1
|
Bastani MN, Jalilian S. Unraveling the enigma: The emerging significance of pulmonary surfactant proteins in predicting, diagnosing, and managing COVID-19. Immun Inflamm Dis 2024; 12:e1302. [PMID: 38860749 PMCID: PMC11165688 DOI: 10.1002/iid3.1302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 04/23/2024] [Accepted: 05/19/2024] [Indexed: 06/12/2024] Open
Abstract
BACKGROUND Severe cases of COVID-19 often lead to the development of acute respiratory syndrome, a critical condition believed to be caused by the harmful effects of SARS-CoV-2 on type II alveolar cells. These cells play a crucial role in producing pulmonary surfactants, which are essential for proper lung function. Specifically focusing on surfactant proteins, including Surfactant protein A (SP-A), Surfactant protein B, Surfactant protein C, and Surfactant protein D (SP-D), changes in the levels of pulmonary surfactants may be a significant factor in the pathological changes seen in COVID-19 infection. OBJECTIVE This study aims to gain insights into surfactants, particularly their impacts and changes during COVID-19 infection, through a comprehensive review of current literature. The study focuses on the function of surfactants as prognostic markers, diagnostic factors, and essential components in the management and treatment of COVID-19. FINDING In general, pulmonary surfactants serve to reduce the surface tension at the gas-liquid interface, thereby significantly contributing to the regulation of respiratory mechanics. Additionally, these surfactants play a crucial role in the innate immune system within the pulmonary microenvironment. Within the spectrum of COVID-19 infections, a compelling association is observed, characterized by elevated levels of SP-D and SP-A across a range of manifestations from mild to severe pneumonia. The sudden decline in respiratory function observed in COVID-19 patients may be attributed to the decreased synthesis of surfactants by type II alveolar cells. CONCLUSION Collectin proteins such as SP-A and SP-D show promise as biomarkers, offering potential avenues for predicting and monitoring pulmonary alveolar injury in the context of COVID-19. This clarification enhances our understanding of the molecular complexities contributing to respiratory complications in severe COVID-19 cases, providing a foundation for targeted therapeutic approaches using surfactants and refined clinical management strategies.
Collapse
Affiliation(s)
- Mohammad Navid Bastani
- Department of Medical Virology, School of MedicineAhvaz Jundishapur University of Medical SciencesAhvazIran
| | - Shahram Jalilian
- Department of Medical Virology, School of MedicineAhvaz Jundishapur University of Medical SciencesAhvazIran
| |
Collapse
|
2
|
Santo KP, Neimark AV. Adsorption of pulmonary and exogeneous surfactants on SARS-CoV-2 spike protein. J Colloid Interface Sci 2023; 650:28-39. [PMID: 37392497 PMCID: PMC10279468 DOI: 10.1016/j.jcis.2023.06.121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 06/06/2023] [Accepted: 06/17/2023] [Indexed: 07/03/2023]
Abstract
COVID-19 is transmitted by airborne particles containing virions of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Coronavirus virions represent nanoparticles enveloped by a lipid bilayer decorated by a "crown" of Spike protein protrusions. Virus transmission into the cells is induced by binding of Spike proteins with ACE2 receptors of alveolar epithelial cells. Active clinical search is ongoing for exogenous surfactants and biologically active chemicals capable of hindering virion-receptor binding. Here, we explore by using coarse-grained molecular dynamics simulations the physico-chemical mechanisms of adsorption of selected pulmonary surfactants, zwitterionic dipalmitoyl phosphatidyl choline and cholesterol, and exogeneous anionic surfactant, sodium dodecyl sulfate, on the S1-domain of the Spike protein. We show that surfactants form micellar aggregates that selectively adhere to the specific regions of the S1-domain that are responsible for binding with ACE2 receptors. We find distinctly higher cholesterol adsorption and stronger cholesterol-S1 interactions in comparison with other surfactants, that is consistent with the experimental observations of the effects of cholesterol on COVID-19 infection. Distribution of adsorbed surfactant along the protein residue chain is highly specific and inhomogeneous with preferential adsorption around specific amino acid sequences. We observe preferential adsorption of surfactants on cationic arginine and lysine residues in the receptor-binding domain (RBD) that play an important role in ACE2 binding and are present in higher amounts in Delta and Omicron variants, which may lead to blocking direct Spike-ACE2 interactions. Our findings of strong selective adhesion of surfactant aggregates to Spike proteins have important implications for informing clinical search for therapeutic surfactants for curing and preventing COVID-19 caused by SARS-CoV-2 and its variants.
Collapse
Affiliation(s)
- Kolattukudy P Santo
- Department of Chemical and Biochemical Engineering, Rutgers, the State University of New Jersey, Piscataway, NJ 08854, USA
| | - Alexander V Neimark
- Department of Chemical and Biochemical Engineering, Rutgers, the State University of New Jersey, Piscataway, NJ 08854, USA.
| |
Collapse
|
3
|
Kumari K, Nandi A, Sinha A, Ghosh A, Sengupta S, Saha U, Singh PK, Panda PK, Raina V, Verma SK. The paradigm of prophylactic viral outbreaks measures by microbial biosurfactants. J Infect Public Health 2023; 16:575-587. [PMID: 36840992 PMCID: PMC9940476 DOI: 10.1016/j.jiph.2023.02.016] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 01/19/2023] [Accepted: 02/16/2023] [Indexed: 02/22/2023] Open
Abstract
The recent emergence and outbreak of the COVID-19 pandemic confirmed the incompetence of countries across the world to deal with a global public health emergency. Although the recent advent of vaccines is an important prophylactic measure, effective clinical therapy for SARS-Cov-2 is yet to be discovered. With the increasing mortality rate, research has been focused on understanding the pathogenic mechanism and clinical parameters to comprehend COVID-19 infection and propose new avenues for naturally occurring molecules with novel therapeutic properties to alleviate the current situation. In accordance with recent clinical studies and SARS-CoV-2 infection markers, cytokine storm and oxidative stress are entwined pathogenic processes in COVID-19 progression. Lately, Biosurfactants (BSs) have been studied as one of the most advanced biomolecules of microbial origin with anti-inflammatory, antioxidant, antiviral properties, antiadhesive, and antimicrobial properties. Therefore, this review inspects available literature and proposes biosurfactants with these properties to be encouraged for their extensive study in dealing with the current pandemic as new pharmaceutics in the prevention and control of viral spread, treating the symptoms developed after the incubation period through different therapeutic approaches and playing a potential drug delivery model.
Collapse
Affiliation(s)
- Khushbu Kumari
- School of Biotechnology, KIIT Deemed to be University, 751024, India
| | - Aditya Nandi
- School of Biotechnology, KIIT Deemed to be University, 751024, India
| | - Adrija Sinha
- School of Biotechnology, KIIT Deemed to be University, 751024, India
| | - Aishee Ghosh
- School of Biotechnology, KIIT Deemed to be University, 751024, India
| | - Srabasti Sengupta
- School of Biotechnology, KIIT Deemed to be University, 751024, India
| | - Utsa Saha
- School of Biotechnology, KIIT Deemed to be University, 751024, India
| | - Pawan K Singh
- BVG Life Sciences Limited, Sagar Complex, Near Nashikphata, Old Pune-Mumbai Road, Chinchwad, Pune 411034, India
| | - Pritam Kumar Panda
- Department of Physics and Astronomy, Uppsala University, Box 516, SE-75120 Uppsala, Sweden.
| | - Vishakha Raina
- School of Biotechnology, KIIT Deemed to be University, 751024, India.
| | - Suresh K Verma
- School of Biotechnology, KIIT Deemed to be University, 751024, India.
| |
Collapse
|
4
|
Sakač N, Madunić-Čačić D, Marković D, Jozanović M. Study of Cationic Surfactants Raw Materials for COVID-19 Disinfecting Formulations by Potentiometric Surfactant Sensor. SENSORS (BASEL, SWITZERLAND) 2023; 23:2126. [PMID: 36850724 PMCID: PMC9964672 DOI: 10.3390/s23042126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Revised: 02/08/2023] [Accepted: 02/12/2023] [Indexed: 06/18/2023]
Abstract
The behavior of a new 1,3-dioctadecyl-1H-imidazol-3-ium tetraphenylborate (DODI-TPB) surfactant sensor was studied in single and complex mixtures of technical grade QACs-benzalkonium chloride (BAC), N,N-didecyl-N,N-dimethylammonium chloride (DDAC), and N,N-dioctyl-N,N-dimethylammonium chloride (DOAC) usually used in COVID-19 disinfecting agents formulations. The results obtained with the new DODI-TPB sensor were in good agreement with data measured by a 1,3-dihexadecyl-1H-benzo[d]imidazol-3-ium-tetraphenylborate (DMI-TPB) surfactant sensor, as well as two-phase titration used as a reference method. The quantitative titrations of a two-component mixture of the cationic homologs (a) DDAC and DOAC; and (b) BAC and DOAC showed that the new DODI-TPB surfactant sensor can clearly distinguish two separate mixture components in a single potentiometric titration curve with two characteristic inflexion points. The consumption of SDS (used as a titrant) in the end-point 1 (EP 1) corresponded to the content of DDAC (or BAC), whereas the consumption in the end-point 2 (EP 2) corresponded to the total content of both cationic surfactants in the mixture. DOAC content in both mixtures can be calculated from the difference of the titrant used to achieve EP1 and EP2. The addition of nonionic surfactants resulted in the signal change decrease from 333.2 mV (1:0; no nonionic surfactant added) to 243.0 mV (1:10, w/w). The sensor was successfully tested in ten two-component COVID-19 disinfecting formulations.
Collapse
Affiliation(s)
- Nikola Sakač
- Faculty of Geotechnical Engineering, University of Zagreb, 42000 Varaždin, Croatia
| | | | - Dean Marković
- Department of Biotechnology, University of Rijeka, 51000 Rijeka, Croatia
| | - Marija Jozanović
- Department of Chemistry, University of Osijek, 31000 Osijek, Croatia
| |
Collapse
|
5
|
Krygier A, Szmajda-Krygier D, Świechowski R, Pietrzak J, Wosiak A, Wodziński D, Balcerczak E. Molecular Pathogenesis of Fibrosis, Thrombosis and Surfactant Dysfunction in the Lungs of Severe COVID-19 Patients. Biomolecules 2022; 12:1845. [PMID: 36551272 PMCID: PMC9776352 DOI: 10.3390/biom12121845] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 12/06/2022] [Accepted: 12/08/2022] [Indexed: 12/14/2022] Open
Abstract
The global scope and scale of the SARS-CoV-2 pandemic led to huge amounts of important data from clinical observations and experimental analyses being collected, in particular, regarding the long-term impact of COVID-19 on lung tissue. Visible changes in lung tissue mainly relate to the destruction of the alveolar architecture, dense cellularity, and pulmonary fibrosis with myofibroblast proliferation and collagen deposition. These changes are the result of infection, mainly with virus variants from the first pandemic waves (Alpha to Delta). In addition, proper regulation of immune responses to pathogenic viral stimuli is critical for the control of and recovery from tissue/organ damage, including in the lungs. We can distinguish three main processes in the lungs during SARS-CoV-2 infection: damage or deficiency of the pulmonary surfactant, coagulation processes, and fibrosis. Understanding the molecular basis of these processes is extremely important in the context of elucidating all pathologies occurring after virus entry. In the present review, data on the abovementioned three biochemical processes that lead to pathological changes are gathered together and discussed. Systematization of the knowledge is necessary to explore the three key pathways in lung tissue after SARS-CoV-2 virus infection as a result of a prolonged and intense inflammatory process in the context of pulmonary fibrosis, hemostatic disorders, and disturbances in the structure and/or metabolism of the surfactant. Despite the fact that the new Omicron variant does not affect the lungs as much as the previous variants, we cannot ignore the fact that other new mutations and emerging variants will not cause serious damage to the lung tissue. In the future, this review will be helpful to stratify the risk of serious complications in patients, to improve COVID-19 treatment outcomes, and to select those who may develop complications before clinical manifestation.
Collapse
Affiliation(s)
| | - Dagmara Szmajda-Krygier
- Laboratory of Molecular Diagnostics and Pharmacogenomics, Department of Pharmaceutical Biochemistry and Molecular Diagnostics, Medical University of Lodz, Muszynskiego 1, 90-151 Lodz, Poland
| | | | | | | | | | | |
Collapse
|
6
|
Liu Q, Xue J, Zhang X, Chai J, Qin L, Guan J, Zhang X, Mao S. Biomimetic pulmonary surfactant modification on the in vivo fate of nanoparticles in the lung. Acta Biomater 2022; 147:391-402. [PMID: 35643196 DOI: 10.1016/j.actbio.2022.05.038] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 05/17/2022] [Accepted: 05/19/2022] [Indexed: 12/24/2022]
Abstract
Direct biomimetic modification of nanoparticles (NPs) with endogenous surfactants is helpful to improve the biocompatibility of NPs and avoid damage to the physiological function of the lung. Therefore, the objective of this study is to investigate the influence of biomimetic endogenous pulmonary surfactant phospholipid modification on the in vivo fate of NPs after lung delivery. Here, two neutral phospholipids (dipalmitoylphosphatidylcholine (DPPC), dipalmitoylphosphatidylamine (DPPE)) and two negatively charged phospholipids (dipalmitoylphosphatidylglycerol (DPPG), dipalmitoylphosphatidylserine (DPPS)) were selected to modify paclitaxel (PTX)-loaded PLGA NPs with different molar ratio. DPPC, DPPE, and DPPG improved mucoadhesion, in contrast, DPPS improved the mucus permeability of the NPs. Neutral DPPC and DPPE reduced, but negatively charged DPPS and DPPG increased the uptake by alveolar macrophages, all types of phospholipid increased the uptake by lung epithelial cells and increased PTX retention in the whole lung. Whereas, DPPC, DPPE, and DPPG promoted PTX retention in bronchoalveolar lavage fluid (BALF), while DPPS promoted PTX absorption in the lung tissue. Only DPPS-PLGA (1:1) NPs remarkably increased PTX systemic exposure. A good correlation between PTX percentage in the supernatant of BALF and PTX concentration in plasma was established, implying PTX entered the system circulation mainly in molecular form. Phospholipid modification had no effect on extrapulmonary organ distribution of PTX. Taken together, our study disclosed that different phospholipid modification can endow the NPs mucoadhesive or mucus penetration and cellular uptake properties, with tunable retention in BALF and absorption in the lung tissue, providing the scientific background for translational nanocarrier design for inhalation as required. STATEMENT OF SIGNIFICANCE: Inhaled nanomedicines will inevitably interact with pulmonary surfactant and form "surfactant corona". However, the contribution of individual pulmonary surfactant phospholipid on the in vivo fate of nanomedicines is still unclear. In this regard, the most abundant pulmonary surfactant phospholipid dipalmitoylphosphatidylcholine and dipalmitoylphosphatidylamine, and dipalmitoylphosphatidylglycerol and dipalmitoylphosphatidylserine were selected to modify the paclitaxel loaded PLGA nanoparticles and the effect of these pulmonary surfactant phospholipids on their in vivo fate was investigated. It was demonstrated that different phospholipid modification can endow the nanoparticles mucoadhesive or mucus penetration properties, with tunable retention in bronchoalveolar lavage fluid, alveolar macrophages uptake and absorption in the lung tissue. The present study provided a comprehensive understanding for the role of pulmonary surfactant phospholipid on inhaled nanomedicines.
Collapse
Affiliation(s)
- Qiaoyu Liu
- School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, 110016, China
| | - Jingwen Xue
- School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, 110016, China
| | - Xinrui Zhang
- School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, 110016, China
| | - Juanjuan Chai
- School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, 110016, China
| | - Lu Qin
- School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, 110016, China
| | - Jian Guan
- School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, 110016, China
| | - Xin Zhang
- School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, 110016, China
| | - Shirui Mao
- School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, 110016, China.
| |
Collapse
|