1
|
Gottwald J, Balke J, Stellmacher J, van Vorst K, Ghazisaeedi F, Fulde M, Alexiev U. Cy3-Based Nanoviscosity Determination of Mucus: Effect of Mucus Collection Methods and Antibiotics Treatment. Macromol Biosci 2024; 24:e2300437. [PMID: 38625085 DOI: 10.1002/mabi.202300437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 12/21/2023] [Indexed: 04/17/2024]
Abstract
The integrity of the protective mucus layer as a primary defense against pathogen invasion and microbial leakage into the intestinal epithelium can be compromised by the effects of antibiotics on the commensal microbiome. Changes in mucus integrity directly affect the solvent viscosity in the immediate vicinity of the mucin network, that is, the nanoviscosity, which in turn affects both biochemical reactions and selective transport. To assess mucus nanoviscosity, a reliable readout via the viscosity-dependent fluorescence lifetime of the molecular rotor dye cyanine 3 is established and nanoviscosities from porcine and murine ex vivo mucus are determined. To account for different mucin concentrations due to the removal of digestive residues during mucus collection, the power law dependence of mucin concentration on viscosity is used. The impact of antibiotics combinations (meropenem/vancomycin, gentamycin/ampicillin) on ex vivo intestinal mucus nanoviscosity is presented. The significant increase in viscosity of murine intestinal mucus after treatment suggests an effect of antibiotics on the microbiota that affects mucus integrity. This method will be a useful tool to assess how drugs, directly or indirectly, affect mucus integrity. Additionally, the method can be utilized to analyze the role of mucus nanoviscosity in health and disease, as well as in drug development.
Collapse
Affiliation(s)
- Jacqueline Gottwald
- Physics Department, Freie Universität Berlin, Arnimallee 14, 14195, Berlin, Germany
| | - Jens Balke
- Physics Department, Freie Universität Berlin, Arnimallee 14, 14195, Berlin, Germany
| | - Johannes Stellmacher
- Physics Department, Freie Universität Berlin, Arnimallee 14, 14195, Berlin, Germany
| | - Kira van Vorst
- Centre for Infection Medicine, Institute of Microbiology and Epizootics, Freie Universität Berlin, Robert-von-Ostertag-Str. 7, 14163, Berlin, Germany
| | - Fereshteh Ghazisaeedi
- Centre for Infection Medicine, Institute of Microbiology and Epizootics, Freie Universität Berlin, Robert-von-Ostertag-Str. 7, 14163, Berlin, Germany
| | - Marcus Fulde
- Centre for Infection Medicine, Institute of Microbiology and Epizootics, Freie Universität Berlin, Robert-von-Ostertag-Str. 7, 14163, Berlin, Germany
| | - Ulrike Alexiev
- Physics Department, Freie Universität Berlin, Arnimallee 14, 14195, Berlin, Germany
| |
Collapse
|
2
|
Koçak A, Homer AK, Feida A, Telschow F, Gorenflos López JL, Baydaroğlu C, Gradzielski M, Hackenberger CPR, Alexiev U, Seitz O. Fluorogenic cell surface glycan labelling with fluorescence molecular rotor dyes and nucleic acid stains. Chem Commun (Camb) 2024; 60:4785-4788. [PMID: 38602157 DOI: 10.1039/d4cc00884g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/12/2024]
Abstract
We show that covalent labelling of sialic acids on live cell surfaces or mucin increases the fluorescence of the fluorescence molecular rotors (FMRs) CCVJ, Cy3 and thioazole orange, enabling wash-free imaging of cell surfaces. Dual labelling with an FMR and an environmentally insensitive dye allows detection of changes that occur, for example, when cross-linking is altered.
Collapse
Affiliation(s)
- Alen Koçak
- Department of Chemistry, Humboldt-Universität zu Berlin, Brook-Taylor-Straße 2, 12489 Berlin, Germany.
| | - Amal K Homer
- Department of Chemistry, Humboldt-Universität zu Berlin, Brook-Taylor-Straße 2, 12489 Berlin, Germany.
| | - Antonia Feida
- Department of Chemistry, Humboldt-Universität zu Berlin, Brook-Taylor-Straße 2, 12489 Berlin, Germany.
| | - Florian Telschow
- Institut für Experimentalphysik, Freie Universität Berlin, Arnimallee 14, 14195 Berlin, Germany
| | - Jacob L Gorenflos López
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie, Robert-Rössle-Straße 10, 13125 Berlin, Germany
| | - Cihan Baydaroğlu
- Institute of Chemistry, Technische Universität Berlin, Straße des 17. Juni 124, 10623 Berlin, Germany
| | - Michael Gradzielski
- Institute of Chemistry, Technische Universität Berlin, Straße des 17. Juni 124, 10623 Berlin, Germany
| | - Christian P R Hackenberger
- Department of Chemistry, Humboldt-Universität zu Berlin, Brook-Taylor-Straße 2, 12489 Berlin, Germany.
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie, Robert-Rössle-Straße 10, 13125 Berlin, Germany
| | - Ulrike Alexiev
- Institut für Experimentalphysik, Freie Universität Berlin, Arnimallee 14, 14195 Berlin, Germany
| | - Oliver Seitz
- Department of Chemistry, Humboldt-Universität zu Berlin, Brook-Taylor-Straße 2, 12489 Berlin, Germany.
| |
Collapse
|
3
|
Alexiev U, Rühl E. Visualization of Nanocarriers and Drugs in Cells and Tissue. Handb Exp Pharmacol 2024; 284:153-189. [PMID: 37566121 DOI: 10.1007/164_2023_684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/12/2023]
Abstract
In this chapter, the visualization of nanocarriers and drugs in cells and tissue is reviewed. This topic is tightly connected to modern drug delivery, which relies on nanoscopic drug formulation approaches and the ability to probe nanoparticulate systems selectively in cells and tissue using advanced spectroscopic and microscopic techniques. We first give an overview of the breadth of this research field. Then, we mainly focus on topical drug delivery to the skin and discuss selected visualization techniques from spectromicroscopy, such as scanning transmission X-ray microscopy and fluorescence lifetime imaging. These techniques rely on the sensitive and quantitative detection of the topically applied drug delivery systems and active substances, either by exploiting their molecular properties or by introducing environmentally sensitive probes that facilitate their detection.
Collapse
Affiliation(s)
- Ulrike Alexiev
- Fachbereich Physik, Freie Universität Berlin, Berlin, Germany.
| | - Eckart Rühl
- Physikalische Chemie, Freie Universität Berlin, Berlin, Germany.
| |
Collapse
|
4
|
QuasAr Odyssey: the origin of fluorescence and its voltage sensitivity in microbial rhodopsins. Nat Commun 2022; 13:5501. [PMID: 36127376 PMCID: PMC9489792 DOI: 10.1038/s41467-022-33084-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 08/26/2022] [Indexed: 11/29/2022] Open
Abstract
Rhodopsins had long been considered non-fluorescent until a peculiar voltage-sensitive fluorescence was reported for archaerhodopsin-3 (Arch3) derivatives. These proteins named QuasArs have been used for imaging membrane voltage changes in cell cultures and small animals. However due to the low fluorescence intensity, these constructs require use of much higher light intensity than other optogenetic tools. To develop the next generation of sensors, it is indispensable to first understand the molecular basis of the fluorescence and its modulation by the membrane voltage. Based on spectroscopic studies of fluorescent Arch3 derivatives, we propose a unique photo-reaction scheme with extended excited-state lifetimes and inefficient photoisomerization. Molecular dynamics simulations of Arch3, of the Arch3 fluorescent derivative Archon1, and of several its mutants have revealed different voltage-dependent changes of the hydrogen-bonding networks including the protonated retinal Schiff-base and adjacent residues. Experimental observations suggest that under negative voltage, these changes modulate retinal Schiff base deprotonation and promote a decrease in the populations of fluorescent species. Finally, we identified molecular constraints that further improve fluorescence quantum yield and voltage sensitivity. The authors present an in-depth investigation of excited state dynamics and molecular mechanism of the voltage sensing in microbial rhodopsins. Using a combination of spectroscopic investigations and molecular dynamics simulations, the study proposes the voltage-modulated deprotonation of the chromophore as the key event in the voltage sensing. Thus, molecular constraints that may further improve the fluorescence quantum yield and the voltage sensitivity are presented.
Collapse
|
5
|
Nagano S, Sadeghi M, Balke J, Fleck M, Heckmann N, Psakis G, Alexiev U. Improved fluorescent phytochromes for in situ imaging. Sci Rep 2022; 12:5587. [PMID: 35379835 PMCID: PMC8980088 DOI: 10.1038/s41598-022-09169-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 03/14/2022] [Indexed: 12/18/2022] Open
Abstract
AbstractModern biology investigations on phytochromes as near-infrared fluorescent pigments pave the way for the development of new biosensors, as well as for optogenetics and in vivo imaging tools. Recently, near-infrared fluorescent proteins (NIR-FPs) engineered from biliverdin-binding bacteriophytochromes and cyanobacteriochromes, and from phycocyanobilin-binding cyanobacterial phytochromes have become promising probes for fluorescence microscopy and in vivo imaging. However, current NIR-FPs typically suffer from low fluorescence quantum yields and short fluorescence lifetimes. Here, we applied the rational approach of combining mutations known to enhance fluorescence in the cyanobacterial phytochrome Cph1 to derive a series of highly fluorescent variants with fluorescence quantum yield exceeding 15%. These variants were characterised by biochemical and spectroscopic methods, including time-resolved fluorescence spectroscopy. We show that these new NIR-FPs exhibit high fluorescence quantum yields and long fluorescence lifetimes, contributing to their bright fluorescence, and provide fluorescence lifetime imaging measurements in E.coli cells.
Collapse
|
6
|
Gronbach L, Wolff C, Klinghammer K, Stellmacher J, Jurmeister P, Alexiev U, Schäfer-Korting M, Tinhofer I, Keilholz U, Zoschke C. A multilayered epithelial mucosa model of head neck squamous cell carcinoma for analysis of tumor-microenvironment interactions and drug development. Biomaterials 2020; 258:120277. [PMID: 32795620 DOI: 10.1016/j.biomaterials.2020.120277] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 06/23/2020] [Accepted: 07/31/2020] [Indexed: 12/24/2022]
Abstract
Pharmacotherapy of head and neck squamous cell carcinoma (HNSCC) often fails due to the development of chemoresistance and severe systemic side effects of current regimens limiting dose escalation. Preclinical models comprising all major elements of treatment resistance are urgently needed for the development of new strategies to overcome these limitations. For model establishment, we used tumor cells from patient-derived HNSCC xenografts or cell lines (SCC-25, UM-SCC-22B) and characterized the model phenotype. Docetaxel and cetuximab were selected for comparative analysis of drug-related effects at topical and systemic administration. Cetuximab cell binding was mapped by cluster-based fluorescence lifetime imaging microscopy.The tumor oral mucosa (TOM) models displayed unstructured, hyper-proliferative, and pleomorphic cell layers, reflecting well the original tumor morphology and grading. Dose- and time-dependent effects of docetaxel on tumor size, apoptosis, hypoxia, and interleukin-6 release were observed. Although the spectrum of effects was comparable, significantly lower doses were required to achieve similar docetaxel-induced changes at topical compared to systemic application. Despite displaying anti-proliferative effects in monolayer cultures, cetuximab treatment showed only minor effects in TOM models. This was not due to inefficient cetuximab uptake or target cell binding but likely mediated by microenvironmental components.We developed multi-layered HNSCC models, closely reflecting tumor morphology and displaying complex interactions between the tumor and its microenvironment. Topical application of docetaxel emerged as promising option for HNSCC treatment. Aside from the development of novel strategies for topical drug delivery, our tumor model might help to better understand key regulators of drug-tumor-interactions.
Collapse
Affiliation(s)
- Leonie Gronbach
- Freie Universität Berlin, Institute of Pharmacy (Pharmacology & Toxicology), Königin-Luise-Str. 2+4, 14195, Berlin, Germany
| | - Christopher Wolff
- Freie Universität Berlin, Institute of Pharmacy (Pharmacology & Toxicology), Königin-Luise-Str. 2+4, 14195, Berlin, Germany
| | - Konrad Klinghammer
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, And Berlin Institute of Health, Department of Hematology and Oncology, Charitéplatz 1, 10117, Berlin, Germany
| | - Johannes Stellmacher
- Freie Universität Berlin, Institute of Experimental Physics, Arnimallee 14, 14195, Berlin, Germany
| | - Philipp Jurmeister
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, And Berlin Institute of Health, Institute of Pathology, Charitéplatz 1, 10117, Berlin, Germany
| | - Ulrike Alexiev
- Freie Universität Berlin, Institute of Experimental Physics, Arnimallee 14, 14195, Berlin, Germany
| | - Monika Schäfer-Korting
- Freie Universität Berlin, Institute of Pharmacy (Pharmacology & Toxicology), Königin-Luise-Str. 2+4, 14195, Berlin, Germany
| | - Ingeborg Tinhofer
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, And Berlin Institute of Health, Department of Radiooncology and Radiotherapy, Charitéplatz 1, 10117, Berlin, Germany; German Cancer Research Center (DKFZ), Heidelberg and German Cancer Consortium (DKTK) Partner Site Berlin, Berlin, Germany
| | - Ulrich Keilholz
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, And Berlin Institute of Health, Comprehensive Cancer Center, Charitéplatz 1, 10117, Berlin, Germany
| | - Christian Zoschke
- Freie Universität Berlin, Institute of Pharmacy (Pharmacology & Toxicology), Königin-Luise-Str. 2+4, 14195, Berlin, Germany.
| |
Collapse
|
7
|
Frombach J, Unbehauen M, Kurniasih IN, Schumacher F, Volz P, Hadam S, Rancan F, Blume-Peytavi U, Kleuser B, Haag R, Alexiev U, Vogt A. Core-multishell nanocarriers enhance drug penetration and reach keratinocytes and antigen-presenting cells in intact human skin. J Control Release 2019; 299:138-148. [PMID: 30797867 DOI: 10.1016/j.jconrel.2019.02.028] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2018] [Revised: 02/18/2019] [Accepted: 02/19/2019] [Indexed: 11/30/2022]
Abstract
In reconstructed skin and diffusion cell studies, core-multishell nanocarriers (CMS-NC) showed great potential for drug delivery across the skin barrier. Herein, we investigated penetration, release of dexamethasone (DXM), in excised full-thickness human skin with special focus on hair follicles (HF). Four hours and 16 h after topical application of clinically relevant dosages of 10 μg DXM/cm2 skin encapsulated in CMS-NC (12 nm diameter, 5.8% loading), presence of DXM in the tissue as assessed by fluorescence microscopy of anti-DXM-stained tissue sections as well as ELISA and HPLC-MS/MS in tissue extracts was enhanced compared to standard LAW-creme but lower compared to DXM aqueous/alcoholic solution. Such enhanced penetration compared to conventional cremes offers high potential for topical therapies, as recurrent applications of corticosteroid solutions face limitations with regard to tolerability and fast drainage. The findings encourage more detailed investigations on where and how the nanocarrier and drug dissociate within the skin and what other factors, e.g. thermodynamic activity, influence the penetration of this formulations. Microscopic studies on the spatial distribution within the skin revealed accumulation in HF and furrows accompanied by limited cellular uptake assessed by flow cytometry (up to 9% of total epidermal cells). FLIM clearly visualized the presence of CMS-NC in the viable epidermis and dermis. When exposed in situ a fraction of up to 25% CD1a+ cells were found within the epidermal CMS-NC+ population compared to approximately 3% CD1a+/CMS-NC+ cells after in vitro exposure in short-term cultures of epidermal cell suspensions. The latter reflects the natural percentage of Langerhans cells (LC) in epidermis suspensions and indicated that CMS-NC were not preferentially internalized by one cell type. The increased CMS-NC+ LC proportion after exposure within the tissue is in accordance with the strategic suprabasal LC-localization. More specifically we postulate that the extensive dendrite meshwork, their position around HF orifices and their capacity to modulate tight junctions facilitated a preferential uptake of CMS-NC by LC within the skin. This newly identified aspect of CMS-NC penetration underlines the potential of CMS-NC for dermatotherapy and encourages further investigations of CMS-NC for the delivery of other molecule classes for which intracellular delivery is even more crucial.
Collapse
Affiliation(s)
- Janna Frombach
- Clinical Research Center for Hair and Skin Science, Department of Dermatology and Allergy, Charité-Universitaetsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Michael Unbehauen
- Organic Chemistry, Institute of Chemistry and Biochemistry, Freie Universität Berlin, Berlin, Germany
| | - Indah N Kurniasih
- Organic Chemistry, Institute of Chemistry and Biochemistry, Freie Universität Berlin, Berlin, Germany
| | - Fabian Schumacher
- Institute of Nutritional Science, University of Potsdam, Potsdam, Germany; Department of Molecular Biology, University of Duisburg-Essen, Essen, Germany
| | - Pierre Volz
- Department of Physics, Institute of Chemistry and Biochemistry, Freie Universität Berlin, Berlin, Germany
| | - Sabrina Hadam
- Clinical Research Center for Hair and Skin Science, Department of Dermatology and Allergy, Charité-Universitaetsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Fiorenza Rancan
- Clinical Research Center for Hair and Skin Science, Department of Dermatology and Allergy, Charité-Universitaetsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Ulrike Blume-Peytavi
- Clinical Research Center for Hair and Skin Science, Department of Dermatology and Allergy, Charité-Universitaetsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Burkhard Kleuser
- Institute of Nutritional Science, University of Potsdam, Potsdam, Germany
| | - Rainer Haag
- Organic Chemistry, Institute of Chemistry and Biochemistry, Freie Universität Berlin, Berlin, Germany
| | - Ulrike Alexiev
- Department of Physics, Institute of Chemistry and Biochemistry, Freie Universität Berlin, Berlin, Germany
| | - Annika Vogt
- Clinical Research Center for Hair and Skin Science, Department of Dermatology and Allergy, Charité-Universitaetsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.
| |
Collapse
|