1
|
Oppedisano F, De Fazio R, Gugliandolo E, Crupi R, Palma E, Abbas Raza SH, Tilocca B, Merola C, Piras C, Britti D. Mediterranean Plants with Antimicrobial Activity against Staphylococcus aureus, a Meta-Analysis for Green Veterinary Pharmacology Applications. Microorganisms 2023; 11:2264. [PMID: 37764109 PMCID: PMC10534841 DOI: 10.3390/microorganisms11092264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 09/06/2023] [Accepted: 09/07/2023] [Indexed: 09/29/2023] Open
Abstract
Antimicrobial resistance (AMR) has emerged as a global health crisis, necessitating the search for innovative strategies to combat infectious diseases. The unique biodiversity of Italian flora offers a treasure trove of plant species and their associated phytochemicals, which hold immense potential as a solution to address AMR. By investigating the antimicrobial properties of Italian flora and their phytochemical constituents, this study aims to shed light on the potential of phyto-complexes as a valuable resource for developing novel or supportive antimicrobial agents useful for animal production.
Collapse
Affiliation(s)
- Francesca Oppedisano
- Institute of Research for Food Safety & Health (IRC-FSH), Department of Health Sciences, “Magna Græcia University” of Catanzaro, Campus Universitario “Salvatore Venuta” Viale Europa, 88100 Catanzaro, Italy; (F.O.); (E.P.)
| | - Rosario De Fazio
- Department of Health Sciences, “Magna Græcia University” of Catanzaro, Campus Universitario “Salvatore Venuta” Viale Europa, 88100 Catanzaro, Italy; (R.D.F.); (B.T.); (D.B.)
| | - Enrico Gugliandolo
- Department of Veterinary Science, University of Messina, 98166 Messina, Italy; (E.G.); (R.C.)
| | - Rosalia Crupi
- Department of Veterinary Science, University of Messina, 98166 Messina, Italy; (E.G.); (R.C.)
| | - Ernesto Palma
- Institute of Research for Food Safety & Health (IRC-FSH), Department of Health Sciences, “Magna Græcia University” of Catanzaro, Campus Universitario “Salvatore Venuta” Viale Europa, 88100 Catanzaro, Italy; (F.O.); (E.P.)
| | - Sayed Haidar Abbas Raza
- Guangdong Provincial Key Laboratory of Food Quality and Safety, Nation-Local Joint Engineering Research Center for Machining and Safety of Livestock and Poultry Products, South China Agricultural University, Guangzhou 510642, China;
| | - Bruno Tilocca
- Department of Health Sciences, “Magna Græcia University” of Catanzaro, Campus Universitario “Salvatore Venuta” Viale Europa, 88100 Catanzaro, Italy; (R.D.F.); (B.T.); (D.B.)
| | - Carmine Merola
- Department of Bioscience and Technology for Food Agriculture and Environment, University of Teramo, Via Balzarini 1, 64100 Teramo, Italy;
| | - Cristian Piras
- Department of Health Sciences, “Magna Græcia University” of Catanzaro, Campus Universitario “Salvatore Venuta” Viale Europa, 88100 Catanzaro, Italy; (R.D.F.); (B.T.); (D.B.)
- CISVetSUA, University of Catanzaro, Campus Universitario “Salvatore Venuta” Viale Europa, 88100 Catanzaro, Italy
| | - Domenico Britti
- Department of Health Sciences, “Magna Græcia University” of Catanzaro, Campus Universitario “Salvatore Venuta” Viale Europa, 88100 Catanzaro, Italy; (R.D.F.); (B.T.); (D.B.)
- CISVetSUA, University of Catanzaro, Campus Universitario “Salvatore Venuta” Viale Europa, 88100 Catanzaro, Italy
| |
Collapse
|
2
|
Piras C, Tilocca B, Castagna F, Roncada P, Britti D, Palma E. Plants with Antimicrobial Activity Growing in Italy: A Pathogen-Driven Systematic Review for Green Veterinary Pharmacology Applications. Antibiotics (Basel) 2022; 11:919. [PMID: 35884173 PMCID: PMC9311764 DOI: 10.3390/antibiotics11070919] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 06/28/2022] [Accepted: 06/30/2022] [Indexed: 02/05/2023] Open
Abstract
Drug resistance threatening humans may be linked with antimicrobial and anthelmintic resistance in other species, especially among farm animals and, more in general, in the entire environment. From this perspective, Green Veterinary Pharmacology was proven successful for the control of parasites in small ruminants and for the control of other pests such as varroa in bee farming. As in anthelmintic resistance, antimicrobial resistance (AMR) represents one of the major challenges against the successful treatment of infectious diseases, and antimicrobials use in agriculture contributes to the spread of more AMR bacterial phenotypes, genes, and proteins. With this systematic review, we list Italian plants with documented antimicrobial activity against possible pathogenic microbes. Methods: The literature search included all the manuscripts published since 1990 in PubMed, Web of Science, and Scopus using the keywords (i) "antimicrobial, plants, Italy"; (ii) "antibacterial, plant, Italy"; (iii) "essential oil, antibacterial, Italy"; (iv) "essential oil, antimicrobial, Italy"; (v) "methanol extract, antibacterial, Italy"; (vi) "methanol extract, antimicrobial, Italy". Results: In total, 105 manuscripts that documented the inhibitory effect of plants growing in Italy against bacteria were included. One hundred thirty-five plants were recorded as effective against Gram+ bacteria, and 88 against Gram-. This will provide a ready-to-use comprehensive tool to be further tested against the indicated list of pathogens and will suggest new alternative strategies against bacterial pathogens to be employed in Green Veterinary Pharmacology applications.
Collapse
Affiliation(s)
- Cristian Piras
- Department of Health Sciences, “Magna Græcia University” of Catanzaro, Campus Universitario “Salvatore Venuta” Viale Europa, 88100 Catanzaro, Italy; (B.T.); (F.C.); (P.R.); (D.B.); (E.P.)
- Interdepartmental Center Veterinary Service for Human and Animal Health, “Magna Græcia University” of Catanzaro, CISVetSUA, Campus Universitario “Salvatore Venuta” Viale Europa, 88100 Catanzaro, Italy
| | - Bruno Tilocca
- Department of Health Sciences, “Magna Græcia University” of Catanzaro, Campus Universitario “Salvatore Venuta” Viale Europa, 88100 Catanzaro, Italy; (B.T.); (F.C.); (P.R.); (D.B.); (E.P.)
- Interdepartmental Center Veterinary Service for Human and Animal Health, “Magna Græcia University” of Catanzaro, CISVetSUA, Campus Universitario “Salvatore Venuta” Viale Europa, 88100 Catanzaro, Italy
| | - Fabio Castagna
- Department of Health Sciences, “Magna Græcia University” of Catanzaro, Campus Universitario “Salvatore Venuta” Viale Europa, 88100 Catanzaro, Italy; (B.T.); (F.C.); (P.R.); (D.B.); (E.P.)
- Interdepartmental Center Veterinary Service for Human and Animal Health, “Magna Græcia University” of Catanzaro, CISVetSUA, Campus Universitario “Salvatore Venuta” Viale Europa, 88100 Catanzaro, Italy
| | - Paola Roncada
- Department of Health Sciences, “Magna Græcia University” of Catanzaro, Campus Universitario “Salvatore Venuta” Viale Europa, 88100 Catanzaro, Italy; (B.T.); (F.C.); (P.R.); (D.B.); (E.P.)
- Interdepartmental Center Veterinary Service for Human and Animal Health, “Magna Græcia University” of Catanzaro, CISVetSUA, Campus Universitario “Salvatore Venuta” Viale Europa, 88100 Catanzaro, Italy
| | - Domenico Britti
- Department of Health Sciences, “Magna Græcia University” of Catanzaro, Campus Universitario “Salvatore Venuta” Viale Europa, 88100 Catanzaro, Italy; (B.T.); (F.C.); (P.R.); (D.B.); (E.P.)
- Interdepartmental Center Veterinary Service for Human and Animal Health, “Magna Græcia University” of Catanzaro, CISVetSUA, Campus Universitario “Salvatore Venuta” Viale Europa, 88100 Catanzaro, Italy
| | - Ernesto Palma
- Department of Health Sciences, “Magna Græcia University” of Catanzaro, Campus Universitario “Salvatore Venuta” Viale Europa, 88100 Catanzaro, Italy; (B.T.); (F.C.); (P.R.); (D.B.); (E.P.)
- Interdepartmental Center Veterinary Service for Human and Animal Health, “Magna Græcia University” of Catanzaro, CISVetSUA, Campus Universitario “Salvatore Venuta” Viale Europa, 88100 Catanzaro, Italy
- Department of Health Sciences, Institute of Research for Food Safety & Health (IRC-FISH), “Magna Græcia University” of Catanzaro, Campus Universitario “Salvatore Venuta” Viale Europa, 88100 Catanzaro, Italy
- Nutramed S.c.a.r.l., Complesso Ninì Barbieri, Roccelletta di Borgia, 88021 Catanzaro, Italy
| |
Collapse
|
3
|
Volatolomics of Three South African Helichrysum Species Grown in Pot under Protected Environment. Molecules 2021; 26:molecules26237283. [PMID: 34885854 PMCID: PMC8659169 DOI: 10.3390/molecules26237283] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 11/29/2021] [Accepted: 11/29/2021] [Indexed: 11/16/2022] Open
Abstract
Helichrysum decorum DC, Helichrysum lepidissimum S. Moore, and Helichrysum umbraculigerum are three species traditionally used in the South African medicine. The present work deals with the investigation of the spontaneous emission and the essential oils obtained from these plants cultivated in open field under uniform conditions. Fractions of the volatile organic compounds of the three species were rich in monoterpene hydrocarbons, representing more than 70% of the total composition. Pinene isomers were the most representative compounds: β-pinene in H. decorum (53.0%), and α-pinene in H. lepidissimum (67.9%) and H. umbraculigerum (54.8%). These latter two species evidenced an important amount of sesquiterpene hydrocarbons (SH) especially represented by γ-curcumene (H. lepidissimum) and α- and β-selinene (H. umbraculigerum). On the contrary, in the EOs, sesquiterpenes compounds prevailed, representing more than 64% of the identified fraction to reach more than 82 and 87% in H. umbraculigerum and H. lepidissimum, respectively. Although the chemical classes and their relative abundances were comparable among the three species, the individual compounds of EOs showed large differences. In fact, caryophyllene oxide (26.7%) and γ-curcumene (17.4%) were the main constituents in H. decorum, and H. lepidissimum respectively, while neo-intermedeol (11.2%) and viridiflorol (10.6%) characterized H. umbraculigerum.
Collapse
|
4
|
Khan S, Sharaf M, Ahmed I, Khan TU, Shabana S, Arif M, Kazmi SSUH, Liu C. Potential utility of nano-based treatment approaches to address the risk of Helicobacter pylori. Expert Rev Anti Infect Ther 2021; 20:407-424. [PMID: 34658307 DOI: 10.1080/14787210.2022.1990041] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
INTRODUCTION Helicobacter pylori (H. pylori) has occupied a significant place among infectious pathogens and it has been documented as a leading challenge due to its higher resistance to the commonly used drugs, higher adaptability, and lower targeting specificity of the available drugs. AREAS COVERED New treatment strategies are urgently needed in order to improve the current advancement in modern medicine. Nanocarriers have gained an advantage of drug encapsulation and high retention time in the stomach with a prolonged drug release rate at the targeted site. This article aims to highlight the recent advances in nanotechnology with special emphasis on metallic, polymeric, lipid, membrane coated, and target-specific nanoparticles (NPs), as well as, natural products for treating H. pylori infection. We discussed a comprehensive approach to understand H. pylori infection and elicits to rethink about the increasing threat posed by H. pylori and its treatment strategies. EXPERT OPINION To address these issues, nanotechnology has got huge potential to combat H. pylori infection and has made great progress in the field of biomedicine. Moreover, combinatory studies of natural products and probiotics in conjugation with NPs have proven efficiency against H. pylori infection, with an advantage of lower cytotoxicity, minimal side effects, and stronger antibacterial potential.[Figure: see text].
Collapse
Affiliation(s)
- Sohaib Khan
- Department of Biochemistry and Molecular Biology, College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Mohamed Sharaf
- Department of Biochemistry and Molecular Biology, College of Marine Life Sciences, Ocean University of China, Qingdao, China.,Department of Biochemistry, Faculty of Agriculture, AL-Azhar University, Nasr City, Egypt
| | | | | | - Samah Shabana
- Department of Biochemistry and Molecular Biology, College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Muhammad Arif
- Department of Biochemistry and Molecular Biology, College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | | | - Chenguang Liu
- Department of Biochemistry and Molecular Biology, College of Marine Life Sciences, Ocean University of China, Qingdao, China
| |
Collapse
|
5
|
Ebani VV, Mancianti F. Use of Essential Oils in Veterinary Medicine to Combat Bacterial and Fungal Infections. Vet Sci 2020; 7:E193. [PMID: 33266079 PMCID: PMC7712454 DOI: 10.3390/vetsci7040193] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 11/23/2020] [Accepted: 11/27/2020] [Indexed: 12/12/2022] Open
Abstract
Essential oils (EOs) are secondary metabolites of plants employed in folk medicine for a long time thanks to their multiple properties. In the last years, their use has been introduced in veterinary medicine, too. The study of the antibacterial properties of EOs is of increasing interest, because therapies with alternative drugs are welcome to combat infections caused by antibiotic-resistant strains. Other issues could be resolved by EOs employment, such as the presence of antibiotic residues in food of animal origin and in environment. Although the in vitro antimicrobial activity of EOs has been frequently demonstrated in studies carried out on bacterial and fungal strains of different origins, there is a lack of information about their effectiveness in treating infections in animals. The scientific literature reports some studies about in vitro EOs' activity against animal clinical bacterial and fungal isolates, but in vivo studies are very scanty. The use of EOs in therapy of companion and farm animals should follow careful studies on the toxicity of these natural products in relation to animal species and route of administration. Moreover, considering the different behavior of EOs in relation to both species and strain pathogen, before starting a therapy, an aromatogram should be executed to choose the oil with the best antimicrobial activity.
Collapse
Affiliation(s)
- Valentina Virginia Ebani
- Department of Veterinary Sciences, University of Pisa, Viale delle Piagge 2, 56124 Pisa, Italy;
- Interdepartmental Research Center “Nutraceuticals and Food for Health”, University of Pisa, Via del Borghetto 80, 56124 Pisa, Italy
| | - Francesca Mancianti
- Department of Veterinary Sciences, University of Pisa, Viale delle Piagge 2, 56124 Pisa, Italy;
- Interdepartmental Research Center “Nutraceuticals and Food for Health”, University of Pisa, Via del Borghetto 80, 56124 Pisa, Italy
| |
Collapse
|