observations of dogs with primary glaucoma suggest that many affected eyes develop concurrent intraocular inflammation in addition to elevated IOP. In this work, we summarize the current knowledge that relates inflammation to primary glaucoma in dogs, reviewing studies focused on genetics, physiology, histopathology, bioanalysis of ocular fluids, therapeutics, and clinical outcomes of glaucomatous patients. Through disruption of the blood-aqueous and blood-retinal barriers, pigment dispersion, and biochemical changes to the aqueous humor and tear film, the pathogenesis of canine primary glaucoma appears to involve inflammatory changes to various extents and with various consequences from the front to the back of the eye. Among others, inflammation further impacts IOP by reducing aqueous humor outflow at the level of the iridocorneal angle and accelerates vision loss by promoting neuronal degeneration. As such, the vicious cycle of ocular inflammation and IOP elevation might warrant the use of anti-inflammatory medications as a core component of the treatment regime for dogs with primary glaucoma, either therapeutically (i.e., actively glaucomatous eye) or prophylactically in the yet unaffected contralateral eye.
Collapse
Affiliation(s)
- Lionel Sebbag
- Koret School of Veterinary Medicine, The Hebrew University of Jerusalem, Rehovot 76100, Israel
| | | |
Collapse
|
3
|
Wei J, Mu J, Tang Y, Qin D, Duan J, Wu A. Next-generation nanomaterials: advancing ocular anti-inflammatory drug therapy. J Nanobiotechnology 2023; 21:282. [PMID: 37598148 PMCID: PMC10440041 DOI: 10.1186/s12951-023-01974-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 06/29/2023] [Indexed: 08/21/2023] Open
Abstract
Ophthalmic inflammatory diseases, including conjunctivitis, keratitis, uveitis, scleritis, and related conditions, pose considerable challenges to effective management and treatment. This review article investigates the potential of advanced nanomaterials in revolutionizing ocular anti-inflammatory drug interventions. By conducting an exhaustive analysis of recent advancements and assessing the potential benefits and limitations, this review aims to identify promising avenues for future research and clinical applications. The review commences with a detailed exploration of various nanomaterial categories, such as liposomes, dendrimers, nanoparticles (NPs), and hydrogels, emphasizing their unique properties and capabilities for accurate drug delivery. Subsequently, we explore the etiology and pathophysiology of ophthalmic inflammatory disorders, highlighting the urgent necessity for innovative therapeutic strategies and examining recent preclinical and clinical investigations employing nanomaterial-based drug delivery systems. We discuss the advantages of these cutting-edge systems, such as biocompatibility, bioavailability, controlled release, and targeted delivery, alongside potential challenges, which encompass immunogenicity, toxicity, and regulatory hurdles. Furthermore, we emphasize the significance of interdisciplinary collaborations among material scientists, pharmacologists, and clinicians in expediting the translation of these breakthroughs from laboratory environments to clinical practice. In summary, this review accentuates the remarkable potential of advanced nanomaterials in redefining ocular anti-inflammatory drug therapy. We fervently support continued research and development in this rapidly evolving field to overcome existing barriers and improve patient outcomes for ophthalmic inflammatory disorders.
Collapse
Affiliation(s)
- Jing Wei
- School of Ophthalmology, Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China
| | - Jinyu Mu
- School of Ophthalmology, Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China
| | - Yong Tang
- Sichuan Key Medical Laboratory of New Drug Discovery and Druggability Evaluation, Education Ministry Key Laboratory of Medical Electrophysiology, School of Pharmacy, Southwest Medical University, Luzhou, 646000, China
| | - Dalian Qin
- Sichuan Key Medical Laboratory of New Drug Discovery and Druggability Evaluation, Education Ministry Key Laboratory of Medical Electrophysiology, School of Pharmacy, Southwest Medical University, Luzhou, 646000, China
| | - Junguo Duan
- School of Ophthalmology, Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China.
| | - Anguo Wu
- Sichuan Key Medical Laboratory of New Drug Discovery and Druggability Evaluation, Education Ministry Key Laboratory of Medical Electrophysiology, School of Pharmacy, Southwest Medical University, Luzhou, 646000, China.
| |
Collapse
|
4
|
El-Ghareeb WR, Kishawy ATY, Anter RGA, Aboelabbas Gouda A, Abdelaziz WS, Alhawas B, Meligy AMA, Abdel-Raheem SM, Ismail H, Ibrahim D. Novel Antioxidant Insights of Myricetin on the Performance of Broiler Chickens and Alleviating Experimental Infection with Eimeria spp.: Crosstalk between Oxidative Stress and Inflammation. Antioxidants (Basel) 2023; 12:antiox12051026. [PMID: 37237892 DOI: 10.3390/antiox12051026] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 04/06/2023] [Accepted: 04/24/2023] [Indexed: 05/28/2023] Open
Abstract
In the modern poultry industry, the application of novel phytogenic bioactive compounds with antioxidant potential aims to enhance productivity and quality and to minimize the stress of associated diseases. Herein, myricetin, a natural flavonoid, was evaluated for the first time on broiler chickens' performance, antioxidants and immune modulating functions, and tackling avian coccidiosis. A total of 500 one-day-old chicks were divided into five groups. The negative (NC) and infected control (IC) groups were fed a control diet without additives, and the latter was infected with Eimeria spp. Groups supplemented with myricetin (Myc) were fed a control diet of Myc (200, 400 and 600 mg/kg diet each). On d 14, all chicks except those in NC were challenged with oocysts of mixed Eimeria spp. Significant improvements in the overall growth rate and feed conversion ratio were detected in the group that was fed 600 mg/kg, unlike the IC group. Notably, groups that were fed 400 and 600 mg/kg showed higher total meat antioxidant capacity with an inverse reduction in oxidative and lipid peroxidation biomarkers (hydrogen peroxide: H2O2; reactive oxygen species: ROS; Malondialdehyde: MDA). Of note, the upregulation of glutathione peroxidase; GSH-Px, catalase; CAT, superoxide dismutase; SOD, heme oxygenase-1; HO-1 and NAD(P)H dehydrogenase quinone 1 NQO1 genes in jejunum and muscle were prominently observed with increasing levels of supplemental Myc. At 21 dpi, the severity of coccoidal lesions (p < 0.05) induced by mixed Eimeria spp. and oocyst excretion were greatly reduced in the group that was fed 600 mg/kg of Myc. In the IC group, higher serum levels of C-reactive protein; CRP and nitric oxide; and NO and the upregulated expression of inflammatory biomarkers (interleukin-1β; IL-1β, interleukin-6; IL-6, tumor necrosis factor-α; TNF-α, chemotactic cytokines; CCL20, stromal cell-derived factor-1; CXCL13, and avian defensins; AvBD612) were subsided in higher levels in the Myc-fed groups. Taken together, these findings indicate the promising antioxidant role of Myc in modulating immune responses and reducing growth depression associated with coccidia challenges.
Collapse
Affiliation(s)
- Waleed Rizk El-Ghareeb
- Department of Public Health, College of Veterinary Medicine, King Faisal University, P.O. Box 400, Hofuf 31982, Al-Ahsa, Saudi Arabia
- Food Control Department, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44519, Egypt
| | - Asmaa T Y Kishawy
- Department of Nutrition and Clinical Nutrition, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44511, Egypt
| | - Reham G A Anter
- Department of Parasitology, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44511, Egypt
| | - Asmaa Aboelabbas Gouda
- Department of Parasitology, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44511, Egypt
| | - Walaa S Abdelaziz
- Avian and Rabbit Medicine Department, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44511, Egypt
| | - Bassam Alhawas
- Department of Public Health, College of Veterinary Medicine, King Faisal University, P.O. Box 400, Hofuf 31982, Al-Ahsa, Saudi Arabia
| | - Ahmed M A Meligy
- Department of Clinical Science, Central Lab, College of Veterinary Medicine, King Faisal University, P.O. Box 400, Hofuf 31982, Al-Ahsa, Saudi Arabia
- Department of Physiology, Agricultural Research Center (ARC), Giza 12511, Egypt
| | - Sherief M Abdel-Raheem
- Department of Public Health, College of Veterinary Medicine, King Faisal University, P.O. Box 400, Hofuf 31982, Al-Ahsa, Saudi Arabia
- Department of Animal Nutrition and Clinical Nutrition, Faculty of Veterinary Medicine, Assiut University, Assiut 71526, Egypt
| | - Hesham Ismail
- Department of Public Health, College of Veterinary Medicine, King Faisal University, P.O. Box 400, Hofuf 31982, Al-Ahsa, Saudi Arabia
- Food Hygiene Department, Faculty of Veterinary Medicine, Assiut University, Assiut 71526, Egypt
| | - Doaa Ibrahim
- Department of Nutrition and Clinical Nutrition, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44511, Egypt
| |
Collapse
|
5
|
The Role of Selective Flavonoids on Triple-Negative Breast Cancer: An Update. SEPARATIONS 2023. [DOI: 10.3390/separations10030207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2023] Open
Abstract
Among the many types of breast cancer (BC), Triple-Negative Breast Cancer (TNBC) is the most alarming. It lacks receptors for the three main biomarkers: estrogen, progesterone, and human epidermal growth factor, hence the name TNBC. This makes its treatment a challenge. Surgical procedures and chemotherapy, performed either alone or in combination, seem to be the primary therapeutic possibilities; however, they are accompanied by severe complications. Currently, the formulation of drugs using natural products has been playing an important role in the pharmaceutical industries, owing to the drugs’ increased efficacies and significantly lessened side effects. Hence, treating TNBC with chemotherapeutic drugs developed using natural products such as flavonoids in the near future is much warranted. Flavonoids are metabolic compounds largely present in all plants, vegetables, and fruits, such as blueberries, onions, (which are widely used to make red wine,) chocolates, etc. Flavonoids are known to have enormous health benefits, such as anticancer, antiviral, anti-inflammatory, and antiallergic properties. They are known to arrest the cell cycle of the tumor cells and induces apoptosis by modulating Bcl-2, Bax, and Caspase activity. They show a considerable effect on cell proliferation and viability and angiogenesis. Various studies were performed at both the biochemical and molecular levels. The importance of flavonoids in cancer treatment and its methods of extraction and purification to date have been reported as individual publications. However, this review article explains the potentiality of flavonoids against TNBC in the preclinical levels and also emphasizes their molecular mechanism of action, along with a brief introduction to its methods of extraction, isolation, and purification in general, emphasizing the fact that its quantum of yield if enhanced and its possible synergistic effects with existing chemotherapeutics may pave the way for better anticancer agents of natural origin and significantly lessened side-effects.
Collapse
|
6
|
Li Q, Feng P, Lin S, Xu Z, Zhao J, Chen Z, Luo Z, Tao Y, Chen S, Wang P. Crocetin confers neuroprotection and is anti-inflammatory in rats with induced glaucoma. Mol Biol Rep 2023; 50:1321-1331. [PMID: 36456771 DOI: 10.1007/s11033-022-08102-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 11/08/2022] [Indexed: 12/03/2022]
Abstract
BACKGROUND Crocetin is a bioactive ingredient in saffron, derived from the Crocus sativus stigmas of the Iridaceae family. As a chemically carotenoid derivative, crocetin exhibites effects like anti-inflammatory, antioxidant, neuroprotective, etc. However, the protective effect of crocetin on glaucoma and its mechanism remains unclear. The current study assesed the neuroprotective and anti-inflammatory effects of crocetin on retinal neurons in glaucoma rats which were induced by 0.3% carbomer injection into the anterior chamber. METHODS AND RESULTS The pathological structures on the retina and optic nerve were observed and examined by H&E staining and transmission electron microscopy. Immunohistochemical staining was used to detect the expression of TNF-α, IL-1β, and IL-6 of the retina and the expression of a brain-derived neurotrophic factor (BDNF) in the primary visual cortex (PVC). Western blot was carried out to detect the expression of PI3K, Akt, and NF-κB in the retina. It was found that crocetin ameliorated the pathological changes of the retina and ON and reduced the number of apoptotic retinal ganglion cells. Immunohistochemical staining showed that crocetin could decrease the contents of TNF-α, IL-1β, and IL-6 and increase the contents of BDNF. Western blot showed that crocetin was found to suppress the expression of PI3K, Akt, and NF-κB. CONCLUSION The results obtained in this study have indicated that crocetin showes neuroprotective effects on retinal ganglion cells in glaucoma rats and inhibits retinal dysfunction. Meanwhile, crocetin exerted an anti-inflammatory effect to protect the retina by inhibiting the expression of the PI3K/Akt/NF-κB signaling pathway. This work provides substantial evidence that crocetin may be a potential drug for the treatment of glaucoma.
Collapse
Affiliation(s)
- Qiaoqiao Li
- College of Pharmaceutical Sciences, Zhejiang University of Technology, No.18, Chaowang Road, 310014, Hangzhou, People's Republic of China
| | - Peishi Feng
- College of Pharmaceutical Sciences, Zhejiang University of Technology, No.18, Chaowang Road, 310014, Hangzhou, People's Republic of China
| | - Susu Lin
- College of Pharmaceutical Sciences, Zhejiang University of Technology, No.18, Chaowang Road, 310014, Hangzhou, People's Republic of China
| | - Zijin Xu
- College of Pharmaceutical Sciences, Zhejiang University of Technology, No.18, Chaowang Road, 310014, Hangzhou, People's Republic of China
- College of Pharmacy, Jiangxi Medical College, 334000, Shangrao, Jiangxi, People's Republic of China
| | - Jiajing Zhao
- College of Pharmaceutical Sciences, Zhejiang University of Technology, No.18, Chaowang Road, 310014, Hangzhou, People's Republic of China
| | - Ziwei Chen
- College of Pharmaceutical Sciences, Zhejiang University of Technology, No.18, Chaowang Road, 310014, Hangzhou, People's Republic of China
| | - Zirui Luo
- College of Pharmaceutical Sciences, Zhejiang University of Technology, No.18, Chaowang Road, 310014, Hangzhou, People's Republic of China
| | - Yi Tao
- College of Pharmaceutical Sciences, Zhejiang University of Technology, No.18, Chaowang Road, 310014, Hangzhou, People's Republic of China
| | - Suhong Chen
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, No.18, Chaowang Road, 310014, Hangzhou, Zhejiang, People's Republic of China.
| | - Ping Wang
- College of Pharmaceutical Sciences, Zhejiang University of Technology, No.18, Chaowang Road, 310014, Hangzhou, People's Republic of China.
| |
Collapse
|
7
|
Tew WY, Tan CS, Yan CS, Loh HW, Wen X, Wei X, Yam MF. Evaluation of vasodilatory effect and antihypertensive effect of chrysin through in vitro and sub-chronic in vivo study. Biomed Pharmacother 2023; 157:114020. [PMID: 36469968 DOI: 10.1016/j.biopha.2022.114020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 11/07/2022] [Accepted: 11/13/2022] [Indexed: 12/05/2022] Open
Abstract
Chrysin, a bioflavonoid belonging to the flavone, occurs naturally in plants such as the passionflower, honey and propolis. Few studies have demonstrated that chrysin can promote vasorelaxant activities in rats' aorta and mesenteric arteries. To date, no research has explored the signalling system routes that chrysin may utilise to produce its vasorelaxant action. Therefore, this study aimed to investigate the underlying mechanisms involved in chrysin-induced vasorelaxant in rats' aortic rings and assess the antihypertensive effect of chrysin in spontaneously hypertensive rats (SHRs). The findings revealed that chrysin utilised both endothelium-dependent and endothelium-independent mechanisms. The presence of L-NAME (endothelial NO synthase inhibitor), ODQ (sGC inhibitor), methylene blue (cGMP lowering agent), 4-AP (voltage-gated potassium channel inhibitor), atropine (muscarinic receptors inhibitor) and propranolol (β-adrenergic receptors inhibitor) significantly reduced the chrysin's vasorelaxant action. Furthermore, chrysin can reduce intracellular Ca2+ levels by limiting the extracellular intake of Ca2+ through voltage-operated calcium channels and blocking the intracellular release of Ca2+ from the sarcoplasmic reticulum via the IP3 receptor. These indicate that chrysin-induced vasorelaxants involved NO/sGC/cGMP signalling cascade, muscarinic and β-adrenergic receptors, also the potassium and calcium channels. Although chrysin had vasorelaxant effects in in vitro studies, the in vivo antihypertensive experiment discovered chrysin does not significantly reduce the blood pressure of SHRs following 21 days of oral treatment. This study proved that chrysin utilised multiple signalling pathways to produce its vasorelaxant effect in the thoracic aorta of rats; however, it had no antihypertensive effect on SHRs.
Collapse
Affiliation(s)
- Wan Yin Tew
- College of Pharmacy, Fujian University of Traditional Chinese Medicine, 1 Qiuyang Road, Shangjie, Minhou, Fuzhou 350122, Fujian, China; Department of Pharmacology, School of Pharmaceutical Sciences, Universiti Sains Malaysia, 11800 Minden, Penang, Malaysia
| | - Chu Shan Tan
- Department of Pharmacology, School of Pharmaceutical Sciences, Universiti Sains Malaysia, 11800 Minden, Penang, Malaysia
| | - Chong Seng Yan
- Department of Pharmacology, School of Pharmaceutical Sciences, Universiti Sains Malaysia, 11800 Minden, Penang, Malaysia
| | - Hui Wei Loh
- Department of Pharmacology, School of Pharmaceutical Sciences, Universiti Sains Malaysia, 11800 Minden, Penang, Malaysia
| | - Xu Wen
- College of Pharmacy, Fujian University of Traditional Chinese Medicine, 1 Qiuyang Road, Shangjie, Minhou, Fuzhou 350122, Fujian, China
| | - Xu Wei
- College of Pharmacy, Fujian University of Traditional Chinese Medicine, 1 Qiuyang Road, Shangjie, Minhou, Fuzhou 350122, Fujian, China.
| | - Mun Fei Yam
- College of Pharmacy, Fujian University of Traditional Chinese Medicine, 1 Qiuyang Road, Shangjie, Minhou, Fuzhou 350122, Fujian, China; Department of Pharmacology, School of Pharmaceutical Sciences, Universiti Sains Malaysia, 11800 Minden, Penang, Malaysia.
| |
Collapse
|
8
|
Comparison of the Drug-Induced Efficacies between Omidenepag Isopropyl, an EP2 Agonist and PGF2α toward TGF-β2-Modulated Human Trabecular Meshwork (HTM) Cells. J Clin Med 2022; 11:jcm11061652. [PMID: 35329980 PMCID: PMC8954773 DOI: 10.3390/jcm11061652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 02/27/2022] [Accepted: 03/13/2022] [Indexed: 11/17/2022] Open
Abstract
To compare the drug-induced efficacies between omidenepag (OMD), an EP2 agonist, and prostaglandin F2α (PGF2α) on glaucomatous trabecular meshwork (TM) cells, two- and three-dimensional (2D and 3D) cultures of TGF-β2-modulated human trabecular meshwork (HTM) cells were used. The following analyses were performed: (1) transendothelial electrical resistance (TEER) and FITC-dextran permeability measurements (2D), (2) the size and stiffness of the 3D spheroids, and (3) the expression (both 2D and 3D) by several extracellular matrix (ECM) molecules including collagen (COL) 1, 4 and 6, and fibronectin (FN), and α smooth muscle actin (αSMA), tight junction (TJ)-related molecules, claudin11 (Cldn11) and ZO1, the tissue inhibitor of metalloproteinase (TIMP) 1–4, matrix metalloproteinase (MMP) 2, 9 and 14, connective tissue growth factor (CTGF), and several endoplasmic reticulum (ER) stress-related factors. TGF-β2 significantly increased the TEER values and decreased FITC-dextran permeability, respectively, in the 2D HTM monolayers, and induced the formation of downsized and stiffer 3D HTM spheroids. TGF-β2-induced changes in TEER levels and FITC-dextran permeability were remarkably inhibited by PGF2α. PGF2α induced increases in the sizes and stiffness of the TGF-β2-treated 3D spheroids, but OMD enhanced only spheroid size. Upon exposure to TGF-β2, the expression of most of the molecules that were evaluated were significantly up-regulated, except some of ER stress-related factors were down-regulated. TJ-related molecules or ER stress-related factors were significantly up-regulated (2D) or down-regulated (3D), and down-regulated (2D) by PGF2α and OMD, while both drugs altered the expression of some of the other genes in the 3D spheroids in a different manner. The findings presented herein suggest that PGF2α and OMD differently modulate the permeability of the TGFβ2-modulated 2D monolayers and the physical properties of the 3D HTM spheroids.
Collapse
|
9
|
Herbal medicine for ocular diseases: An age old therapy and its future perspective. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2021.102979] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
10
|
Vernazza S, Tirendi S, Passalacqua M, Piacente F, Scarfì S, Oddone F, Bassi AM. An Innovative In Vitro Open-Angle Glaucoma Model (IVOM) Shows Changes Induced by Increased Ocular Pressure and Oxidative Stress. Int J Mol Sci 2021; 22:ijms222212129. [PMID: 34830007 PMCID: PMC8622817 DOI: 10.3390/ijms222212129] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 10/26/2021] [Accepted: 11/08/2021] [Indexed: 02/07/2023] Open
Abstract
Primary Open-Angle Glaucoma (POAG) is a neurodegenerative disease, and its clinical outcomes lead to visual field constriction and blindness. POAG's etiology is very complex and its pathogenesis is mainly explained through both mechanical and vascular theories. The trabecular meshwork (TM), the most sensitive tissue of the eye anterior segment to oxidative stress (OS), is the main tissue involved in early-stage POAG, characterized by an increase in pressure. Preclinical assessments of neuroprotective drugs on animal models have not always shown correspondence with human clinical studies. In addition, intra-ocular pressure management after a glaucoma diagnosis does not always prevent blindness. Recently, we have been developing an innovative in vitro 3Dadvanced human trabecular cell model on a millifluidicplatform as a tool to improve glaucoma studies. Herein, we analyze the effects of prolonged increased pressure alone and, in association with OS, on such in vitro platform. Moreover, we verify whethersuch damaged TM triggers apoptosis on neuron-like cells. The preliminary results show that TM cells are less sensitive to pressure elevation than OS, and OS-damaging effects were worsened by the pressure increase. The stressed TM releases harmful signals, which increase apoptosis stimuli on neuron-like cells, suggesting its pivotal role in the glaucoma cascade.
Collapse
Affiliation(s)
- Stefania Vernazza
- Department of Experimental Medicine (DIMES), University of Genoa, 16132 Genoa, Italy; (S.V.); (S.T.); (F.P.); (A.M.B.)
| | - Sara Tirendi
- Department of Experimental Medicine (DIMES), University of Genoa, 16132 Genoa, Italy; (S.V.); (S.T.); (F.P.); (A.M.B.)
- Inter-University Center for the Promotion of the 3Rs Principles in Teaching & Research (Centro 3R), 56122 Pisa, Italy;
| | - Mario Passalacqua
- Department of Experimental Medicine (DIMES), University of Genoa, 16132 Genoa, Italy; (S.V.); (S.T.); (F.P.); (A.M.B.)
- Inter-University Center for the Promotion of the 3Rs Principles in Teaching & Research (Centro 3R), 56122 Pisa, Italy;
- Correspondence:
| | - Francesco Piacente
- Department of Experimental Medicine (DIMES), University of Genoa, 16132 Genoa, Italy; (S.V.); (S.T.); (F.P.); (A.M.B.)
| | - Sonia Scarfì
- Inter-University Center for the Promotion of the 3Rs Principles in Teaching & Research (Centro 3R), 56122 Pisa, Italy;
- Department of Earth, Environmental and Life Sciences (DISTAV), University of Genoa, 16132 Genoa, Italy
| | | | - Anna Maria Bassi
- Department of Experimental Medicine (DIMES), University of Genoa, 16132 Genoa, Italy; (S.V.); (S.T.); (F.P.); (A.M.B.)
- Inter-University Center for the Promotion of the 3Rs Principles in Teaching & Research (Centro 3R), 56122 Pisa, Italy;
| |
Collapse
|
11
|
Coyle S, Khan MN, Chemaly M, Callaghan B, Doyle C, Willoughby CE, Atkinson SD, Gregory-Ksander M, McGilligan V. Targeting the NLRP3 Inflammasome in Glaucoma. Biomolecules 2021; 11:biom11081239. [PMID: 34439904 PMCID: PMC8393362 DOI: 10.3390/biom11081239] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 08/11/2021] [Accepted: 08/13/2021] [Indexed: 12/16/2022] Open
Abstract
Glaucoma is a group of optic neuropathies characterised by the degeneration of retinal ganglion cells, resulting in damage to the optic nerve head (ONH) and loss of vision in one or both eyes. Increased intraocular pressure (IOP) is one of the major aetiological risk factors in glaucoma, and is currently the only modifiable risk factor. However, 30–40% of glaucoma patients do not present with elevated IOP and still proceed to lose vision. The pathophysiology of glaucoma is therefore not completely understood, and there is a need for the development of IOP-independent neuroprotective therapies to preserve vision. Neuroinflammation has been shown to play a key role in glaucoma and, specifically, the NLRP3 inflammasome, a key driver of inflammation, has recently been implicated. The NLRP3 inflammasome is expressed in the eye and its activation is reported in pre-clinical studies of glaucoma. Activation of the NLRP3 inflammasome results in IL-1β processing. This pro inflammatory cytokine is elevated in the blood of glaucoma patients and is believed to drive neurotoxic inflammation, resulting in axon degeneration and the death of retinal ganglion cells (RGCs). This review discusses glaucoma as an inflammatory disease and evaluates targeting the NLRP3 inflammasome as a therapeutic strategy. A hypothetical mechanism for the action of the NLRP3 inflammasome in glaucoma is presented.
Collapse
Affiliation(s)
- Sophie Coyle
- Northern Ireland Centre for Stratified Medicine, Ulster University, Londonderry BT47 6SB, UK; (S.C.); (M.N.K.); (S.D.A.)
| | - Mohammed Naeem Khan
- Northern Ireland Centre for Stratified Medicine, Ulster University, Londonderry BT47 6SB, UK; (S.C.); (M.N.K.); (S.D.A.)
| | - Melody Chemaly
- Department of Molecular Medicine and Surgery, Karolinska Institute, SE-171 76 Solna, Sweden;
| | - Breedge Callaghan
- Centre for Molecular Biosciences, Biomedical Sciences Research Institute, Ulster University, Coleraine BT52 1SA, UK; (B.C.); (C.D.); (C.E.W.)
| | - Chelsey Doyle
- Centre for Molecular Biosciences, Biomedical Sciences Research Institute, Ulster University, Coleraine BT52 1SA, UK; (B.C.); (C.D.); (C.E.W.)
| | - Colin E. Willoughby
- Centre for Molecular Biosciences, Biomedical Sciences Research Institute, Ulster University, Coleraine BT52 1SA, UK; (B.C.); (C.D.); (C.E.W.)
| | - Sarah D. Atkinson
- Northern Ireland Centre for Stratified Medicine, Ulster University, Londonderry BT47 6SB, UK; (S.C.); (M.N.K.); (S.D.A.)
| | - Meredith Gregory-Ksander
- Department of Ophthalmology, Schepens Eye Research Institute, Massachusetts Eye & Ear Infirmary and Harvard Medical School, Boston, MA 02114, USA;
| | - Victoria McGilligan
- Northern Ireland Centre for Stratified Medicine, Ulster University, Londonderry BT47 6SB, UK; (S.C.); (M.N.K.); (S.D.A.)
- Correspondence:
| |
Collapse
|
12
|
Krstić L, González-García MJ, Diebold Y. Ocular Delivery of Polyphenols: Meeting the Unmet Needs. Molecules 2021; 26:molecules26020370. [PMID: 33445725 PMCID: PMC7828190 DOI: 10.3390/molecules26020370] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 01/04/2021] [Accepted: 01/06/2021] [Indexed: 12/14/2022] Open
Abstract
Nature has become one of the main sources of exploration for researchers that search for new potential molecules to be used in therapy. Polyphenols are emerging as a class of compounds that have attracted the attention of pharmaceutical and biomedical scientists. Thanks to their structural peculiarities, polyphenolic compounds are characterized as good scavengers of free radical species. This, among other medicinal effects, permits them to interfere with different molecular pathways that are involved in the inflammatory process. Unfortunately, many compounds of this class possess low solubility in aqueous solvents and low stability. Ocular pathologies are spread worldwide. It is estimated that every individual at least once in their lifetime experiences some kind of eye disorder. Oxidative stress or inflammatory processes are the basic etiological mechanisms of many ocular pathologies. A variety of polyphenolic compounds have been proved to be efficient in suppressing some of the indicators of these pathologies in in vitro and in vivo models. Further application of polyphenolic compounds in ocular therapy lacks an adequate formulation approach. Therefore, more emphasis should be put in advanced delivery strategies that will overcome the limits of the delivery site as well as the ones related to the polyphenols in use. This review analyzes different drug delivery strategies that are employed for the formulation of polyphenolic compounds when used to treat ocular pathologies related to oxidative stress and inflammation.
Collapse
Affiliation(s)
- Luna Krstić
- Insituto de Oftalmobiología Aplicada (IOBA), Universidad de Valladolid, 47011 Valladolid, Spain; (L.K.); (M.J.G.-G.)
| | - María J. González-García
- Insituto de Oftalmobiología Aplicada (IOBA), Universidad de Valladolid, 47011 Valladolid, Spain; (L.K.); (M.J.G.-G.)
- Centro de Investigación Biomédica en Red Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Yolanda Diebold
- Insituto de Oftalmobiología Aplicada (IOBA), Universidad de Valladolid, 47011 Valladolid, Spain; (L.K.); (M.J.G.-G.)
- Centro de Investigación Biomédica en Red Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Correspondence: ; Tel.: +34-883423274
| |
Collapse
|
13
|
Saccà SC, Izzotti A, Vernazza S, Tirendi S, Scarfì S, Gandolfi S, Bassi AM. Can Polyphenols in Eye Drops Be Useful for Trabecular Protection from Oxidative Damage? J Clin Med 2020; 9:jcm9113584. [PMID: 33172106 PMCID: PMC7694784 DOI: 10.3390/jcm9113584] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 11/03/2020] [Accepted: 11/04/2020] [Indexed: 12/24/2022] Open
Abstract
Polyphenols, with anti-oxidant properties, counteract oxidative stress effects. Increasing evidence has found oxidative stressto be the main risk factor for trabecular meshwork (TM) damage, leading to high-tension glaucoma. Topical anti-oxidants could represent a new target for glaucoma treatment. Our aim is to investigate the protective mechanisms on a human TM culture of a patented polyphenol and fatty acid (iTRAB®)formulation in response to oxidative stress using an advanced invitromodel consisting of 3D-human TM cells, embedded in a natural hydrogel, and a milli-scaled multi-organ device model for constantdynamic conditions. The 3D-human TM cells(3D-HTMCs) were treated daily with 500 µM H2O2or 500 µM H2O2and 0.15% iTRAB®(m/v) for 72 h, and molecular differences in the intracellular reactive oxygen species (iROS), state of the cells, activation of the apoptosis pathway and NF-kB and the expression ofinflammatory and fibrotic markers wereanalyzed at different time-points.Concomitant exposure significantly reduced iROS and restored TM viability, iTRAB® having a significant inhibitory effect on the apoptotic pathway, activation of NF-κB, induction of pro-inflammatory (IL-1α, IL-1ß and TNFα) and pro-fibrotic (TGFβ) cytokines and the matrix metalloproteinase expressions. It is clear that this specific anti-oxidant provides a valid TM protection, suggesting iTRAB® could be an adjuvant therapy in primary open-angle glaucoma (POAG).
Collapse
Affiliation(s)
| | - Alberto Izzotti
- Department of Experimental Medicine (DIMES), University of Genoa, 16132 Genoa, Italy; (A.I.); (S.T.); (A.M.B.)
| | - Stefania Vernazza
- IRCCS-Fondazione Bietti via Livenza 3, 00198 Rome, Italy
- Correspondence: ; Tel.: +39-3473892160
| | - Sara Tirendi
- Department of Experimental Medicine (DIMES), University of Genoa, 16132 Genoa, Italy; (A.I.); (S.T.); (A.M.B.)
- Inter-University Center for the Promotion of the 3Rs Principles in Teaching & Research (Centro 3R), Italy;
| | - Sonia Scarfì
- Inter-University Center for the Promotion of the 3Rs Principles in Teaching & Research (Centro 3R), Italy;
- Department of Earth, Environmental and Life Sciences (DISTAV), University of Genoa, 16132 Genoa, Italy
| | - Stefano Gandolfi
- Ophthalmology Unit, Department of Biological, Biotechnological and Translational Sciences, University of Parma, 43121 Parma, Italy;
| | - Anna Maria Bassi
- Department of Experimental Medicine (DIMES), University of Genoa, 16132 Genoa, Italy; (A.I.); (S.T.); (A.M.B.)
- Inter-University Center for the Promotion of the 3Rs Principles in Teaching & Research (Centro 3R), Italy;
| |
Collapse
|
14
|
Baudouin C, Kolko M, Melik-Parsadaniantz S, Messmer EM. Inflammation in Glaucoma: From the back to the front of the eye, and beyond. Prog Retin Eye Res 2020; 83:100916. [PMID: 33075485 DOI: 10.1016/j.preteyeres.2020.100916] [Citation(s) in RCA: 195] [Impact Index Per Article: 39.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Revised: 10/09/2020] [Accepted: 10/13/2020] [Indexed: 02/08/2023]
Abstract
The pathophysiology of glaucoma is complex, multifactorial and not completely understood. Elevated intraocular pressure (IOP) and/or impaired retinal blood flow may cause initial optic nerve damage. In addition, age-related oxidative stress in the retina concurrently with chronic mechanical and vascular stress is crucial for the initiation of retinal neurodegeneration. Oxidative stress is closely related to cell senescence, mitochondrial dysfunction, excitotoxicity, and neuroinflammation, which are involved in glaucoma progression. Accumulating evidence from animal glaucoma models and from human ocular samples suggests a dysfunction of the para-inflammation in the retinal ganglion cell layer and the optic nerve head. Moreover, quite similar mechanisms in the anterior chamber could explain the trabecular meshwork dysfunction and the elevated IOP in primary open-angle glaucoma. On the other hand, ocular surface disease due to topical interventions is the most prominent and visible consequence of inflammation in glaucoma, with a negative impact on filtering surgery failure, topical treatment efficacy, and possibly on inflammation in the anterior segment. Consequently, glaucoma appears as an outstanding eye disease where inflammatory changes may be present to various extents and consequences along the eye structure, from the ocular surface to the posterior segment, and the visual pathway. Here we reviewed the inflammatory processes in all ocular structures in glaucoma from the back to the front of the eye and beyond. Our approach was to explain how para-inflammation is necessary to maintain homoeostasis, and to describe abnormal inflammatory findings observed in glaucomatous patients or in animal glaucoma models, supporting the hypothesis of a dysregulation of the inflammatory balance toward a pro-inflammatory phenotype. Possible anti-inflammatory therapeutic approaches in glaucoma are also discussed.
Collapse
Affiliation(s)
- Christophe Baudouin
- Quinze-Vingts National Ophthalmology Hospital, INSERM-DGOS CIC 1423, IHU Foresight, Paris, France; Sorbonne Université, INSERM, CNRS, Institut de La Vision, Paris, France; Department of Ophthalmology, Ambroise Paré Hospital, APHP, Université de Versailles Saint-Quentin en Yvelines, Boulogne-Billancourt, France.
| | - Miriam Kolko
- Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark; Department of Ophthalmology, Copenhagen University Hospital, Rigshospitalet-Glostrup, Glostrup, Denmark
| | | | | |
Collapse
|
15
|
Sun F, Zheng Z, Lan J, Li X, Li M, Song K, Wu X. New micelle myricetin formulation for ocular delivery: improved stability, solubility, and ocular anti-inflammatory treatment. Drug Deliv 2019; 26:575-585. [PMID: 31172843 PMCID: PMC6567238 DOI: 10.1080/10717544.2019.1622608] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Myricetin (Myr) is a naturally occurring flavonoid exhibiting diverse biological and pharmacological properties, but its characteristics such as water insolubility, poor aqueous stability, and poor bioavailability limit its clinical application, including in ophthalmology. To increase its clinical application in ophthalmology, Myr was designed to be encapsulated in a polyvinyl caprolactam-polyvinyl acetate-polyethylene glycol graft copolymer (PVCL-PVA-PEG) polymeric micelles to increases its aqueous solubility, stability, and corneal permeability to promote its efficacy in eye disease treatments. Thus, the Myr micelle ophthalmic solution was prepared and characterized encapsulation efficiency (EE), micelle size, and zeta potential. The chemical stability of Myr and the short-term storage stability of the Myr micelle ophthalmic solution were evaluated, followed by in vitro cytotoxicity and in vivo ocular irritation; in vitro cellular uptake and in vivo corneal permeation; and in vitro antioxidant activity and in vivo anti-inflammatory efficacy were also further evaluated. Myr could be incorporated into micelles with high EE. PVCL-PVA-PEG micelles significantly enhanced Myr's aqueous solubility and chemical stability. The Myr micelle ophthalmic solution also showed high storage stability. In rabbits, the Myr micelle ophthalmic solution displayed good in vitro cellular tolerance. Remarkable improvements in in vitro cellular uptake and in vivo corneal permeation were also observed in the Myr micelle ophthalmic solution, and significant improvements in the in vitro antioxidant activity and in vivo anti-inflammatory efficacy were also obtained. Overall, these results supported that the Myr micelle ophthalmic solution could be a promising nanomedicine for ocular tissues.
Collapse
Affiliation(s)
- Fengyuan Sun
- a Department of Pharmacy, College of Chemical Engineering , Qingdao University of Science and Technology , Qingdao , China
| | - Zhou Zheng
- b Key Laboratory of Marine Bioactive Substances , First Institute of Oceanography, State Oceanic Administration , Qingdao , China
| | - Jie Lan
- c Qingdao Eye Hospital, Shandong Eye Institute , Shandong Academy of Medical Sciences , Qingdao , China
| | - Xuefei Li
- a Department of Pharmacy, College of Chemical Engineering , Qingdao University of Science and Technology , Qingdao , China
| | - Mengshuang Li
- a Department of Pharmacy, College of Chemical Engineering , Qingdao University of Science and Technology , Qingdao , China.,d Pharmacy Intravenous Admixture Services , Qingdao Women and Children's Hospital , Qingdao , China
| | - Kaichao Song
- a Department of Pharmacy, College of Chemical Engineering , Qingdao University of Science and Technology , Qingdao , China
| | - Xianggen Wu
- a Department of Pharmacy, College of Chemical Engineering , Qingdao University of Science and Technology , Qingdao , China.,e Key Laboratory of Pharmaceutical Research for Metabolic Diseases , Qingdao University of Science and Technology , Qingdao , China
| |
Collapse
|