1
|
Yadav S, Vashisth C, Chaudhri V, Singh K, Raghav N, Pundeer R. Development of potential cathepsin B inhibitors: Synthesis of new bithiazole derivatives, in vitro studies supported with theoretical docking studies. Int J Biol Macromol 2024; 281:136290. [PMID: 39383913 DOI: 10.1016/j.ijbiomac.2024.136290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Revised: 10/02/2024] [Accepted: 10/02/2024] [Indexed: 10/11/2024]
Abstract
Cysteine cathepsins play a crucial role in cancer, inflammation, and the regulation of degenerative processes such as apoptosis, making them significant targets in drug development. In this study, we designed, synthesized, and characterized sixteen novel bi-thiazole derivatives, confirmed by 1H NMR, 13C NMR, HRMS, and X-ray analysis, which demonstrated significant therapeutic potential as inhibitors of cathepsin B. The synthesized thiazoles showed % inhibition in the range of 59.11-77.32, out of which bis-methoxyphenyl derivative 8k showed the highest inhibition of 77.32 % with IC50 and ki values of 1.04 nM and 0.52 nM, respectively. Methoxy-containing derivatives 8c, 8g, 8i, 8j, 8l, and 8o showed improved inhibition over methyl and chloro. In silico studies of the new bis-thiazole compounds at cathepsin B active sites supported the in vitro findings, indicating that the synthesized bis-thiazole esters are promising therapeutic candidates for conditions involving elevated cathepsin B levels.
Collapse
Affiliation(s)
- Sidhant Yadav
- Department of Chemistry, Indira Gandhi University, Rewari, Haryana 122502, India
| | - Chanchal Vashisth
- Department of Chemistry, Kurukshetra University, Kurukshetra 136119, Haryana, India
| | - Vishwas Chaudhri
- Department of Chemistry, JC Bose University of Science & Technology YMCA, Faridabad, India
| | - Karan Singh
- Department of Chemistry, Indira Gandhi University, Rewari, Haryana 122502, India
| | - Neera Raghav
- Department of Chemistry, Kurukshetra University, Kurukshetra 136119, Haryana, India.
| | - Rashmi Pundeer
- Department of Chemistry, Indira Gandhi University, Rewari, Haryana 122502, India.
| |
Collapse
|
2
|
Baudry M, Wang Y, Bi X, Luo YL, Wang Z, Kamal Z, Shirokov A, Sullivan E, Lagasca D, Khalil H, Lee G, Fosnaugh K, Bey P, Medi S, Coulter G. Identification and neuroprotective properties of NA-184, a calpain-2 inhibitor. Pharmacol Res Perspect 2024; 12:e1181. [PMID: 38429943 PMCID: PMC10907882 DOI: 10.1002/prp2.1181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 02/02/2024] [Accepted: 02/09/2024] [Indexed: 03/03/2024] Open
Abstract
Our laboratory has shown that calpain-2 activation in the brain following acute injury is directly related to neuronal damage and the long-term functional consequences of the injury, while calpain-1 activation is generally neuroprotective and calpain-1 deletion exacerbates neuronal injury. We have also shown that a relatively selective calpain-2 inhibitor, referred to as C2I, enhanced long-term potentiation and learning and memory, and provided neuroprotection in the controlled cortical impact (CCI) model of traumatic brain injury (TBI) in mice. Using molecular dynamic simulation and Site Identification by Ligand Competitive Saturation (SILCS) software, we generated about 130 analogs of C2I and tested them in a number of in vitro and in vivo assays. These led to the identification of two interesting compounds, NA-112 and NA-184. Further analyses indicated that NA-184, (S)-2-(3-benzylureido)-N-((R,S)-1-((3-chloro-2-methoxybenzyl)amino)-1,2-dioxopentan-3-yl)-4-methylpentanamide, selectively and dose-dependent inhibited calpain-2 activity without evident inhibition of calpain-1 at the tested concentrations in mouse brain tissues and human cell lines. Like NA-112, NA-184 inhibited TBI-induced calpain-2 activation and cell death in mice and rats, both male and females. Pharmacokinetic and pharmacodynamic analyses indicated that NA-184 exhibited properties, including stability in plasma and liver and blood-brain barrier permeability, that make it a good clinical candidate for the treatment of TBI.
Collapse
Affiliation(s)
- Michel Baudry
- Western University of Health SciencesPomonaCaliforniaUSA
- NeurAegis, IncIrvineCaliforniaUSA
| | - Yubin Wang
- Western University of Health SciencesPomonaCaliforniaUSA
| | - Xiaoning Bi
- Western University of Health SciencesPomonaCaliforniaUSA
| | - Yun Lyna Luo
- Western University of Health SciencesPomonaCaliforniaUSA
| | - Zhijun Wang
- Department of Clinical Pharmacy Practice, School of Pharmacy and Pharmaceutical SciencesUniversity of CaliforniaIrvineCaliforniaUSA
| | | | | | | | | | | | - Gary Lee
- Nanosyn, IncSanta ClaraCaliforniaUSA
| | | | | | | | | |
Collapse
|
3
|
Zhao R, Teng X, Yang Y. Calpain as a Therapeutic Target for Hypoxic-Ischemic Encephalopathy. Mol Neurobiol 2024; 61:533-540. [PMID: 37642934 DOI: 10.1007/s12035-023-03594-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 08/16/2023] [Indexed: 08/31/2023]
Abstract
Hypoxic-ischemic encephalopathy (HIE) is a complex pathophysiological process with multiple links and factors. It involves the interaction of inflammation, oxidative stress, and glucose metabolism, and results in acute and even long-term brain damage and impairment of brain function. Calpain is a family of Ca2+-dependent cysteine proteases that regulate cellular function. Calpain activation is involved in cerebral ischemic injury, and this involvement is achieved by the interaction among Ca2+, substrates, organelles, and multiple proteases in the neuronal necrosis and apoptosis pathways after cerebral ischemia. Many calpain inhibitors have been developed and tested in the biochemical and biomedical fields. This study reviewed the potential role of calpain in the treatment of HIE and related mechanism, providing new insights for future research on HIE.
Collapse
Affiliation(s)
- Ruiyang Zhao
- Department of Anesthesiology, Shengjing Hospital of China Medical University, Shenyang, 110004, Liaoning, China
| | - Xiufei Teng
- Department of Anesthesiology, Shengjing Hospital of China Medical University, Shenyang, 110004, Liaoning, China
| | - Yanchao Yang
- Department of Anesthesiology, Shengjing Hospital of China Medical University, Shenyang, 110004, Liaoning, China.
| |
Collapse
|
4
|
Baudry M, Luo YL, Bi X. Calpain-2 Inhibitors as Therapy for Traumatic Brain Injury. Neurotherapeutics 2023; 20:1592-1602. [PMID: 37474874 PMCID: PMC10684478 DOI: 10.1007/s13311-023-01407-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/30/2023] [Indexed: 07/22/2023] Open
Abstract
While calpains have long been implicated in neurodegeneration, no calpain inhibitor has been developed for the treatment of neurodegeneration. This is partly due to the lack of understanding of the specific functions of most of the 15 members of the calpain family. Work from our laboratory over the last 5-10 years has revealed that calpain-1 and calpain-2, two of the major calpain isoforms in the brain, play opposite roles in both synaptic plasticity/learning and memory and neuroprotection/neurodegeneration. Thus, calpain-1 activation is required for triggering certain forms of synaptic plasticity and for learning some types of information and is neuroprotective. In contrast, calpain-2 activation limits the extent of synaptic plasticity and of learning and is neurodegenerative. These results have been validated with the use of calpain-1 knock-out mice and mice with a selective calpain-2 deletion in excitatory neurons of the forebrain. Through a medicinal chemistry campaign, we have identified a number of selective calpain-2 inhibitors and shown that these inhibitors do facilitate learning of certain tasks and are neuroprotective in a number of animal models of acute neurodegeneration. One of these inhibitors, NA-184, is currently being developed for the treatment of traumatic brain injury, and clinical trials are being planned.
Collapse
Affiliation(s)
- Michel Baudry
- CDM, Western University of Health Sciences, 309 E. 2nd St, Pomona, CA, 91766, USA.
| | - Yun Lyna Luo
- CoP, Western University of Health Sciences, Pomona, CA, 91766, USA
| | - Xiaoning Bi
- COMP, Western University of Health Sciences, Pomona, CA, 91766, USA
| |
Collapse
|
5
|
Calpains as mechanistic drivers and therapeutic targets for ocular disease. Trends Mol Med 2022; 28:644-661. [PMID: 35641420 PMCID: PMC9345745 DOI: 10.1016/j.molmed.2022.05.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 05/03/2022] [Accepted: 05/09/2022] [Indexed: 11/18/2022]
Abstract
Ophthalmic neurodegenerative diseases encompass a wide array of molecular pathologies unified by calpain dysregulation. Calpains are calcium-dependent proteases that perpetuate cellular death and inflammation when hyperactivated. Calpain inhibition trials in other organs have faced pharmacological challenges, but the eye offers many advantages for the development and testing of targeted molecular therapeutics, including small molecules, peptides, engineered proteins, drug implants, and gene-based therapies. This review highlights structural mechanisms underlying calpain activation, distinct cellular expression patterns, and in vivo models that link calpain hyperactivity to human retinal and developmental disease. Optimizing therapeutic approaches for calpain-mediated eye diseases can help accelerate clinically feasible strategies for treating calpain dysregulation in other diseased tissues.
Collapse
|
6
|
Calpain Inhibitors as Potential Therapeutic Modulators in Neurodegenerative Diseases. Neurochem Res 2022; 47:1125-1149. [PMID: 34982393 DOI: 10.1007/s11064-021-03521-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 12/27/2021] [Accepted: 12/28/2021] [Indexed: 02/07/2023]
Abstract
It is considered a significant challenge to understand the neuronal cell death mechanisms with a suitable cure for neurodegenerative disorders in the coming years. Calpains are one of the best-considered "cysteine proteases activated" in brain disorders. Calpain is an important marker and mediator in the pathophysiology of neurodegeneration. Calpain activation being the essential neurodegenerative factor causing apoptotic machinery activation, it is crucial to develop reliable and effective approaches to prevent calpain-mediated apoptosis in degenerating neurons. It has been recently seen that the "inhibition of calpain activation" has appeared as a possible therapeutic target for managing neurodegenerative diseases. A systematic literature review of PubMed, Medline, Bentham, Scopus, and EMBASE (Elsevier) databases was conducted. The present article reviews the basic pathobiology and role of selective calpain inhibitors used in various neurodegenerative diseases as a therapeutic target.
Collapse
|
7
|
Cao Y, Liu K, Xiong Y, Zhao C, Liu L. Increased expression of fragmented tRNA promoted neuronal necrosis. Cell Death Dis 2021; 12:823. [PMID: 34462418 PMCID: PMC8405691 DOI: 10.1038/s41419-021-04108-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Revised: 06/26/2021] [Accepted: 06/30/2021] [Indexed: 02/07/2023]
Abstract
Neuronal necrosis induced by excessive glutamate release is well known to contribute morbidity and mortality in ischemic stroke. Over the past decades, strategies on targeting glutamate receptor did not achieve desirable clinical outcomes. Finding the downstream mechanism of the glutamate receptor activation may provide new targets to suppress the cell death. Previously, our study demonstrated that the increase of H3K4 trimethylation (H3K4me3) played a key detrimental role on neuronal necrosis; however, the mechanism of this histone modification is unclear. Through a genome-wide small RNA sequencing, we identified several tRNA-derived fragments (tRFs) and piwi-interacting RNA (piRNAs) species were enriched in glutamate-induced neuronal necrosis in rat primary neuron cultures, and this enrichment was dependent on the H3K4me3 increase. Strikingly, when we transfected several synthesized tRFs and piRNA species into neurons, the tRFs but not the piRNAs induced neuron swelling and death. The cell death morphology recapitulated neuronal necrosis induced by glutamate. For the cytotoxic effect of tRFs, our data suggested that protein synthesis was inhibited likely through induction of ribosomal stalling. By proteomic analysis of tRFs effect, the most affected pathway was enriched in the mitochondrial metabolism. Consistently, mitochondrial fragmentation was increased in neuronal necrosis, and suppression of mitochondrial fission by genetic manipulation or drug rescued neuronal necrosis. Using our previously established Drosophila model of neuronal necrosis, we found that inhibition of small RNA transcription, blocking RNA transport from nucleus to cytosol, or knocking down Ago1/2 to suppress the RNA interference effect, all rescued the fly death, suggesting transcription and processing of small RNAs contribute to neuronal necrosis. Together, these results indicate that the abnormal transcription of tRFs may play a key role downstream of the H3K4me3 increase. This provides a potential new strategy to suppress neuronal necrosis.
Collapse
Affiliation(s)
- Yanyan Cao
- grid.24696.3f0000 0004 0369 153XDepartment of Biochemistry and Molecular Biology School of Basic Medicine, Capital Medical University, Youanmen, Beijing, China ,grid.453074.10000 0000 9797 0900Department of Neurology, First Affiliated Hospital, and College of Clinical Medicine of Henan University of Science and Technology, Luoyang, China
| | - Kai Liu
- grid.49470.3e0000 0001 2331 6153College of Life Sciences, Wuhan University, Wuhan, China
| | - Ying Xiong
- grid.24696.3f0000 0004 0369 153XDepartment of Biochemistry and Molecular Biology School of Basic Medicine, Capital Medical University, Youanmen, Beijing, China
| | - Chunyue Zhao
- grid.64939.310000 0000 9999 1211Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, Beihang University, Beijing, China
| | - Lei Liu
- grid.24696.3f0000 0004 0369 153XDepartment of Biochemistry and Molecular Biology School of Basic Medicine, Capital Medical University, Youanmen, Beijing, China
| |
Collapse
|
8
|
Zeng X, Chen P, Zhao L, Chen S. Acylated and unacylated ghrelin relieve cancer cachexia in mice through multiple mechanisms. CHINESE J PHYSIOL 2020; 63:195-203. [PMID: 33109785 DOI: 10.4103/cjp.cjp_59_20] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
Cancer cachexia is a wasting syndrome resulting from decreased protein synthesis and increased protein degradation. Calpain-dependent cleavage of myofilament is the initial step of myofilament degradation and plays a critical role in muscle atrophy. Ghrelin is a multifunctional hormone known to improve protein synthesis and inhibit protein degradation. However, its mechanism of action is not fully understood. Here we investigated whether acylated ghrelin (AG) and unacylated ghrelin (UnAG) could protect against cancer cachexia in mice bearing CT26 colorectal adenocarcinoma. We found for the first time that both AG and UnAG could inhibit calpain activity in skeletal muscle of cancer cachectic mice. AG and UnAG also improved tumor-free body weight, grip strength, muscle mass, epididymal fat mass, and nutritional state in tumor-bearing (TB) mice. Moreover, AG and UnAG reduced serum tumor necrosis factor-± concentration, increased Akt activity, and downregulated atrogin-1 expression in TB mice. Our results may contribute to the development of an AG/UnAG-based therapy for cancer cachexia.
Collapse
Affiliation(s)
- Xianliang Zeng
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, China
| | - Ping Chen
- Department of Anesthesiology, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, China
| | - Li Zhao
- Department of Dermatology, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, China
| | - Sizeng Chen
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, China
| |
Collapse
|
9
|
Kaur R, Raghav N. Some thiocarbamoyl based novel anticathepsin agents. Bioorg Chem 2020; 104:104174. [DOI: 10.1016/j.bioorg.2020.104174] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 07/18/2020] [Accepted: 08/04/2020] [Indexed: 11/25/2022]
|
10
|
Jastaniah A, Gaisina IN, Knopp RC, Thatcher GRJ. Synthesis of α-Ketoamide-Based Stereoselective Calpain-1 Inhibitors as Neuroprotective Agents. ChemMedChem 2020; 15:2280-2285. [PMID: 32840034 DOI: 10.1002/cmdc.202000385] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 08/23/2020] [Indexed: 01/05/2023]
Abstract
Calpain inhibitors have been proposed as drug candidates for neurodegenerative disorders, with ABT-957 entering clinical trials for Alzheimer's disease and mild cognitive impairment. The structure of ABT-957 was very recently disclosed, and trials were terminated owing to inadequate CNS concentrations to obtain a pharmacodynamic effect. The multistep synthesis of an α-ketoamide peptidomimetic inhibitor series potentially including ABT-957 was optimized to yield diastereomerically pure compounds that are potent and selective for calpain-1 over papain and cathepsins B and K. As the final oxidation step, with its optimized synthesis protocol, does not alter the configuration of the substrate, the synthesis of the diastereomeric pair (R)-1-benzyl-N-((S)-4-((4-fluorobenzyl)amino)-3,4-dioxo-1-phenylbutan-2-yl)-5-oxopyrrolidine-2-carboxamide (1 c) and (R)-1-benzyl-N-((R)-4-((4-fluorobenzyl)amino)-3,4-dioxo-1-phenylbutan-2-yl)-5-oxopyrrolidine-2-carboxamide (1 g) was feasible. This allowed the exploration of stereoselective inhibition of calpain-1, with 1 c (IC50 =78 nM) being significantly more potent than 1 g. Moreover, inhibitor 1 c restored cognitive function in amnestic mice.
Collapse
Affiliation(s)
- Ammar Jastaniah
- Department of Pharmaceutical Sciences, University of Illinois at Chicago, 833 S. Wood Street, Chicago, IL., 60612, USA
| | - Irina N Gaisina
- Department of Pharmaceutical Sciences, University of Illinois at Chicago, 833 S. Wood Street, Chicago, IL., 60612, USA
| | - Rachel C Knopp
- Department of Pharmaceutical Sciences, University of Illinois at Chicago, 833 S. Wood Street, Chicago, IL., 60612, USA
| | - Gregory R J Thatcher
- Department of Pharmaceutical Sciences, University of Illinois at Chicago, 833 S. Wood Street, Chicago, IL., 60612, USA
| |
Collapse
|
11
|
Donkor IO. An update on the therapeutic potential of calpain inhibitors: a patent review. Expert Opin Ther Pat 2020; 30:659-675. [PMID: 32700591 DOI: 10.1080/13543776.2020.1797678] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
INTRODUCTION Calpain is a cytosolic proteinase that regulates of a wide range of physiological functions. The enzyme has been implicated in various pathological conditions including neurodegenerative disorders, cardiovascular disorders, cancer, and several other diseases. Therefore, calpain inhibitors are of interest as therapeutic agents and have been studied in preclinical models of several diseases in which the enzyme has been implicated. AREAS COVERED Calpain inhibitors that were disclosed over the last 5 years (2015-2019) include calpastatin-based peptidomimetics; thalassospiramide lipopeptides; disulfide analogs of alpha-mercaptoacrylic acids; allosteric modulators; azoloimidazolidenones; and macrocyclic/non-macrocyclic carboxamides. The effectiveness of some of the inhibitors in preclinical animal models is discussed. EXPERT OPINION Significant milestones that were made over this time frame include: a) disclosure of novel blood-brain barrier (BBB) permeable calpastatin analogs as calpain inhibitors; b) disclosure that potent calpain inhibitors can be obtained by targeting the hydrophobic pockets on chain A of PEF(S) of the small subunit of calpain; c) use of PEF(S) (PDB ID: 4WQ2) in virtual screening to identify novel structurally diverse calpain inhibitors; and d) mitigation of the metabolic instability of the alpha-ketoamide warhead of calpain inhibitors.
Collapse
Affiliation(s)
- Isaac O Donkor
- Department of Pharmaceutical Sciences, University of Tennessee Health Science Center, College of Pharmacy , Memphis, Tennessee, United States
| |
Collapse
|
12
|
Dókus LE, Yousef M, Bánóczi Z. Modulators of calpain activity: inhibitors and activators as potential drugs. Expert Opin Drug Discov 2020; 15:471-486. [DOI: 10.1080/17460441.2020.1722638] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Levente Endre Dókus
- Department of Organic Chemistry, Institute of Chemistry, Eötvös Loránd University, Budapest, Hungary
| | - Mo’ath Yousef
- Department of Organic Chemistry, Institute of Chemistry, Eötvös Loránd University, Budapest, Hungary
| | - Zoltán Bánóczi
- Department of Organic Chemistry, Institute of Chemistry, Eötvös Loránd University, Budapest, Hungary
| |
Collapse
|
13
|
Matos AM, Pinto FR, Barros P, Amaral MD, Pepperkok R, Matos P. Inhibition of calpain 1 restores plasma membrane stability to pharmacologically rescued Phe508del-CFTR variant. J Biol Chem 2019; 294:13396-13410. [PMID: 31324722 PMCID: PMC6737230 DOI: 10.1074/jbc.ra119.008738] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 07/01/2019] [Indexed: 07/30/2023] Open
Abstract
Cystic fibrosis (CF) is a genetic disease caused by mutations in the gene encoding CF transmembrane conductance regulator (CFTR), a chloride channel normally expressed at the surface of epithelial cells. The most frequent mutation, resulting in Phe-508 deletion, causes CFTR misfolding and its premature degradation. Low temperature or pharmacological correctors can partly rescue the Phe508del-CFTR processing defect and enhance trafficking of this channel variant to the plasma membrane (PM). Nevertheless, the rescued channels have an increased endocytosis rate, being quickly removed from the PM by the peripheral protein quality-control pathway. We previously reported that rescued Phe508del-CFTR (rPhe508del) can be retained at the cell surface by stimulating signaling pathways that coax the adaptor molecule ezrin (EZR) to tether rPhe508del-Na+/H+-exchange regulatory factor-1 complexes to the actin cytoskeleton, thereby averting the rapid internalization of this channel variant. However, the molecular basis for why rPhe508del fails to recruit active EZR to the PM remains elusive. Here, using a proteomics approach, we characterized and compared the core components of wt-CFTR- or rPhe508del-containing macromolecular complexes at the surface of human bronchial epithelial cells. We identified calpain 1 (CAPN1) as an exclusive rPhe508del interactor that prevents active EZR recruitment, impairs rPhe508del anchoring to actin, and reduces its stability in the PM. We show that either CAPN1 down-regulation or its chemical inhibition dramatically improves the functional rescue of Phe508del-CFTR in airway cells. These observations suggest that CAPN1 constitutes an appealing target for pharmacological intervention, as part of CF combination therapies restoring Phe508del-CFTR function.
Collapse
Affiliation(s)
- Ana M Matos
- Department of Human Genetics, National Health Institute Doutor Ricardo Jorge, 1649-016 Lisboa, Portugal; University of Lisboa, Faculty of Sciences, BioISI-Biosystems & Integrative Sciences Institute, 1749-016 Lisboa, Portugal
| | - Francisco R Pinto
- University of Lisboa, Faculty of Sciences, BioISI-Biosystems & Integrative Sciences Institute, 1749-016 Lisboa, Portugal
| | - Patrícia Barros
- Department of Human Genetics, National Health Institute Doutor Ricardo Jorge, 1649-016 Lisboa, Portugal; University of Lisboa, Faculty of Sciences, BioISI-Biosystems & Integrative Sciences Institute, 1749-016 Lisboa, Portugal
| | - Margarida D Amaral
- University of Lisboa, Faculty of Sciences, BioISI-Biosystems & Integrative Sciences Institute, 1749-016 Lisboa, Portugal
| | - Rainer Pepperkok
- Cell Biology and Biophysics Unit and Advanced Light Microscopy Facility, European Molecular Biology Laboratory, 69117 Heidelberg, Germany
| | - Paulo Matos
- Department of Human Genetics, National Health Institute Doutor Ricardo Jorge, 1649-016 Lisboa, Portugal; University of Lisboa, Faculty of Sciences, BioISI-Biosystems & Integrative Sciences Institute, 1749-016 Lisboa, Portugal.
| |
Collapse
|
14
|
Sparatore B, Pedrazzi M, Garuti A, Franchi A, Averna M, Ballestrero A, De Tullio R. A new human calpastatin skipped of the inhibitory region protects calpain-1 from inactivation and degradation. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2019; 1866:1260-1271. [DOI: 10.1016/j.bbamcr.2019.04.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Revised: 12/20/2018] [Accepted: 01/06/2019] [Indexed: 12/17/2022]
|
15
|
Vo TM, Jain S, Burchett R, Monckton EA, Godbout R. A positive feedback loop involving nuclear factor IB and calpain 1 suppresses glioblastoma cell migration. J Biol Chem 2019; 294:12638-12654. [PMID: 31262726 DOI: 10.1074/jbc.ra119.008291] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Revised: 06/27/2019] [Indexed: 12/15/2022] Open
Abstract
Glioblastoma (GBM) is a brain tumor that remains largely incurable because of its highly-infiltrative properties. Nuclear factor I (NFI)-type transcription factors regulate genes associated with GBM cell migration and infiltration. We have previously shown that NFI activity depends on the NFI phosphorylation state and that calcineurin phosphatase dephosphorylates and activates NFI. Calcineurin is cleaved and activated by calpain proteases whose activity is, in turn, regulated by an endogenous inhibitor, calpastatin (CAST). The CAST gene is a target of NFI in GBM cells, with differentially phosphorylated NFIs regulating the levels of CAST transcript variants. Here, we uncovered an NFIB-calpain 1-positive feedback loop mediated through CAST and calcineurin. In NFI-hyperphosphorylated GBM cells, NFIB expression decreased the CAST-to-calpain 1 ratio in the cytoplasm. This reduced ratio increased autolysis and activity of cytoplasmic calpain 1. Conversely, in NFI-hypophosphorylated cells, NFIB expression induced differential subcellular compartmentalization of CAST and calpain 1, with CAST localizing primarily to the cytoplasm and calpain 1 to the nucleus. Overall, this altered compartmentalization increased nuclear calpain 1 activity. We also show that nuclear calpain 1, by cleaving and activating calcineurin, induces NFIB dephosphorylation. Of note, knockdown of calpain 1, NFIB, or both increased GBM cell migration and up-regulated the pro-migratory factors fatty acid-binding protein 7 (FABP7) and Ras homolog family member A (RHOA). In summary, our findings reveal bidirectional cross-talk between NFIB and calpain 1 in GBM cells. A physiological consequence of this positive feedback loop appears to be decreased GBM cell migration.
Collapse
Affiliation(s)
- The Minh Vo
- Cross Cancer Institute, Department of Oncology, University of Alberta, Edmonton, Alberta T6G 1Z2, Canada
| | - Saket Jain
- Cross Cancer Institute, Department of Oncology, University of Alberta, Edmonton, Alberta T6G 1Z2, Canada
| | - Rebecca Burchett
- Cross Cancer Institute, Department of Oncology, University of Alberta, Edmonton, Alberta T6G 1Z2, Canada
| | - Elizabeth A Monckton
- Cross Cancer Institute, Department of Oncology, University of Alberta, Edmonton, Alberta T6G 1Z2, Canada
| | - Roseline Godbout
- Cross Cancer Institute, Department of Oncology, University of Alberta, Edmonton, Alberta T6G 1Z2, Canada
| |
Collapse
|
16
|
Neutrophil Cell Shape Change: Mechanism and Signalling during Cell Spreading and Phagocytosis. Int J Mol Sci 2019; 20:ijms20061383. [PMID: 30893856 PMCID: PMC6471475 DOI: 10.3390/ijms20061383] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Revised: 03/12/2019] [Accepted: 03/14/2019] [Indexed: 12/16/2022] Open
Abstract
Perhaps the most important feature of neutrophils is their ability to rapidly change shape. In the bloodstream, the neutrophils circulate as almost spherical cells, with the ability to deform in order to pass along narrower capillaries. Upon receiving the signal to extravasate, they are able to transform their morphology and flatten onto the endothelium surface. This transition, from a spherical to a flattened morphology, is the first key step which neutrophils undergo before moving out of the blood and into the extravascular tissue space. Once they have migrated through tissues towards sites of infection, neutrophils carry out their primary role-killing infecting microbes by performing phagocytosis and producing toxic reactive oxygen species within the microbe-containing phagosome. Phagocytosis involves the second key morphology change that neutrophils undergo, with the formation of pseudopodia which capture the microbe within an internal vesicle. Both the spherical to flattened stage and the phagocytic capture stage are rapid, each being completed within 100 s. Knowing how these rapid cell shape changes occur in neutrophils is thus fundamental to understanding neutrophil behaviour. This article will discuss advances in our current knowledge of this process, and also identify an important regulated molecular event which may represent an important target for anti-inflammatory therapy.
Collapse
|
17
|
Abstract
Calpains are signaling proteases that have relatively little sequence specificity but some preferences for certain residues on either side of the scissile bond. As with most proteases, they mainly cut unstructured or extended regions of their target proteins. The tendency for concentrated calpain to rapidly autoproteolyze when activated by calcium complicates the kinetic assessment of calpain activity. As calpain autoproteolyzes, the amount of fully active enzyme continuously decreases until all of the calpain molecules have been cut and their activity reduced to a tiny fraction of the starting rate. To accurately measure calpain kinetics, only the initial rate of substrate hydrolysis, where autoproteolysis is minimal, can be used. To accomplish this, a method for rapid, quantifiable determination of substrate cleavage is required. Many of the existing assays are lacking in their sensitivity to accurately quantify calpain activity within this timeframe. However, the FRET peptide substrates developed by Cuerrier et al. have been shown to have sufficiently high affinity between substrate and enzyme to accurately measure the initial enzyme reaction velocity at substrate concentrations above the Km value. With a suitably sensitive fluorimeter, sufficient data can be obtained to evaluate calpain kinetics and inhibition. Here we describe a facile, reliable calpain assay based on the continuous monitoring of FRET fluorescence from the highly sensitive calpain-specific substrate, (EDANS)-EPLFAERK-(DABCYL). We illustrate some difficulties associated with determining kinetic constants of whole calpains that are simultaneously undergoing autoproteolysis and how the assay can be used to help characterize calpain-specific inhibitors. We also present a variation of this fluorescence-based assay for high-throughput screening using the calpain protease core and a fluorescence plate reader.
Collapse
Affiliation(s)
| | - Peter L Davies
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON, Canada.
| |
Collapse
|
18
|
Gutiérrez S, Morón M, Griera M, Sucunza D, Calleros L, García-Jérez A, Coderch C, Hermoso FJ, Burgos C, Rodríguez-Puyol M, de Pascual-Teresa B, Diez-Marques ML, Jimenez A, Toro-Londoño M, Rodríguez-Puyol D, Vaquero JJ. Discovery of potent calpain inhibitors based on the azolo-imidazolidenone scaffold. Eur J Med Chem 2018; 157:946-959. [DOI: 10.1016/j.ejmech.2018.08.045] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Revised: 06/12/2018] [Accepted: 08/16/2018] [Indexed: 11/30/2022]
|
19
|
Kling A, Jantos K, Mack H, Hornberger W, Backfisch G, Lao Y, Nijsen M, Rendenbach-Mueller B, Moeller A. Mitigating the Metabolic Liability of Carbonyl Reduction: Novel Calpain Inhibitors with P1' Extension. ACS Med Chem Lett 2018. [PMID: 29541364 DOI: 10.1021/acsmedchemlett.7b00494] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Dysregulation of calpains 1 and 2 has been implicated in a variety of pathological disorders including ischemia/reperfusion injuries, kidney diseases, cataract formation, and neurodegenerative diseases such as Alzheimer's disease (AD). 2-(3-Phenyl-1H)-pyrazol-1-yl)nicotinamides represent a series of novel and potent calpain inhibitors with high selectivity and in vivo efficacy. However, carbonyl reduction leading to the formation of the inactive hydroxyamide was identified as major metabolic liability in monkey and human, a pathway not reflected by routine absorption, distribution, metabolism, and excretion (ADME) assays. Using cytosolic clearance as a tailored in vitro ADME assay coupled with in vitro hepatocyte metabolism enabled the identification of analogues with enhanced stability against carbonyl reduction. These efforts led to the identification of P1' modified calpain inhibitors with significantly improved pharmacokinetic profile including P1' N-methoxyamide 23 as potential candidate compound for non-central nervous system indications.
Collapse
Affiliation(s)
- Andreas Kling
- Neuroscience Research, AbbVie Deutschland GmbH & Co. KG, Knollstrasse, 67061 Ludwigshafen, Germany
| | - Katja Jantos
- Neuroscience Research, AbbVie Deutschland GmbH & Co. KG, Knollstrasse, 67061 Ludwigshafen, Germany
| | - Helmut Mack
- Neuroscience Research, AbbVie Deutschland GmbH & Co. KG, Knollstrasse, 67061 Ludwigshafen, Germany
| | - Wilfried Hornberger
- Neuroscience Research, AbbVie Deutschland GmbH & Co. KG, Knollstrasse, 67061 Ludwigshafen, Germany
| | - Gisela Backfisch
- Development Sciences, AbbVie Deutschland GmbH & Co. KG, Knollstrasse, 67061 Ludwigshafen, Germany
| | - Yanbin Lao
- AbbVie, Inc., 1 North Waukegan Road, North Chicago, Illinois 60064-6125, United States
| | - Marjoleen Nijsen
- AbbVie, Inc., 1 North Waukegan Road, North Chicago, Illinois 60064-6125, United States
| | | | - Achim Moeller
- Neuroscience Research, AbbVie Deutschland GmbH & Co. KG, Knollstrasse, 67061 Ludwigshafen, Germany
| |
Collapse
|
20
|
Wang Y, Liu Y, Lopez D, Lee M, Dayal S, Hurtado A, Bi X, Baudry M. Protection against TBI-Induced Neuronal Death with Post-Treatment with a Selective Calpain-2 Inhibitor in Mice. J Neurotrauma 2018; 35:105-117. [PMID: 28594313 PMCID: PMC5757088 DOI: 10.1089/neu.2017.5024] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Traumatic Brain Injury (TBI) is a major cause of death and disability worldwide. The calcium-dependent protease, calpain, has been shown to be involved in TBI-induced neuronal death. However, whereas various calpain inhibitors have been tested in several animal models of TBI, there has not been any clinical trial testing the efficacy of calpain inhibitors in human TBI. One important reason for this could be the lack of knowledge regarding the differential functions of the two major calpain isoforms in the brain, calpain-1 and calpain-2. In this study, we used the controlled cortical impact (CCI) model in mice to test the roles of calpain-1 and calpain-2 in TBI-induced neuronal death. Immunohistochemistry (IHC) with calpain activity markers performed at different time-points after CCI in wild-type and calpain-1 knock-out (KO) mice showed that calpain-1 was activated early in cortical areas surrounding the impact, within 0-8 h after CCI, whereas calpain-2 activation was delayed and was predominant during 8-72 h after CCI. Calpain-1 KO enhanced cell death, whereas calpain-2 activity correlated with the extent of cell death, suggesting that calpain-1 activation suppresses and calpain-2 activation promotes cell death following TBI. Systemic injection(s) of a calpain-2 selective inhibitor, NA101, at 1 h or 4 h after CCI significantly reduced calpain-2 activity and cell death around the impact site, reduced the lesion volume, and promoted motor and learning function recovery after TBI. Our data indicate that calpain-1 activity is neuroprotective and calpain-2 activity is neurodegenerative after TBI, and that a selective calpain-2 inhibitor can reduce TBI-induced cell death.
Collapse
Affiliation(s)
- Yubin Wang
- Graduate College of Biomedical Sciences, Western University of Health Sciences, Pomona, California
| | - Yan Liu
- Graduate College of Biomedical Sciences, Western University of Health Sciences, Pomona, California
| | - Dulce Lopez
- Graduate College of Biomedical Sciences, Western University of Health Sciences, Pomona, California
| | - Moses Lee
- Graduate College of Biomedical Sciences, Western University of Health Sciences, Pomona, California
| | | | - Alexander Hurtado
- Graduate College of Biomedical Sciences, Western University of Health Sciences, Pomona, California
| | - Xiaoning Bi
- College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, California
| | - Michel Baudry
- Graduate College of Biomedical Sciences, Western University of Health Sciences, Pomona, California
| |
Collapse
|
21
|
Calcium influx-mediated translocation of m-calpain induces Ku80 cleavage and enhances the Ku80-related DNA repair pathway. Oncotarget 2017; 7:30831-44. [PMID: 27121057 PMCID: PMC5058721 DOI: 10.18632/oncotarget.8791] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Accepted: 04/01/2016] [Indexed: 01/14/2023] Open
Abstract
Proteomic analysis of ionomycin-treated and untreated mammary epithelial MCF10A cells elucidated differences in Ku80 cleavage. Ku80, a subunit of the Ku protein complex, is an initiator of the non-homologous, end-joining (NHEJ), double-strand breaks (DSBs) repair pathway. The nuclear Ku80 was cleaved in a calcium concentration-dependent manner by m-calpain but not by m-calpain. The cleavage of nuclear Ku80 at its α/β domain was validated by Western blotting analysis using flag-tagged expression vectors of truncated versions of Ku80 and a flag antibody and was confirmed in m-calpain knock-down cells and in vitro cell-free evaluation with recombinant proteins of calpains, Ku70, and Ku80. In addition, the cleaved Ku80 still formed a Ku heterodimer and promoted DNA DSB repair activity. Taken together, these findings indicate that translocated m-calpain enhances the NHEJ pathway through the cleavage of Ku80. Based on the present study, m-calpain in DNA repair pathways might be a novel anticancer drug target, or its mechanism might be a possible route for resistance acquisition of DNA damage-inducing chemotherapeutics.
Collapse
|
22
|
Zeng X, Chen S, Yang Y, Ke Z. Acylated and unacylated ghrelin inhibit atrophy in myotubes co-cultured with colon carcinoma cells. Oncotarget 2017; 8:72872-72885. [PMID: 29069832 PMCID: PMC5641175 DOI: 10.18632/oncotarget.20531] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Accepted: 07/30/2017] [Indexed: 01/06/2023] Open
Abstract
Cancer cachexia is a result of increased protein degradation and decreased protein synthesis. The multifunctional circulating hormone ghrelin promotes synthesis and inhibits degradation of muscle protein, but its mechanism of action is not fully understood. Here, we investigated whether co-culturing C2C12 myotubes with CT26 colon carcinoma cells induces myotube atrophy, and whether acylated ghrelin (AG) and unacylated ghrelin (UnAG) had anti-atrophic effects. We found that co-culture induced myotube atrophy and increased tumor necrosis factor-alpha (TNF-α) and myostatin concentrations in the culture medium. Moreover, co-culture down-regulated myogenin and MyoD expression, inhibited the Akt signaling, up-regulated ubiquitin E3 ligase expression, and activated the calpain system and autophagy in myotubes. Both AG and UnAG inhibited these changes. Our study describes a novel in vitro model that can be employed to investigate cancer cachexia, and our findings suggest a possible use for AG and UnAG in treating cancer cachexia.
Collapse
Affiliation(s)
- Xianliang Zeng
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian 350005, China
| | - Sizeng Chen
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian 350005, China
| | - Yang Yang
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian 350005, China
| | - Zhao Ke
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian 350005, China
| |
Collapse
|
23
|
Kling A, Jantos K, Mack H, Hornberger W, Drescher K, Nimmrich V, Relo A, Wicke K, Hutchins CW, Lao Y, Marsh K, Moeller A. Discovery of Novel and Highly Selective Inhibitors of Calpain for the Treatment of Alzheimer's Disease: 2-(3-Phenyl-1H-pyrazol-1-yl)-nicotinamides. J Med Chem 2017; 60:7123-7138. [PMID: 28759231 DOI: 10.1021/acs.jmedchem.7b00731] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Calpain overactivation has been implicated in a variety of pathological disorders including ischemia/reperfusion injury, cataract formation, and neurodegenerative diseases such as Alzheimer's disease (AD). Herein we describe our efforts leading to the identification of ketoamide-based 2-(3-phenyl-1H-pyrazol-1-yl)nicotinamides as potent and reversible inhibitors of calpain with high selectivity versus related cysteine protease cathepsins, other proteases, and receptors. Broad efficacy in a set of preclinical models relevant to AD suggests that inhibition of calpain represents an attractive approach with potential benefit for the treatment of AD.
Collapse
Affiliation(s)
- Andreas Kling
- Neuroscience Research, AbbVie Deutschland GmbH & Co. KG , Knollstrasse, 67061 Ludwigshafen, Germany
| | - Katja Jantos
- Neuroscience Research, AbbVie Deutschland GmbH & Co. KG , Knollstrasse, 67061 Ludwigshafen, Germany
| | - Helmut Mack
- Neuroscience Research, AbbVie Deutschland GmbH & Co. KG , Knollstrasse, 67061 Ludwigshafen, Germany
| | - Wilfried Hornberger
- Neuroscience Research, AbbVie Deutschland GmbH & Co. KG , Knollstrasse, 67061 Ludwigshafen, Germany
| | - Karla Drescher
- Neuroscience Research, AbbVie Deutschland GmbH & Co. KG , Knollstrasse, 67061 Ludwigshafen, Germany
| | - Volker Nimmrich
- Neuroscience Research, AbbVie Deutschland GmbH & Co. KG , Knollstrasse, 67061 Ludwigshafen, Germany
| | - Ana Relo
- Neuroscience Research, AbbVie Deutschland GmbH & Co. KG , Knollstrasse, 67061 Ludwigshafen, Germany
| | - Karsten Wicke
- Neuroscience Research, AbbVie Deutschland GmbH & Co. KG , Knollstrasse, 67061 Ludwigshafen, Germany
| | - Charles W Hutchins
- AbbVie Inc. , 1 North Waukegan Road, North Chicago, Illinois 60064-6125, United States
| | - Yanbin Lao
- AbbVie Inc. , 1 North Waukegan Road, North Chicago, Illinois 60064-6125, United States
| | - Kennan Marsh
- AbbVie Inc. , 1 North Waukegan Road, North Chicago, Illinois 60064-6125, United States
| | - Achim Moeller
- Neuroscience Research, AbbVie Deutschland GmbH & Co. KG , Knollstrasse, 67061 Ludwigshafen, Germany
| |
Collapse
|
24
|
Weber JJ, Golla M, Guaitoli G, Wanichawan P, Hayer SN, Hauser S, Krahl AC, Nagel M, Samer S, Aronica E, Carlson CR, Schöls L, Riess O, Gloeckner CJ, Nguyen HP, Hübener-Schmid J. A combinatorial approach to identify calpain cleavage sites in the Machado-Joseph disease protein ataxin-3. Brain 2017; 140:1280-1299. [DOI: 10.1093/brain/awx039] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Accepted: 01/06/2017] [Indexed: 11/13/2022] Open
|
25
|
Lin XY, Chen SZ. Calpain inhibitors ameliorate muscle wasting in a cachectic mouse model bearing CT26 colorectal adenocarcinoma. Oncol Rep 2017; 37:1601-1610. [PMID: 28112357 DOI: 10.3892/or.2017.5396] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2016] [Accepted: 01/05/2017] [Indexed: 11/06/2022] Open
Abstract
Cancer-related cachexia involves increased protein breakdown through various proteolytic pathways, including the ubiquitin-proteasome pathway (UPP). We hypothesized that a calcium- and calpain-dependent pathway might play a crucial role during the proteolytic procedure, and that pathway interventions would ameliorate cancer cachexia in vivo. After being inoculated with CT26 adenocarcinoma cell culture subcutaneously, BALB/c mice developed cachexia in 12 days. They were then administered with different types of calpain inhibitors individually or in combination for 7 consecutive days. Eighteen healthy mice were also assessed as a control group. Changes in body weight, gastrocnemius muscle mass, tumor volume, food intake, survival time, and serum nutritional markers were monitored. Also measured were the levels of calpains, E3 ubiquitin ligases, and apoptosis-associated markers in gastrocnemius muscle. Our study showed that the intraperitoneal administration of calpain inhibitors significantly improved tumor-free body weight and gastrocnemius muscle mass in all treatment groups. Treatment with calpain inhibitors also ameliorated cachexia-associated negative effects in metabolic profiles and increased survival time in most of the tumor-bearing mice compared with the cachexia controls. Furthermore, calpain inhibitors reduced the calpain activity and the expression of MuRF-1 and atrogin-1 in all treatment groups, while increasing the level of cleaved caspase-3 and BAX and lowering the level of BCL-2 in some groups. These results justify further evaluation of calpain inhibitors both alone and in combination with other candidate agents as a potential new therapeutic strategy for treating cancer cachexia.
Collapse
Affiliation(s)
- Xing-Yu Lin
- The First Clinical Medical College of Fujian Medical University, Fuzhou, Fujian 350005, P.R. China
| | - Si-Zeng Chen
- The First Clinical Medical College of Fujian Medical University, Fuzhou, Fujian 350005, P.R. China
| |
Collapse
|
26
|
Why calpain inhibitors are interesting leading compounds to search for new therapeutic options to treat leishmaniasis? Parasitology 2016; 144:117-123. [PMID: 27869056 PMCID: PMC5300003 DOI: 10.1017/s003118201600189x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Leishmaniasis is a neglected disease, which needs improvements in drug development, mainly due to the toxicity, parasite resistance and low compliance of patients to treatment. Therefore, the development of new chemotherapeutic compounds is an urgent need. This opinion article will briefly highlight the feasible use of calpain inhibitors as leading compounds to search for new therapeutic options to treat leishmaniasis. The milestone of this approach is to take advantage on the myriad of inhibitors developed against calpains, some of which are in advanced clinical trials. The deregulated activity of these enzymes is associated with several pathologies, such as strokes, diabetes and Parkinson's disease, to name a few. In Leishmania, calpain upregulation has been associated to drug resistance and virulence. Whereas the difficulties in developing new drugs for neglected diseases are more economical than biotechnological, repurposing approach with compounds already approved for clinical use by the regulatory agencies can be an interesting shortcut to a successful chemotherapeutic treatment for leishmaniasis.
Collapse
|
27
|
Gene/protein expression of CAPN1/2-CAST system members is associated with ERK1/2 kinases activity as well as progression and clinical outcome in human laryngeal cancer. Tumour Biol 2016; 37:13185-13203. [PMID: 27456359 DOI: 10.1007/s13277-016-5178-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2016] [Accepted: 07/12/2016] [Indexed: 01/11/2023] Open
Abstract
Recent evidence indicates the involvement of calpains (CAPNs), a family of cysteine proteases, in cancer development and progression, as well as the insufficient response to cancer therapies. The contribution of CAPNs and regulatory calpastatin (CAST) and ERK1/2 kinases to aggressiveness, disease course, and outcome in laryngeal cancer remains elusive. This study was aimed to evaluate the CAPN1/2-CAST-ERK1/2 enzyme system mRNA/protein level and to investigate whether they can promote the dynamic of tumor growth and prognosis. The mRNA expression of marker genes was determined in 106 laryngeal cancer (SCLC) cases and 73 non-cancerous adjacent mucosa (NCLM) controls using quantitative real-time PCR. The level of corresponding proteins was analyzed by Western Blot. SLUG expression, as indicator of pathological advancement was determined using IHC staining. Significant increases of CAPN1/2-CAST-ERK1/2 levels of mRNA/protein were noted in SCLC compared to NCLM (p < 0.05). As a result, a higher level of CAPN1 and ERK1 genes was related to larger tumor size, more aggressive and deeper growth according to TFG scale and SLUG level (p < 0.05). There were also relationships of CAPN1/2 and ERK1 with incidences of local/nodal recurrences (p < 0.05). An inverse association for CAPN1/2, CAST, and ERK1/2 transcripts was determined with regard to overall survival (p < 0.05). In addition, a higher CAPN1 and phospho-ERK1 protein level was related to higher grade and stage (p < 0.05) and was found to promote worse prognosis. This is the first study to show that activity of CAPN1/2- CAST-ERK1/2 axis may be an indicator of tumor phenotype and unfavorable outcome in SCLC.
Collapse
|
28
|
Curcio M, Salazar IL, Mele M, Canzoniero LMT, Duarte CB. Calpains and neuronal damage in the ischemic brain: The swiss knife in synaptic injury. Prog Neurobiol 2016; 143:1-35. [PMID: 27283248 DOI: 10.1016/j.pneurobio.2016.06.001] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2015] [Revised: 03/22/2016] [Accepted: 05/09/2016] [Indexed: 12/26/2022]
Abstract
The excessive extracellular accumulation of glutamate in the ischemic brain leads to an overactivation of glutamate receptors with consequent excitotoxic neuronal death. Neuronal demise is largely due to a sustained activation of NMDA receptors for glutamate, with a consequent increase in the intracellular Ca(2+) concentration and activation of calcium- dependent mechanisms. Calpains are a group of Ca(2+)-dependent proteases that truncate specific proteins, and some of the cleavage products remain in the cell, although with a distinct function. Numerous studies have shown pre- and post-synaptic effects of calpains on glutamatergic and GABAergic synapses, targeting membrane- associated proteins as well as intracellular proteins. The resulting changes in the presynaptic proteome alter neurotransmitter release, while the cleavage of postsynaptic proteins affects directly or indirectly the activity of neurotransmitter receptors and downstream mechanisms. These alterations also disturb the balance between excitatory and inhibitory neurotransmission in the brain, with an impact in neuronal demise. In this review we discuss the evidence pointing to a role for calpains in the dysregulation of excitatory and inhibitory synapses in brain ischemia, at the pre- and post-synaptic levels, as well as the functional consequences. Although targeting calpain-dependent mechanisms may constitute a good therapeutic approach for stroke, specific strategies should be developed to avoid non-specific effects given the important regulatory role played by these proteases under normal physiological conditions.
Collapse
Affiliation(s)
- Michele Curcio
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal
| | - Ivan L Salazar
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal; Doctoral Programme in Experimental Biology and Biomedicine, Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal; Institute for Interdisciplinary Research, University of Coimbra (IIIUC), 3030-789 Coimbra, Portugal
| | - Miranda Mele
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal
| | | | - Carlos B Duarte
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal; Department of Life Sciences, University of Coimbra, 3000-456 Coimbra, Portugal.
| |
Collapse
|
29
|
Low KE, Ler S, Chen KJ, Campbell RL, Hickey JL, Tan J, Scully CCG, Davies PL, Yudin AK, Zaretsky S. Rational Design of Calpain Inhibitors Based on Calpastatin Peptidomimetics. J Med Chem 2016; 59:5403-15. [DOI: 10.1021/acs.jmedchem.6b00267] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- Kristin E. Low
- Department
of Biomedical and Molecular Sciences, Queen’s University, Kingston, Ontario K7L 3N6, Canada
| | - Spencer Ler
- Department
of Chemistry, University of Toronto, Toronto, Ontario M5S 3H6, Canada
| | - Kevin J. Chen
- Department
of Biomedical and Molecular Sciences, Queen’s University, Kingston, Ontario K7L 3N6, Canada
| | - Robert L. Campbell
- Department
of Biomedical and Molecular Sciences, Queen’s University, Kingston, Ontario K7L 3N6, Canada
| | - Jennifer L. Hickey
- Encycle Therapeutics Inc., 101
College Street, Suite 314, Toronto, Ontario M5G 1L7, Canada
| | - Joanne Tan
- Department
of Chemistry, University of Toronto, Toronto, Ontario M5S 3H6, Canada
| | - Conor C. G. Scully
- Department
of Chemistry, University of Toronto, Toronto, Ontario M5S 3H6, Canada
| | - Peter L. Davies
- Department
of Biomedical and Molecular Sciences, Queen’s University, Kingston, Ontario K7L 3N6, Canada
| | - Andrei K. Yudin
- Department
of Chemistry, University of Toronto, Toronto, Ontario M5S 3H6, Canada
| | - Serge Zaretsky
- Department
of Chemistry, University of Toronto, Toronto, Ontario M5S 3H6, Canada
| |
Collapse
|
30
|
Kantserova NP, Lysenko LA, Ushakova NV, Krylov VV, Nemova NN. [Modulation of Ca(2+)-Dependent Proteiolysis under the Action of Weak Low-Frequency Magnetic Fields]. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2016; 41:725-30. [PMID: 27125027 DOI: 10.1134/s1068162015060060] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The study aimed to determine the molecular targets of magnetic fields in living objects. Time-dependent effects of weak low-frequency magnetic field tuned to the parametric resonance for calcium ions were studied on model organisms (fish, whelk). The dynamics of Ca(2+)-dependent proteinase activity under the exposure to magnetic fields with given parameters was determined and minimal time of exposure in order to achieve inactivation of these proteinases was find out as well. As hyperactivation of Ca(2+)-dependent proteinases is a basis of degenerative pathology development the therapeutic potential of weak low-frequency magnetic fields enabling to modulate Ca(2+)-dependent proteinase activity is supported.
Collapse
|
31
|
Fà M, Zhang H, Staniszewski A, Saeed F, Shen LW, Schiefer IT, Siklos MI, Tapadar S, Litosh VA, Libien J, Petukhov PA, Teich AF, Thatcher GR, Arancio O. Novel Selective Calpain 1 Inhibitors as Potential Therapeutics in Alzheimer's Disease. J Alzheimers Dis 2016; 49:707-21. [PMID: 26484927 PMCID: PMC8962836 DOI: 10.3233/jad-150618] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Alzheimer's disease, one of the most important brain pathologies associated with neurodegenerative processes, is related to overactivation of calpain-mediated proteolysis. Previous data showed a compelling efficacy of calpain inhibition against abnormal synaptic plasticity and memory produced by the excess of amyloid-β, a distinctive marker of the disease. Moreover, a beneficial effect of calpain inhibitors in Alzheimer's disease is predictable by the occurrence of calpain hyperactivation leading to impairment of memory-related pathways following abnormal calcium influxes that might ensue independently of amyloid-β elevation. However, molecules currently available as effective calpain inhibitors lack adequate selectivity. This work is aimed at characterizing the efficacy of a novel class of epoxide-based inhibitors, synthesized to display improved selectivity and potency towards calpain 1 compared to the prototype epoxide-based generic calpain inhibitor E64. Both functional and preliminary toxicological investigations proved the efficacy, potency, and safety of the novel and selective calpain inhibitors NYC438 and NYC488 as possible therapeutics against the disease.
Collapse
Affiliation(s)
- Mauro Fà
- Department of Pathology and Cell Biology, The Taub Institute for Research on Alzheimer’s Disease and the Aging Brain, Columbia University, New York, NY, USA
| | - Hong Zhang
- Department of Pathology and Cell Biology, The Taub Institute for Research on Alzheimer’s Disease and the Aging Brain, Columbia University, New York, NY, USA
| | - Agnieszka Staniszewski
- Department of Pathology and Cell Biology, The Taub Institute for Research on Alzheimer’s Disease and the Aging Brain, Columbia University, New York, NY, USA
| | - Faisal Saeed
- Department of Pathology and Cell Biology, The Taub Institute for Research on Alzheimer’s Disease and the Aging Brain, Columbia University, New York, NY, USA
| | - Li W. Shen
- Department of Pathology and Cell Biology, The Taub Institute for Research on Alzheimer’s Disease and the Aging Brain, Columbia University, New York, NY, USA
| | - Isaac T. Schiefer
- Department of Medicinal and Biological Chemistry, University of Ohio at Toledo, Frederic and Mary Wolfe Center, Toledo, OH, USA
| | - Marton I. Siklos
- Department of Medicinal Chemistry and Pharmacognosy, University of Illinois College of Pharmacy, University of Illinois at Chicago, Chicago, IL, USA
| | - Subhasish Tapadar
- Department of Medicinal Chemistry and Pharmacognosy, University of Illinois College of Pharmacy, University of Illinois at Chicago, Chicago, IL, USA
| | - Vladislav A. Litosh
- Department of Chemistry, McMicken College of Arts & Sciences, University of Cincinnati, Cincinnati, OH, USA
| | - Jenny Libien
- Department of Pathology, SUNY Downstate Medical Center, Brooklyn, NY, USA
| | - Pavel A. Petukhov
- Department of Medicinal Chemistry and Pharmacognosy, University of Illinois College of Pharmacy, University of Illinois at Chicago, Chicago, IL, USA
| | - Andrew F. Teich
- Department of Pathology and Cell Biology, The Taub Institute for Research on Alzheimer’s Disease and the Aging Brain, Columbia University, New York, NY, USA
| | - Gregory R.J. Thatcher
- Department of Medicinal Chemistry and Pharmacognosy, University of Illinois College of Pharmacy, University of Illinois at Chicago, Chicago, IL, USA
| | - Ottavio Arancio
- Department of Pathology and Cell Biology, The Taub Institute for Research on Alzheimer’s Disease and the Aging Brain, Columbia University, New York, NY, USA
| |
Collapse
|
32
|
Cysteine proteases as therapeutic targets: does selectivity matter? A systematic review of calpain and cathepsin inhibitors. Acta Pharm Sin B 2015; 5:506-19. [PMID: 26713267 PMCID: PMC4675809 DOI: 10.1016/j.apsb.2015.08.001] [Citation(s) in RCA: 170] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2015] [Revised: 07/09/2015] [Accepted: 07/14/2015] [Indexed: 01/17/2023] Open
Abstract
Cysteine proteases continue to provide validated targets for treatment of human diseases. In neurodegenerative disorders, multiple cysteine proteases provide targets for enzyme inhibitors, notably caspases, calpains, and cathepsins. The reactive, active-site cysteine provides specificity for many inhibitor designs over other families of proteases, such as aspartate and serine; however, a) inhibitor strategies often use covalent enzyme modification, and b) obtaining selectivity within families of cysteine proteases and their isozymes is problematic. This review provides a general update on strategies for cysteine protease inhibitor design and a focus on cathepsin B and calpain 1 as drug targets for neurodegenerative disorders; the latter focus providing an interesting query for the contemporary assumptions that irreversible, covalent protein modification and low selectivity are anathema to therapeutic safety and efficacy.
Collapse
Key Words
- AD, Alzheimer׳s disease
- ALS, amyotrophic lateral sclerosis
- APP, amyloid precursor protein
- APP/PS1, Aβ overexpressing mice APP (K670N/M671L) and PS1 (M146L) mutants
- Ala, alanine
- Alzheimer׳s disease
- AppLon, London familial amyloid precursor protein mutation, APP (V717I)
- AppSwe, Swedish amyloid precursor protein mutation, APP (K670N/M671L)
- Arg, arginine
- Aβ, amyloid β
- Aβ1-42, amyloid β, 42 amino acid protein
- BACE-1, β-amyloid cleaving enzyme
- BBB, blood–brain barrier
- CANP, calcium-activated neutral protease
- CNS, central nervous system
- CREB, cyclic adenosine monophosphate response element binding protein
- CaMKII, Ca2+/calmodulin-dependent protein kinases II
- Calpain
- Cathepsin
- Cdk5/p35, activator of cyclin-dependent kinase 5
- Cysteine protease
- DTT, dithioerythritol
- EGFR, epidermal growth factor receptor
- ERK1/2, extracellular signal-regulated kinase 1/2
- Enzyme inhibitors
- GSH, glutathione
- Gln, glutamine
- Glu, glutamic acid
- Gly, glutamine
- Hsp70.1, heat shock protein 70.1
- Ile, isoleucine
- KO, knockout
- Leu, leucine
- Lys, lysine
- MAP-2, microtubule-associated protein 2
- MMP-9, matrix metalloproteinase 9
- Met, methionine
- NFT, neurofibrilliary tangles
- Neurodegeneration
- Nle, norleucine
- PD, Parkinson׳s disease
- PK, pharmacokinetic
- PKC, protein kinase C
- PTP1B, protein-tyrosine phosphatase 1B
- Phe, phenylalanine
- Pro, proline
- SP, senile plaques
- TBI, traumatic brain injury
- TNF, tumor necrosis factor
- Thr, threonine
- Tyr, tyrosine
- Val, valine
- WRX, Trp-Arg containing epoxysuccinate cysteine protease inhibitor
- WT, wildtype
- isoAsp, isoaspartate
- pGlu, pyroglutamate
- pyroGluAβ, pyroglutamate-amyloid β
Collapse
|
33
|
Adams SE, Robinson EJ, Miller DJ, Rizkallah PJ, Hallett MB, Allemann RK. Conformationally restricted calpain inhibitors. Chem Sci 2015; 6:6865-6871. [PMID: 28757975 PMCID: PMC5508670 DOI: 10.1039/c5sc01158b] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Accepted: 08/20/2015] [Indexed: 01/22/2023] Open
Abstract
Oxidised α-mercaptoacrylic acid derivatives are potent conformationally restricted calpain-I inhibitors that mimic the endogenous inhibitor calpastatin.
The cysteine protease calpain-I is linked to several diseases and is therefore a valuable target for inhibition. Selective inhibition of calpain-I has proved difficult as most compounds target the active site and inhibit a broad spectrum of cysteine proteases as well as other calpain isoforms. Selective inhibitors might not only be potential drugs but should act as tools to explore the physiological and pathophysiological roles of calpain-I. α-Mercaptoacrylic acid based calpain inhibitors are potent, cell permeable and selective inhibitors of calpain-I and calpain-II. These inhibitors target the calcium binding domain PEF(S) of calpain-I and -II. Here X-ray diffraction analysis of co-crystals of PEF(S) revealed that the disulfide form of an α-mercaptoacrylic acid bound within a hydrophobic groove that is also targeted by a calpastatin inhibitory region and made a greater number of favourable interactions with the protein than the reduced sulfhydryl form. Measurement of the inhibitory potency of the α-mercaptoacrylic acids and X-ray crystallography revealed that the IC50 values decreased significantly on oxidation as a consequence of the stereo-electronic properties of disulfide bonds that restrict rotation around the S–S bond. Consequently, thioether analogues inhibited calpain-I with potencies similar to those of the free sulfhydryl forms of α-mercaptoacrylic acids.
Collapse
Affiliation(s)
- S E Adams
- School of Chemistry , Cardiff University , Main Building, Park Place , Cardiff , UK CF10 3AT . ; ; Tel: +44 (0) 29 2087 9014
| | - E J Robinson
- Institute of Infection & Immunology , School of Medicine , Heath Campus , Cardiff , UK CF14 4XN
| | - D J Miller
- School of Chemistry , Cardiff University , Main Building, Park Place , Cardiff , UK CF10 3AT . ; ; Tel: +44 (0) 29 2087 9014
| | - P J Rizkallah
- Institute of Infection & Immunology , School of Medicine , Heath Campus , Cardiff , UK CF14 4XN
| | - M B Hallett
- Institute of Infection & Immunology , School of Medicine , Heath Campus , Cardiff , UK CF14 4XN
| | - R K Allemann
- School of Chemistry , Cardiff University , Main Building, Park Place , Cardiff , UK CF10 3AT . ; ; Tel: +44 (0) 29 2087 9014
| |
Collapse
|
34
|
Mechanism of action of thalassospiramides, a new class of calpain inhibitors. Sci Rep 2015; 5:8783. [PMID: 25740631 PMCID: PMC4350077 DOI: 10.1038/srep08783] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2014] [Accepted: 02/04/2015] [Indexed: 11/10/2022] Open
Abstract
Thalassospiramides comprise a large family of lipopeptide natural products produced by Thalassospira and Tistrella marine bacteria. Here we provide further evidence of their nanomolar inhibitory activity against the human calpain 1 protease. Analysis of structure-activity relationship data supported our hypothesis that the rigid 12-membered ring containing an α,β-unsaturated carbonyl moiety is the pharmacologically active functional group, in contrast to classic electrophilic “warheads” in known calpain inhibitors. Using a combination of chemical modifications, mass spectrometric techniques, site-directed mutagenesis, and molecular modeling, we show the covalent binding of thalassospiramide's α,β-unsaturated carbonyl moiety to the thiol group of calpain's catalytic Cys115 residue by a Michael 1,4-addition reaction. As nanomolar calpain inhibitors with promising selectivity and low toxicity from natural sources are rare, we consider thalassospiramides as promising drug leads.
Collapse
|
35
|
White-Schenk D, Shi R, Leary JF. Nanomedicine strategies for treatment of secondary spinal cord injury. Int J Nanomedicine 2015; 10:923-38. [PMID: 25673988 PMCID: PMC4321603 DOI: 10.2147/ijn.s75686] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Neurological injury, such as spinal cord injury, has a secondary injury associated with it. The secondary injury results from the biological cascade after the primary injury and affects previous uninjured, healthy tissue. Therefore, the mitigation of such a cascade would benefit patients suffering a primary injury and allow the body to recover more quickly. Unfortunately, the delivery of effective therapeutics is quite limited. Due to the inefficient delivery of therapeutic drugs, nanoparticles have become a major field of exploration for medical applications. Based on their material properties, they can help treat disease by delivering drugs to specific tissues, enhancing detection methods, or a mixture of both. Incorporating nanomedicine into the treatment of neuronal injury and disease would likely push nanomedicine into a new light. This review highlights the various pathological issues involved in secondary spinal cord injury, current treatment options, and the improvements that could be made using a nanomedical approach.
Collapse
Affiliation(s)
- Désirée White-Schenk
- Interdisciplinary Biomedical Sciences Program, Purdue University, West Lafayette, IN, USA ; Birck Nanotechnology Center, Discovery Park, Purdue University, West Lafayette, IN, USA
| | - Riyi Shi
- Interdisciplinary Biomedical Sciences Program, Purdue University, West Lafayette, IN, USA ; Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, USA ; Department of Basic Medical Sciences, Lynn School of Veterinary Medicine, Purdue University, West Lafayette, IN, USA
| | - James F Leary
- Interdisciplinary Biomedical Sciences Program, Purdue University, West Lafayette, IN, USA ; Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, USA ; Department of Basic Medical Sciences, Lynn School of Veterinary Medicine, Purdue University, West Lafayette, IN, USA ; Birck Nanotechnology Center, Discovery Park, Purdue University, West Lafayette, IN, USA
| |
Collapse
|
36
|
Teich AF, Nicholls RE, Puzzo D, Fiorito J, Purgatorio R, Fa’ M, Arancio O. Synaptic therapy in Alzheimer's disease: a CREB-centric approach. Neurotherapeutics 2015; 12:29-41. [PMID: 25575647 PMCID: PMC4322064 DOI: 10.1007/s13311-014-0327-5] [Citation(s) in RCA: 103] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Therapeutic attempts to cure Alzheimer's disease (AD) have failed, and new strategies are desperately needed. Motivated by this reality, many laboratories (including our own) have focused on synaptic dysfunction in AD because synaptic changes are highly correlated with the severity of clinical dementia. In particular, memory formation is accompanied by altered synaptic strength, and this phenomenon (and its dysfunction in AD) has been a recent focus for many laboratories. The molecule cyclic adenosine monophosphate response element-binding protein (CREB) is at a central converging point of pathways and mechanisms activated during the processes of synaptic strengthening and memory formation, as CREB phosphorylation leads to transcription of memory-associated genes. Disruption of these mechanisms in AD results in a reduction of CREB activation with accompanying memory impairment. Thus, it is likely that strategies aimed at these mechanisms will lead to future therapies for AD. In this review, we will summarize literature that investigates 5 possible therapeutic pathways for rescuing synaptic dysfunction in AD: 4 enzymatic pathways that lead to CREB phosphorylation (the cyclic adenosine monophosphate cascade, the serine/threonine kinases extracellular regulated kinases 1 and 2, the nitric oxide cascade, and the calpains), as well as histone acetyltransferases and histone deacetylases (2 enzymes that regulate the histone acetylation necessary for gene transcription).
Collapse
Affiliation(s)
- Andrew F. Teich
- />Department of Pathology & Cell Biology, Taub Institute for Research on Alzheimer’s Disease and the Aging Brain, Columbia University, New York, NY 10032 USA
| | - Russell E. Nicholls
- />Department of Pathology & Cell Biology, Taub Institute for Research on Alzheimer’s Disease and the Aging Brain, Columbia University, New York, NY 10032 USA
| | - Daniela Puzzo
- />Department of Bio-Medical Sciences, Section of Physiology, University of Catania, Catania, 95125 Italy
| | - Jole Fiorito
- />Department of Pathology & Cell Biology, Taub Institute for Research on Alzheimer’s Disease and the Aging Brain, Columbia University, New York, NY 10032 USA
| | - Rosa Purgatorio
- />Department of Pathology & Cell Biology, Taub Institute for Research on Alzheimer’s Disease and the Aging Brain, Columbia University, New York, NY 10032 USA
| | - Mauro Fa’
- />Department of Pathology & Cell Biology, Taub Institute for Research on Alzheimer’s Disease and the Aging Brain, Columbia University, New York, NY 10032 USA
| | - Ottavio Arancio
- />Department of Pathology & Cell Biology, Taub Institute for Research on Alzheimer’s Disease and the Aging Brain, Columbia University, New York, NY 10032 USA
| |
Collapse
|
37
|
Abstract
INTRODUCTION Calpain is a family of cysteine proteases found in eukaryotes and a few bacteria. There is considerable interest in the search for calpain inhibitors because the enzyme has been implicated in several diseases including ocular disorders, neurodegenerative disorders, metabolic disorders and cancer. AREAS COVERED An overview of calpain inhibitors disclosed between 2012 and 2014 is presented. Among these are epoxysuccinates, dipeptide imaging agents, macrocyclic inhibitors, α-helical peptidomimetic inhibitors, carboxamides, 5-azolones and α-mercaptoacrylates. Additionally, preclinical studies of calpain inhibitors in pathologies such blood disorders, ocular disorders, neurological disorders and muscle disorders are discussed. EXPERT OPINION Major advances made in calpain inhibitor research between 2012 and 2014 include: i) the discovery of cytosolic-stable carboxamide calpain inhibitors; ii) synthesis of epoxysuccinates with excellent bioavailability; iii) disclosure of the X-ray crystal structures of novel α-mercaptoacrylates bound to the pentaEF hand region from human calpain; and iv) disclosure of calpain inhibitors as anti-sickling agents. Several calpain inhibitors were reported but limited effort was directed towards the discovery of calpain isoform selective agents, which continues to dampen the therapeutic potential of calpain inhibitors.
Collapse
Affiliation(s)
- Isaac O Donkor
- The University of Tennessee Health Science Center , Memphis, TN , USA
| |
Collapse
|
38
|
Wynne GM, Russell AJ. Drug Discovery Approaches for Rare Neuromuscular Diseases. ORPHAN DRUGS AND RARE DISEASES 2014. [DOI: 10.1039/9781782624202-00257] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Rare neuromuscular diseases encompass many diverse and debilitating musculoskeletal disorders, ranging from ultra-orphan conditions that affect only a few families, to the so-called ‘common’ orphan diseases like Duchenne muscular dystrophy (DMD) and spinal muscular atrophy (SMA), which affect several thousand individuals worldwide. Increasingly, pharmaceutical and biotechnology companies, in an effort to improve productivity and rebuild dwindling pipelines, are shifting their business models away from the formerly popular ‘blockbuster’ strategy, with rare diseases being an area of increased focus in recent years. As a consequence of this paradigm shift, coupled with high-profile campaigns by not-for-profit organisations and patient advocacy groups, rare neuromuscular diseases are attracting considerable attention as new therapeutic areas for improved drug therapy. Much pioneering work has taken place to elucidate the underlying pathological mechanisms of many rare neuromuscular diseases. This, in conjunction with the availability of new screening technologies, has inspired the development of several truly innovative therapeutic strategies aimed at correcting the underlying pathology. A survey of medicinal chemistry approaches and the resulting clinical progress for new therapeutic agents targeting this devastating class of degenerative diseases is presented, using DMD and SMA as examples. Complementary strategies using small-molecule drugs and biological agents are included.
Collapse
Affiliation(s)
- Graham M. Wynne
- Chemistry Research Laboratory, University of Oxford 12 Mansfield Road Oxford OX1 3TA UK
| | - Angela J. Russell
- Chemistry Research Laboratory, University of Oxford 12 Mansfield Road Oxford OX1 3TA UK
| |
Collapse
|
39
|
Probing of primed and unprimed sites of calpains: Design, synthesis and evaluation of epoxysuccinyl-peptide derivatives as selective inhibitors. Eur J Med Chem 2014; 82:274-80. [DOI: 10.1016/j.ejmech.2014.05.058] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2014] [Revised: 05/19/2014] [Accepted: 05/23/2014] [Indexed: 11/20/2022]
|
40
|
Wu Z, Chen X, Liu F, Chen W, Wu P, Wieschhaus AJ, Chishti AH, Roche PA, Chen WM, Lin TJ. Calpain-1 contributes to IgE-mediated mast cell activation. THE JOURNAL OF IMMUNOLOGY 2014; 192:5130-9. [PMID: 24760147 DOI: 10.4049/jimmunol.1301677] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Mast cells play a central role in allergy through secretion of both preformed and newly synthesized mediators. Mast cell mediator secretion is controlled by a complex network of signaling events. Despite intensive studies, signaling pathways in the regulation of mast cell mediator secretion remain incompletely defined. In this study, we examined the role of calpain in IgE-dependent mast cell activation. IgE-mediated activation of mouse bone marrow-derived mast cells enhanced calpain activity. Inhibition of calpain activity by a number of calpain inhibitors reduced IgE-mediated mast cell degranulation both in vitro and in vivo. Calpain inhibitors blocked IgE-mediated TNF and IL-6 production in vitro and reduced late-phase allergic response in vivo. Importantly, mouse calpain-1 null bone marrow-derived mast cells showed reduced IgE-mediated mast cell degranulation in vitro and in vivo, diminished cytokine and chemokine production in vitro, and impaired late-phase allergic response in vivo. Further studies revealed that calpain-1 deficiency led to specific attenuation of IκB-NF-κB pathway and IKK-SNAP23 pathway, whereas calcium flux, MAPK, Akt, and NFAT pathway proceed normally in IgE-activated calpain-1 null mast cells. Thus, calpain-1 is identified as a novel regulator in IgE-mediated mast cell activation and could serve as a potential therapeutic target for the management of allergic inflammation.
Collapse
Affiliation(s)
- Zhengli Wu
- Department of Microbiology and Immunology, IWK Health Centre, Dalhousie University, Halifax, Nova Scotia B3K 6R8, Canada; Department of Pediatrics, IWK Health Centre, Dalhousie University, Halifax, Nova Scotia B3K 6R8, Canada
| | - Xiaochun Chen
- Department of Neurology, Affiliated Union Hospital of Fujian Medical University, Fuzhou, Fujian 350001, China
| | - Fang Liu
- Department of Microbiology and Immunology, IWK Health Centre, Dalhousie University, Halifax, Nova Scotia B3K 6R8, Canada; Department of Pediatrics, IWK Health Centre, Dalhousie University, Halifax, Nova Scotia B3K 6R8, Canada
| | - Wei Chen
- College of Veterinary Medicine, Jilin University, Changchun, Jilin 130062, China
| | - Ping Wu
- Department of Microbiology and Immunology, IWK Health Centre, Dalhousie University, Halifax, Nova Scotia B3K 6R8, Canada; Department of Pediatrics, IWK Health Centre, Dalhousie University, Halifax, Nova Scotia B3K 6R8, Canada
| | - Adam J Wieschhaus
- Department of Molecular Physiology and Pharmacology, Sackler School of Graduate Biomedical Sciences, Tufts University School of Medicine, Boston, MA 02111
| | - Athar H Chishti
- Department of Molecular Physiology and Pharmacology, Sackler School of Graduate Biomedical Sciences, Tufts University School of Medicine, Boston, MA 02111
| | - Paul A Roche
- Experimental Immunology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892; and
| | - Wei-Min Chen
- Department of Hematology, Fujian Provincial Hospital, Fuzhou, Fujian 350000, China
| | - Tong-Jun Lin
- Department of Microbiology and Immunology, IWK Health Centre, Dalhousie University, Halifax, Nova Scotia B3K 6R8, Canada; Department of Pediatrics, IWK Health Centre, Dalhousie University, Halifax, Nova Scotia B3K 6R8, Canada;
| |
Collapse
|
41
|
Abstract
Calpain is a conserved family of calcium-dependent, cytosolic, neutral cysteine proteases. The best characterized members of the family are the ubiquitously expressed calpain 1 and calpain 2. They perform controlled proteolysis of their target proteins. The regulation of these enzymes includes autolysis, calcium, phosphorylation as a posttranslational modification, and binding of calpastatin, phospholipids or activator proteins, respectively. Calpain are implicated in many physiological and pathological processes. They have significant role in the cell proliferation, differentiation and migration in a variety of mammalian cell types, contributing to the development of angiogenesis, vascular remodeling, and cancer. Therefore the knowledge of the precise mechanism of calpain signaling could provide therapeutic approaches in these processes.
Collapse
Affiliation(s)
- Laszlo Kovacs
- Department of Pharmacology & Toxicology, Medical College of Georgia, Georgia Regents University, Augusta, GA 30912, USA
| | - Yunchao Su
- Department of Pharmacology & Toxicology, Medical College of Georgia, Georgia Regents University, Augusta, GA 30912, USA
| |
Collapse
|
42
|
Synthesis and investigation of dihydroxychalcones as calpain and cathepsin inhibitors. Bioorg Chem 2013; 51:24-30. [DOI: 10.1016/j.bioorg.2013.09.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2013] [Revised: 09/01/2013] [Accepted: 09/06/2013] [Indexed: 11/19/2022]
|
43
|
Calpain-1 inhibitors for selective treatment of rheumatoid arthritis: what is the future? Future Med Chem 2013; 5:2057-74. [DOI: 10.4155/fmc.13.172] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Effective small-molecule treatment of inflammatory diseases remains an unmet need in medicine. Current treatments are either limited in effectiveness or invasive. The latest biologics prevent influx of inflammatory cells to damaged tissue. Calpain-1 is a calcium-activated cysteine protease that plays an important role in neutrophil motility. It is, therefore, a potential target for intervention in inflammatory disease. Many inhibitors of calpains have been developed but most are unselective and so unsuitable for drug use. However, recent series of α-mercaptoacrylate inhibitors target regulatory domains of calpain-1 and are much more specific. These compounds are effective in impairing the cell spreading mechanism of neutrophils in vitro and raise the possibility of treating rheumatoid arthritis with a pill; however, challenges still remain. Improved bioavailability is needed and solution of their precise mode of action should prompt the development of specific calpain-1 screens for novel classes of inhibitors.
Collapse
|
44
|
Virtual screening based on pharmacophoric features of known calpain inhibitors to identify potent inhibitors of calpain. Med Chem Res 2013. [DOI: 10.1007/s00044-013-0842-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
45
|
Glinca S, Klebe G. Cavities tell more than sequences: exploring functional relationships of proteases via binding pockets. J Chem Inf Model 2013; 53:2082-92. [PMID: 23834203 DOI: 10.1021/ci300550a] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Computational approaches play an increasingly important role for the analysis and prediction of selectivity profiles. As most of the successfully administered small molecule drugs bind in depressions on the surface of proteins, physicochemical properties of the pocket-exposed amino acids play a central role in ligand recognition during the binding event. Cavbase is an approach to describe binding sites in terms of the exposed physicochemical properties and to compare them independent of their sequence and fold homology. Classification of proteins by means of their binding-site properties is a promising approach to obtain information necessary for selectivity modeling. For this purpose, the workflow clusterScore has been developed to explore the important parameters of a clustering procedure, which will allow an accurate classification of proteins. It has been successfully applied on two diverse and challenging data sets. The predicted number of clusters, as suggested by clusterScore and the subsequent clustering of proteins are in agreement with the EC and Merops classifications. Furthermore, putative cross-reactivity mapped between calpain-1 and cysteine cathepsins on structural level has so far only been described based on ligand data. In a benchmark study using ligand topology, binding site, and sequence information of eleven serine proteases, the emerging clusters indicate a pronounced correlation between the cavity and ligand data. These results emphasize the importance of binding-site information which should be considered for ligand design during lead optimization cycles. The program clusterScore is freely available and can be downloaded from our Web site www.agklebe.de.
Collapse
Affiliation(s)
- Serghei Glinca
- Institute of Pharmaceutical Chemistry, Philipps-Universität Marburg, Marbacher Weg 6, D-35032 Marburg, Germany
| | | |
Collapse
|
46
|
Schiefer IT, Tapadar S, Litosh V, Siklos M, Scism R, Wijewickrama GT, Chandrasena EP, Sinha V, Tavassoli E, Brunsteiner M, Fa' M, Arancio O, Petukhov P, Thatcher GRJ. Design, synthesis, and optimization of novel epoxide incorporating peptidomimetics as selective calpain inhibitors. J Med Chem 2013; 56:6054-68. [PMID: 23834438 DOI: 10.1021/jm4006719] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Hyperactivation of the calcium-dependent cysteine protease calpain 1 (Cal1) is implicated as a primary or secondary pathological event in a wide range of illnesses and in neurodegenerative states, including Alzheimer's disease (AD). E-64 is an epoxide-containing natural product identified as a potent nonselective, calpain inhibitor, with demonstrated efficacy in animal models of AD. By use of E-64 as a lead, three successive generations of calpain inhibitors were developed using computationally assisted design to increase selectivity for Cal1. First generation analogues were potent inhibitors, effecting covalent modification of recombinant Cal1 catalytic domain (Cal1cat), demonstrated using LC-MS/MS. Refinement yielded second generation inhibitors with improved selectivity. Further library expansion and ligand refinement gave three Cal1 inhibitors, one of which was designed as an activity-based protein profiling probe. These were determined to be irreversible and selective inhibitors by kinetics studies comparing full length Cal1 with the general cysteine protease papain.
Collapse
Affiliation(s)
- Isaac T Schiefer
- Department of Medicinal Chemistry and Pharmacognosy, University of Illinois College of Pharmacy, University of Illinois at Chicago, 833 S. Wood Street, Chicago, IL 60612-7231, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Bánóczi Z, Tantos Á, Farkas A, Majer Z, Dókus LE, Tompa P, Hudecz F. New m-calpain substrate-based azapeptide inhibitors. J Pept Sci 2013; 19:370-6. [DOI: 10.1002/psc.2511] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2013] [Revised: 03/05/2013] [Accepted: 03/05/2013] [Indexed: 01/12/2023]
Affiliation(s)
- Zoltán Bánóczi
- Research Group of Peptide Chemistry, Hungarian Academy of Sciences; Eötvös Loránd University; Budapest Hungary
| | - Ágnes Tantos
- Institute of Enzymology, Biological Research Center; Hungarian Academy of Sciences; Budapest Hungary
| | - Attila Farkas
- Institute of Enzymology, Biological Research Center; Hungarian Academy of Sciences; Budapest Hungary
| | - Zsuzsa Majer
- Institute of Chemistry; Eötvös Loránd University; Budapest Hungary
| | - Levente E. Dókus
- Research Group of Peptide Chemistry, Hungarian Academy of Sciences; Eötvös Loránd University; Budapest Hungary
| | - Péter Tompa
- Institute of Enzymology, Biological Research Center; Hungarian Academy of Sciences; Budapest Hungary
| | - Ferenc Hudecz
- Research Group of Peptide Chemistry, Hungarian Academy of Sciences; Eötvös Loránd University; Budapest Hungary
- Institute of Chemistry; Eötvös Loránd University; Budapest Hungary
| |
Collapse
|
48
|
Abstract
INTRODUCTION Calpains represent a family of neutral, calcium-dependent proteases, which modify the function of their target proteins by partial truncation. These proteases have been implicated in numerous cell functions, including cell division, proliferation, migration, and death. In the CNS, where µ-calpain and m-calpain are the main calpain isoforms, their activation has been linked to synaptic plasticity as well as to neurodegeneration. This review will focus on the role of calpains in synaptic plasticity and discuss the possibility of developing methods to manipulate calpain activity for therapeutic purposes. AREAS COVERED This review covers the literature showing how calpains are implicated in synaptic plasticity and in a number of conditions associated with learning impairment. The possibility of developing new drugs targeting these enzymes for treating these conditions is discussed. EXPERT OPINION As evidence accumulates that calpain activation participates in neurodegeneration and cancer, there is interest in developing therapeutic approaches using direct or indirect calpain inhibition. In particular, a peptide derived from the calpain truncation site of mGluR1α was shown to decrease neurodegeneration following neonatal hypoxia/ischemia. More selective approaches need to be developed to target calpain or some of its substrates for therapeutic indications associated with deregulation of synaptic plasticity.
Collapse
Affiliation(s)
- Michel Baudry
- Western University of Health Sciences, Graduate College of Biomedical Sciences, Basic Medical Sciences, COMP , 309 E 2nd St, Pomona, CA 91766, USA.
| | | | | |
Collapse
|
49
|
Hubener J, Weber JJ, Richter C, Honold L, Weiss A, Murad F, Breuer P, Wullner U, Bellstedt P, Paquet-Durand F, Takano J, Saido TC, Riess O, Nguyen HP. Calpain-mediated ataxin-3 cleavage in the molecular pathogenesis of spinocerebellar ataxia type 3 (SCA3). Hum Mol Genet 2013; 22:508-518. [DOI: 10.1093/hmg/dds449] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/30/2023] Open
|
50
|
Branquinha MH, Marinho FA, Sangenito LS, Oliveira SSC, Goncalves KC, Ennes-Vidal V, d'Avila-Levy CM, Santos ALS. Calpains: potential targets for alternative chemotherapeutic intervention against human pathogenic trypanosomatids. Curr Med Chem 2013; 20:3174-85. [PMID: 23899207 PMCID: PMC4181241 DOI: 10.2174/0929867311320250010] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2012] [Revised: 01/29/2013] [Accepted: 02/13/2013] [Indexed: 12/03/2022]
Abstract
The treatment for both leishmaniasis and trypanosomiasis, which are severe human infections caused by trypanosomatids belonging to Leishmania and Trypanosoma genera, respectively, is extremely limited because of concerns of toxicity and efficacy with the available anti-protozoan drugs, as well as the emergence of drug resistance. Consequently, the urgency for the discovery of new trypanosomatid targets and novel bioactive compounds is particularly necessary. In this context, the investigation of changes in parasite gene expression between drug resistant/sensitive strains and in the up-regulation of virulence-related genes in infective forms has brought to the fore the involvement of calpain-like proteins in several crucial pathophysiological processes performed by trypanosomatids. These studies were encouraged by the publication of the complete genome sequences of three human pathogenic trypanosomatids, Trypanosoma brucei, Trypanosoma cruzi and Leishmania major, which allowed in silico analyses that in turn directed the identification of numerous genes with interesting chemotherapeutic characteristics, including a large family of calpain-related proteins, in which to date 23 genes were assigned as calpains in T. brucei, 40 in T. cruzi and 33 in L. braziliensis. In the present review, we intend to add to these biochemical/biological reports the investigations performed upon the inhibitory capability of calpain inhibitors against human pathogenic trypanosomatids.
Collapse
Affiliation(s)
- M H Branquinha
- Laboratório de Investigação de Peptidases, Departamento de Microbiologia Geral, Instituto de Microbiologia Paulo de Góes-IMPG, Centro de Ciências da Saúde-CCS, Bloco Esubsolo, Sala 05, Universidade Federal do Rio de Janeiro-UFRJ, Rio de Janeiro, Brazil.
| | | | | | | | | | | | | | | |
Collapse
|