1
|
Kumari G, Dhillon S, Rani P, Chahal M, Aneja DK, Kinger M. Development in the Synthesis of Bioactive Thiazole-Based Heterocyclic Hybrids Utilizing Phenacyl Bromide. ACS OMEGA 2024; 9:18709-18746. [PMID: 38708256 PMCID: PMC11064039 DOI: 10.1021/acsomega.3c10299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 01/30/2024] [Accepted: 02/21/2024] [Indexed: 05/07/2024]
Abstract
Heterocyclic hybrid frameworks represent a burgeoning domain within the realms of drug discovery and medicinal chemistry, attracting considerable attention in recent years. Thiazole pharmacophore fragments, inherent in natural products such as peptide alkaloids, metabolites, and cyclopeptides, have demonstrated a broad spectrum of pharmacological potentials. Given their profound biological significance, a plethora of thiazole-based hybrids have been synthesized through the conjugation of thiazole moieties with bioactive pyrazole and pyrazoline fragments. This review systematically presents a compendium of robust methodologies for the synthesis of thiazole-linked hybrids, employing the (3 + 2) heterocyclization reaction, specifically the Hantzsch-thiazole synthesis, utilizing phenacyl bromide as the substrate. The strategic approach of molecular hybridization has markedly enhanced drug efficacy, mitigated resistance to multiple drugs, and minimized toxicity concerns. The resultant thiazole-linked hybrids exhibit a myriad of medicinal properties viz. anticancer, antibacterial, anticonvulsant, antifungal, antiviral, and antioxidant activities. This compilation of methodologies and insights serves as a valuable resource for medicinal chemists and researchers engaged in the design of novel thiazole-linked hybrids endowed with therapeutic attribute.
Collapse
Affiliation(s)
- Ginna Kumari
- Department of Chemistry, Chaudhary Bansi Lal University, Bhiwani, 127031, Haryana, India
| | - Sudeep Dhillon
- Department of Chemistry, Chaudhary Bansi Lal University, Bhiwani, 127031, Haryana, India
| | - Priyanka Rani
- Department of Chemistry, Chaudhary Bansi Lal University, Bhiwani, 127031, Haryana, India
| | - Mamta Chahal
- Department of Chemistry, Chaudhary Bansi Lal University, Bhiwani, 127031, Haryana, India
| | - Deepak Kumar Aneja
- Department of Chemistry, Chaudhary Bansi Lal University, Bhiwani, 127031, Haryana, India
| | - Mayank Kinger
- Department of Chemistry, Chaudhary Bansi Lal University, Bhiwani, 127031, Haryana, India
| |
Collapse
|
2
|
Peng K, Vora LK, Tekko IA, Permana AD, Domínguez-Robles J, Ramadon D, Chambers P, McCarthy HO, Larrañeta E, Donnelly RF. Dissolving microneedle patches loaded with amphotericin B microparticles for localised and sustained intradermal delivery: Potential for enhanced treatment of cutaneous fungal infections. J Control Release 2021; 339:361-380. [PMID: 34619227 DOI: 10.1016/j.jconrel.2021.10.001] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 09/23/2021] [Accepted: 10/03/2021] [Indexed: 12/17/2022]
Abstract
Fungal infections affect millions of people globally and are often unreceptive to conventional topical or oral preparations because of low drug bioavailability at the infection site, lack of sustained therapeutic effect, and the development of drug resistance. Amphotericin B (AmB) is one of the most potent antifungal agents. It is increasingly important since fungal co-infections associated with COVID-19 are frequently reported. AmB is only administered via injections (IV) and restricted to life-threatening infections due to its nephrotoxicity and administration-related side effects. In this work, we introduce, for the first time, dissolving microneedle patches (DMP) loaded with micronised particles of AmB to achieve localised and long-acting intradermal delivery of AmB for treatment of cutaneous fungal infections. AmB was pulverised with poly (vinyl alcohol) and poly (vinyl pyrrolidone) to form micronised particles-loaded gels, which were then cast into DMP moulds to form the tips. The mean particle size of AmB in AmB DMP tips after pulverisation was 1.67 ± 0.01 μm. This is an easy way to fabricate and load microparticles into DMP, as few steps are required, and no organic solvents are needed. AmB had no covalent chemical interaction with the excipients, but the crystallinity of AmB was reduced in the tips. AmB was completely released from the tips within 4 days in vitro. AmB DMP presented inhibition of Candida albicans (CA) and the killing rate of AmB DMP against CA biofilm inside porcine skin reached 100% within 24 h. AmB DMP were able to pierce excised neonatal porcine skin at an insertion depth of 301.34 ± 46.86 μm. Ex vivo dermatokinetic and drug deposition studies showed that AmB was mainly deposited in the dermis. An in vivo dermatokinetic study revealed that the area under curve (AUC0-inf) values of AmB DMP and IV (Fungizone® bolus injection 1 mg/kg) groups were 8823.0 d∙μg/g and 33.4 d∙μg/g, respectively (264-fold higher). AmB remained at high levels (219.07 ± 102.81 μg/g or more) in the skin until 7 days after the application of AmB DMP. Pharmacokinetic and biodistribution studies showed that AmB concentration in plasma, kidney, liver, and spleen in the AmB DMP group was significantly lower than that in the IV group. Accordingly, this system addressed the systemic side effects of intravenous injection of AmB and localised the drug inside the skin for a week. This work establishes a novel, easy and effective method for long-acting and localised intradermal drug delivery.
Collapse
Affiliation(s)
- Ke Peng
- School of Pharmacy, Medical Biology Centre, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, United Kingdom
| | - Lalitkumar K Vora
- School of Pharmacy, Medical Biology Centre, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, United Kingdom
| | - Ismaiel A Tekko
- School of Pharmacy, Medical Biology Centre, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, United Kingdom; Faculty of Pharmacy, Aleppo University, Aleppo, Syria
| | - Andi Dian Permana
- Department of Pharmaceutics, Faculty of Pharmacy, Hasanuddin University, Makassar, Indonesia
| | - Juan Domínguez-Robles
- School of Pharmacy, Medical Biology Centre, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, United Kingdom
| | - Delly Ramadon
- Faculty of Pharmacy, Universitas Indonesia, Depok, Indonesia
| | - Philip Chambers
- School of Pharmacy, Medical Biology Centre, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, United Kingdom
| | - Helen O McCarthy
- School of Pharmacy, Medical Biology Centre, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, United Kingdom
| | - Eneko Larrañeta
- School of Pharmacy, Medical Biology Centre, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, United Kingdom
| | - Ryan F Donnelly
- School of Pharmacy, Medical Biology Centre, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, United Kingdom.
| |
Collapse
|
3
|
Jadhav PM, Kantevari S, Tekale AB, Bhosale SV, Pawar RP, Tekale SU. A review on biological and medicinal significance of thiazoles. PHOSPHORUS SULFUR 2021. [DOI: 10.1080/10426507.2021.1945601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
| | | | - Atam B. Tekale
- Department of Chemistry, Shri Shivaji College, Parbhani, India
| | | | - Rajendra P. Pawar
- Department of Chemistry, Shiv Chhatrapati College, Aurangabad, India
| | | |
Collapse
|
4
|
Synthetic strategies, crystal structures and biological activities of metal complexes with the members of azole family: A review. Polyhedron 2021. [DOI: 10.1016/j.poly.2021.115093] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
5
|
VT-1161 dosed once daily or once weekly exhibits potent efficacy in treatment of dermatophytosis in a guinea pig model. Antimicrob Agents Chemother 2015; 59:1992-7. [PMID: 25605358 DOI: 10.1128/aac.04902-14] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Current therapies used to treat dermatophytoses such as onychomycosis are effective but display room for improvement in efficacy, safety, and convenience of dosing. We report here that the investigational agent VT-1161 displays potent in vitro antifungal activity against dermatophytes, with MIC values in the range of ≤0.016 to 0.5 μg/ml. In pharmacokinetic studies supporting testing in a guinea pig model of dermatophytosis, VT-1161 plasma concentrations following single oral doses were dose proportional and persisted at or above the MIC values for at least 48 h, indicating potential in vivo efficacy with once-daily and possibly once-weekly dosing. Subsequently, in a guinea pig dermatophytosis model utilizing Trichophyton mentagrophytes and at oral doses of 5, 10, or 25 mg/kg of body weight once daily or 70 mg/kg once weekly, VT-1161 was statistically superior to untreated controls in fungal burden reduction (P < 0.001) and improvement in clinical scores (P < 0.001). The efficacy profile of VT-1161 was equivalent to those for doses and regimens of itraconazole and terbinafine except that VT-1161 was superior to itraconazole when each drug was dosed once weekly (P < 0.05). VT-1161 was distributed into skin and hair, with plasma and tissue concentrations in all treatment and regimen groups ranging from 0.8 to 40 μg/ml (or μg/g), at or above the MIC against the isolate used in the model (0.5 μg/ml). These data strongly support the clinical development of VT-1161 for the oral treatment of onychomycosis using either once-daily or once-weekly dosing regimens.
Collapse
|
6
|
Piérard GE, Hermanns-Lê T, Delvenne P, Piérard-Franchimont C. Miconazole, a pharmacological barrier to skin fungal infections. Expert Opin Pharmacother 2012; 13:1187-94. [PMID: 22568580 DOI: 10.1517/14656566.2012.687047] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
INTRODUCTION Miconazole (MCZ) is a time-honored antifungal of the imidazole class. MCZ exerts a multipronged effect on fungi. It inhibits the cytochrome P450 complex, including the 14α-demethylase enzyme required for ergosterol biosynthesis, in fungal cell membranes. In addition, intracellular accumulation of toxic methylated sterols occurs and the synthesis of triglycerides and phospholipids is altered. Disturbances in oxidative and peroxidative enzyme activities lead to an intracellular toxic concentration of hydrogen peroxide. As a result, intracellular organelle destruction then leads to cell necrosis. Farnesol synthesis stimulated in Candida spp. prevents the yeast-to-mycelium formation. MCZ is further active against Gram-positive bacteria. AREAS COVERED This review aims at revisiting the MCZ antifungal activity in dermatomycoses. EXPERT OPINION MCZ's wide spectrum of activity appears noteworthy. The full pharmacological profile of MCZ indicates its fungistatic profile through its effect on ergosterol biosynthesis. In addition, it exhibits a fungicidal effect against a number of fungal species, due to hydrogen peroxide accumulation. MCZ is characterized by high safety, efficacy and versatility, and a unique, multifaceted nature of activity in the treatment of dermatomycoses.
Collapse
Affiliation(s)
- Gérald E Piérard
- University Hospital of Liège, Department of Dermatopathology, CHU Sart Tilman, B-4000 Liège, Belgium.
| | | | | | | |
Collapse
|
7
|
Baert B, Boonen J, Thierens C, De Spiegeleer B. Ion mobility spectrometry of talarozole, a new azole drug, in cleaning quality control. ACTA ACUST UNITED AC 2011. [DOI: 10.1007/s12127-011-0063-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
8
|
Quatresooz P, Vroome V, Borgers M, Cauwenbergh G, Piérard GE. Novelties in the multifaceted miconazole effects on skin disorders. Expert Opin Pharmacother 2008; 9:1927-34. [DOI: 10.1517/14656566.9.11.1927] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
9
|
Piérard GE, Arrese JE, Quatresooz P, Piérard-Franchimont C. Emerging therapeutic agents for onychomycosis. Expert Opin Emerg Drugs 2007; 12:345-53. [PMID: 17874965 DOI: 10.1517/14728214.12.3.345] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Onychomycosis is a frequent disorder that represents the most prevalent fungal infection, particularly among older individuals. Diverse fungi of the dermatophyte, non-dermatophyte mold and yeast families have been reported to be responsible for onychomycosis. The output from the pharmaceutical industry of new antifungals to treat onychomycosis has been limited over the last decade. Present treatment options include both oral and topical drugs, with oral therapies giving better outcomes. However, neither of these treatment options provides high cure rates that are durable. At present, azoles and allylamines are keeping the pivotal roles. New derivatives with a favorable risk-benefit ratio and new formulations of older azoles seem to be promising. Thus, ongoing drug development activities have focused on novel delivery technologies to facilitate incorporation of existing antifungal drugs inside the nail plate and the discovery of new active antifungals.
Collapse
Affiliation(s)
- Gérald E Piérard
- CHU Sart Tilman, Department of Dermatopathology, B-4000 Liège, Belgium.
| | | | | | | |
Collapse
|
10
|
Faergemann J, Borgers M, Degreef H. A new ketoconazole topical gel formulation in seborrhoeic dermatitis: an updated review of the mechanism. Expert Opin Pharmacother 2007; 8:1365-71. [PMID: 17563270 DOI: 10.1517/14656566.8.9.1365] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Seborrhoeic dermatitis (SD) is a chronic, inflammatory skin disorder, affecting areas of the head and body where sebaceous glands are most prominent and active. The disorder commonly affects hair-bearing areas of the head, including the scalp. Involvement on the face is usually limited to the hairline, eyebrows, nasolabial folds and ears, and may occur either with or without scalp involvement. Areas of the trunk where SD may occur include the body folds and the presternal area. The aetiology of SD is unknown, although hormones and the Malassezia spp., formerly known as Pityrosporum (naturally occurring yeasts), are thought to be involved in the development of the condition. SD responds to the use of antifungal medications such as ketoconazole, suggesting that the inflammation could be linked to the Malassezia spp. The mechanisms behind the therapeutic effect of ketoconazole for the management of SD form the basis of this review. The broad spectrum activity of Ketoconazole was reported in the early 1980s. Due to its potent effect against Malassezia spp. the development of ketoconazole for the treatment of various skin infections, in which a link was proposed with Malassezia spp., was initiated. Later on, a number of ancillary properties were described for ketoconazole, comprising antibacterial, anti-inflammatory, sebostatic and antiproliferative effects. The incorporation of ketoconazole in an adapted vehicle further promoted its efficacy. Recently, a new anhydrous gel containing 2% ketoconazole (Xolegel) was launched, in which all of the above properties were optimised.
Collapse
Affiliation(s)
- Jan Faergemann
- Sahlgrenska University Hospital, Department of Dermatology, SE-41345 Göteborg, Sweden.
| | | | | |
Collapse
|