1
|
Tian Y, Shao S, Feng H, Zeng R, Li S, Zhang Q. Targeting Senescent Cells in Atherosclerosis: Pathways to Novel Therapies. Ageing Res Rev 2024; 101:102502. [PMID: 39278272 DOI: 10.1016/j.arr.2024.102502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 08/16/2024] [Accepted: 09/08/2024] [Indexed: 09/18/2024]
Abstract
Targeting senescent cells has recently emerged as a promising strategy for treating age-related diseases, such as atherosclerosis, which significantly contributes to global cardiovascular morbidity and mortality. This review elucidates the role of senescent cells in the development of atherosclerosis, including persistently damaging DNA, inducing oxidative stress and secreting pro-inflammatory factors known as the senescence-associated secretory phenotype. Therapeutic approaches targeting senescent cells to mitigate atherosclerosis are summarized in this review, which include the development of senotherapeutics and immunotherapies. These therapies are designed to either remove these cells or suppress their deleterious effects. These emerging therapies hold potential to decelerate or even alleviate the progression of AS, paving the way for new avenues in cardiovascular research and treatment.
Collapse
Affiliation(s)
- Yuhan Tian
- College of Pharmacy, Key Laboratory of Research and Application of Ethnic Medicine Processing and Preparation on the Qinghai-Tibet Plateau, Southwest Minzu University, Chengdu 610041, China
| | - Sihang Shao
- School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore
| | - Haibo Feng
- College of Animal & Veterinary Sciences, Southwest Minzu University, Chengdu 610041, China
| | - Rui Zeng
- College of Pharmacy, Key Laboratory of Research and Application of Ethnic Medicine Processing and Preparation on the Qinghai-Tibet Plateau, Southwest Minzu University, Chengdu 610041, China
| | - Shanshan Li
- College of Pharmacy, Key Laboratory of Research and Application of Ethnic Medicine Processing and Preparation on the Qinghai-Tibet Plateau, Southwest Minzu University, Chengdu 610041, China.
| | - Qixiong Zhang
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Academy of Medical Science & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China; Department of Pharmacy, Sichuan Provincial People's Hospital Chuandong Hospital & Dazhou First People's Hospital, Dazhou, 635000, China.
| |
Collapse
|
2
|
Palominos C, Fuentes-Retamal S, Salazar JP, Guzmán-Rivera D, Correa P, Mellado M, Araya-Maturana R, Urra FA. Mitochondrial bioenergetics as a cell fate rheostat for responsive to Bcl-2 drugs: New cues for cancer chemotherapy. Cancer Lett 2024; 594:216965. [PMID: 38788967 DOI: 10.1016/j.canlet.2024.216965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 05/03/2024] [Accepted: 05/11/2024] [Indexed: 05/26/2024]
Abstract
Pro-survival BCL-2 proteins prevent the initiation of intrinsic apoptosis (mitochondria-dependent pathway) by inhibiting the pro-apoptotic proteins BAX and BAK, while BH3-only proteins promote apoptosis by blocking pro-survival BCL-2 proteins. Disruptions in this delicate balance contribute to cancer cell survival and chemoresistance. Recent advances in cancer therapeutics involve a new generation of drugs known as BH3-mimetics, which are small molecules designed to mimic the action of BH3-only proteins. Promising effects have been observed in patients with hematological and solid tumors undergoing treatment with these agents. However, the rapid emergence of mitochondria-dependent resistance to BH3-mimetics has been reported. This resistance involves increased mitochondrial respiration, altered mitophagy, and mitochondria with higher and tighter cristae. Conversely, mutations in isocitrate dehydrogenase 1 and 2, catalyzing R-2-hydroxyglutarate production, promote sensitivity to venetoclax. This evidence underscores the urgency for comprehensive studies on bioenergetics-based adaptive responses in both BH3 mimetics-sensitive and -resistant cancer cells. Ongoing clinical trials are evaluating BH3-mimetics in combination with standard chemotherapeutics. In this article, we discuss the role of mitochondrial bioenergetics in response to BH3-mimetics and explore potential therapeutic opportunities through metabolism-targeting strategies.
Collapse
Affiliation(s)
- Charlotte Palominos
- Metabolic Plasticity and Bioenergetics Laboratory, Clinical and Molecular Pharmacology Program, Institute of Biomedical Sciences (ICBM), Faculty of Medicine, University of Chile, Santiago, 8380453, Chile; Network for Snake Venom Research and Drug Discovery, Santiago, 8380453, Chile; Interdisciplinary Group on Mitochondrial Targeting and Bioenergetics (MIBI), Talca, 3480094, Chile
| | - Sebastián Fuentes-Retamal
- Metabolic Plasticity and Bioenergetics Laboratory, Clinical and Molecular Pharmacology Program, Institute of Biomedical Sciences (ICBM), Faculty of Medicine, University of Chile, Santiago, 8380453, Chile; Network for Snake Venom Research and Drug Discovery, Santiago, 8380453, Chile; Interdisciplinary Group on Mitochondrial Targeting and Bioenergetics (MIBI), Talca, 3480094, Chile; Universidad Andrés Bello. Escuela de Química y Farmacia, Facultad de Medicina, 8320000, Santiago, Chile
| | - Juan Pablo Salazar
- Metabolic Plasticity and Bioenergetics Laboratory, Clinical and Molecular Pharmacology Program, Institute of Biomedical Sciences (ICBM), Faculty of Medicine, University of Chile, Santiago, 8380453, Chile; Network for Snake Venom Research and Drug Discovery, Santiago, 8380453, Chile; Interdisciplinary Group on Mitochondrial Targeting and Bioenergetics (MIBI), Talca, 3480094, Chile
| | - Daniela Guzmán-Rivera
- Metabolic Plasticity and Bioenergetics Laboratory, Clinical and Molecular Pharmacology Program, Institute of Biomedical Sciences (ICBM), Faculty of Medicine, University of Chile, Santiago, 8380453, Chile; Universidad Andrés Bello. Escuela de Química y Farmacia, Facultad de Medicina, 8320000, Santiago, Chile
| | - Pablo Correa
- Metabolic Plasticity and Bioenergetics Laboratory, Clinical and Molecular Pharmacology Program, Institute of Biomedical Sciences (ICBM), Faculty of Medicine, University of Chile, Santiago, 8380453, Chile; Network for Snake Venom Research and Drug Discovery, Santiago, 8380453, Chile; Interdisciplinary Group on Mitochondrial Targeting and Bioenergetics (MIBI), Talca, 3480094, Chile
| | - Mathias Mellado
- Metabolic Plasticity and Bioenergetics Laboratory, Clinical and Molecular Pharmacology Program, Institute of Biomedical Sciences (ICBM), Faculty of Medicine, University of Chile, Santiago, 8380453, Chile; Network for Snake Venom Research and Drug Discovery, Santiago, 8380453, Chile
| | - Ramiro Araya-Maturana
- Network for Snake Venom Research and Drug Discovery, Santiago, 8380453, Chile; Interdisciplinary Group on Mitochondrial Targeting and Bioenergetics (MIBI), Talca, 3480094, Chile; Instituto de Química de Recursos Naturales, Universidad de Talca, Talca, 3460000, Chile
| | - Félix A Urra
- Metabolic Plasticity and Bioenergetics Laboratory, Clinical and Molecular Pharmacology Program, Institute of Biomedical Sciences (ICBM), Faculty of Medicine, University of Chile, Santiago, 8380453, Chile; Network for Snake Venom Research and Drug Discovery, Santiago, 8380453, Chile; Interdisciplinary Group on Mitochondrial Targeting and Bioenergetics (MIBI), Talca, 3480094, Chile; Interuniversity Center for Healthy Aging (CIES), Consortium of Universities of the State of Chile (CUECH), Santiago, 8320216, Chile.
| |
Collapse
|
3
|
Bricelj A, Dora Ng YL, Gobec M, Kuchta R, Hu W, Javornik Š, Rožič M, Gütschow M, Zheng G, Krönke J, Steinebach C, Sosič I. Design, Synthesis, and Evaluation of BCL-2 Targeting PROTACs. Chemistry 2024:e202400430. [PMID: 38818652 DOI: 10.1002/chem.202400430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 05/26/2024] [Accepted: 05/28/2024] [Indexed: 06/01/2024]
Abstract
BCL-2, a member of the BCL-2 protein family, is an antiapoptotic factor that regulates the intrinsic pathway of apoptosis. Due to its aberrant activity, it is frequently implicated in haematopoietic cancers and represents an attractive target for the development of therapeutics that antagonize its activity. A selective BCL-2 inhibitor, venetoclax, was approved for treating chronic lymphocytic leukaemia, acute myeloid leukemia, and other haematologic malignancies, validating BCL-2 as an anticancer target. Since then, alternative therapeutic approaches to modulate the activity of BCL-2 have been explored, such as antibody-drug conjugates and proteolysis-targeting chimeras. Despite numerous research groups focusing on developing degraders of BCL-2 family member proteins, selective BCL-2 PROTACs remain elusive, as disclosed compounds only show dual BCL-xL/BCL-2 degradation. Herein, we report our efforts to develop BCL-2 degraders by incorporating two BCL-2 binding moieties into chimeric compounds that aim to hijack one of three E3 ligases: CRBN, VHL, and IAPs. Even though our project did not result in obtaining a potent and selective BCL-2 PROTAC, our research will aid in understanding the narrow chemical space of BCL-2 degraders.
Collapse
Affiliation(s)
- Aleša Bricelj
- Faculty of Pharmacy, University of Ljubljana, Aškerčeva cesta 7, SI-1000, Ljubljana, Slovenia
| | - Yuen Lam Dora Ng
- Department of Hematology, Oncology and Cancer Immunology, Charité - Universitätsmedizin Berlin, Hindenburgdamm 30, D-12203, Berlin, Germany
| | - Martina Gobec
- Faculty of Pharmacy, University of Ljubljana, Aškerčeva cesta 7, SI-1000, Ljubljana, Slovenia
| | - Robert Kuchta
- Pharmaceutical Institute, Department of Pharmaceutical & Medicinal Chemistry, University of Bonn, An der Immenburg 4, D-53121, Bonn, Germany
| | - Wanyi Hu
- Department of Medicinal Chemistry, College of Pharmacy, University of Florida, 32610, Gainesville, FL, USA
| | - Špela Javornik
- Faculty of Pharmacy, University of Ljubljana, Aškerčeva cesta 7, SI-1000, Ljubljana, Slovenia
| | - Miha Rožič
- Faculty of Pharmacy, University of Ljubljana, Aškerčeva cesta 7, SI-1000, Ljubljana, Slovenia
| | - Michael Gütschow
- Pharmaceutical Institute, Department of Pharmaceutical & Medicinal Chemistry, University of Bonn, An der Immenburg 4, D-53121, Bonn, Germany
| | - Guangrong Zheng
- Department of Medicinal Chemistry, College of Pharmacy, University of Florida, 32610, Gainesville, FL, USA
| | - Jan Krönke
- Department of Hematology, Oncology and Cancer Immunology, Charité - Universitätsmedizin Berlin, Hindenburgdamm 30, D-12203, Berlin, Germany
| | - Christian Steinebach
- Pharmaceutical Institute, Department of Pharmaceutical & Medicinal Chemistry, University of Bonn, An der Immenburg 4, D-53121, Bonn, Germany
| | - Izidor Sosič
- Faculty of Pharmacy, University of Ljubljana, Aškerčeva cesta 7, SI-1000, Ljubljana, Slovenia
| |
Collapse
|
4
|
Gong Q, Wang H, Zhou M, Zhou L, Wang R, Li Y. B-cell lymphoma-2 family proteins in the crosshairs: Small molecule inhibitors and activators for cancer therapy. Med Res Rev 2024; 44:707-737. [PMID: 37983840 DOI: 10.1002/med.21999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 10/31/2023] [Accepted: 11/02/2023] [Indexed: 11/22/2023]
Abstract
The B-cell lymphoma-2 (BCL-2) family of proteins plays a crucial role in the regulation of apoptosis, offering a dual mechanism for its control. Numerous studies have established a strong association between gene disorders of these proteins and the proliferation of diverse cancer cell types. Consequently, the identification and development of drugs targeting BCL-2 family proteins have emerged as a prominent area in antitumor therapy. Over the last two decades, several small-molecules have been designed to modulate the protein-protein interactions between anti- and proapoptotic BCL-2 proteins, effectively suppressing tumor growth and metastasis in vivo. The primary focus of research has been on developing BCL-2 homology 3 (BH3) mimetics to target antiapoptotic BCL-2 proteins, thereby competitively releasing proapoptotic BCL-2 proteins and restoring the blocked intrinsic apoptotic program. Additionally, for proapoptotic BCL-2 proteins, exogenous small molecules have been explored to activate cell apoptosis by directly interacting with executioner proteins such as BCL-2-associated X protein (BAX) or BCL-2 homologous antagonist/killer protein (BAK). In this comprehensive review, we summarize the inhibitors and activators (sensitizers) of BCL-2 family proteins developed over the past decades, highlighting their discovery, optimization, preclinical and clinical status, and providing an overall landscape of drug development targeting these proteins for therapeutic purposes.
Collapse
Affiliation(s)
- Qineng Gong
- Department of Medicinal Chemistry, School of Pharmacy, Fudan University, Shanghai, People's Republic of China
| | - Haojie Wang
- Department of Medicinal Chemistry, School of Pharmacy, Fudan University, Shanghai, People's Republic of China
| | - Mi Zhou
- Department of Medicinal Chemistry, School of Pharmacy, Fudan University, Shanghai, People's Republic of China
| | - Lu Zhou
- Department of Medicinal Chemistry, School of Pharmacy, Fudan University, Shanghai, People's Republic of China
| | - Renxiao Wang
- Department of Medicinal Chemistry, School of Pharmacy, Fudan University, Shanghai, People's Republic of China
| | - Yan Li
- Department of Medicinal Chemistry, School of Pharmacy, Fudan University, Shanghai, People's Republic of China
| |
Collapse
|
5
|
Lee YJ, Pan Y, Lim D, Park SH, Sin SI, Kwack K, Park KY. Broccoli Cultivated with Deep Sea Water Mineral Fertilizer Enhances Anti-Cancer and Anti-Inflammatory Effects of AOM/DSS-Induced Colorectal Cancer in C57BL/6N Mice. Int J Mol Sci 2024; 25:1650. [PMID: 38338927 PMCID: PMC10855752 DOI: 10.3390/ijms25031650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 01/24/2024] [Accepted: 01/26/2024] [Indexed: 02/12/2024] Open
Abstract
This study aimed to determine the alleviating effect of broccoli grown with deep sea water mineral (DSWM) fertilizer extracted from deep sea water on the development of colorectal cancer in C57BL/6N mice treated with AOM/DSS. Naturaldream Fertilizer Broccoli (NFB) cultured with deep sea water minerals (DSWM) showed a higher antioxidant effect and mineral content. In addition, orally administered NFB, showed a level of recovery in the colon and spleen tissues of mice compared with those in normal mice through hematoxylin and eosin (H&E) staining. Orally administered NFB showed the inhibition of the expression of inflammatory cytokine factors IL-1β, IL-6, TNF, IFN-γ, and IL-12 while increasing the expression of IL-10. Furthermore, the expression of inflammatory cytokines and NF-κB in the liver tissue was inhibited, and that of inflammatory enzymes, such as COX-2 and iNOS, was reduced. In the colon tissue, the expression of p53 and p21 associated with cell cycle arrest increased, and that of Bcl-2 associated with apoptosis decreased. Additionally, the expression of Bax, Bad, Bim, Bak, caspase 9, and caspase 3 increased, indicating enhanced activation of apoptosis-related factors. These results demonstrate that oral administration of broccoli cultivated using DSWM significantly restores spleen and colon tissues and simultaneously inhibits the NF-κB pathway while significantly decreasing cytokine expression. Moreover, by inducing cell cycle arrest and activating cell apoptosis, they also suggest alleviating AOM/DSS-induced colon cancer symptoms in C57BL/6N mice.
Collapse
Affiliation(s)
- Yeon-Jun Lee
- Department of Biomedical Science, CHA University, Seongnam 13488, Republic of Korea; (Y.-J.L.); (Y.P.); (D.L.)
| | - Yanni Pan
- Department of Biomedical Science, CHA University, Seongnam 13488, Republic of Korea; (Y.-J.L.); (Y.P.); (D.L.)
| | - Daewoo Lim
- Department of Biomedical Science, CHA University, Seongnam 13488, Republic of Korea; (Y.-J.L.); (Y.P.); (D.L.)
| | - Seung-Hwan Park
- Agriculture Research Center for Carbon Neutral and Healing, Gurye-gun 57607, Republic of Korea
| | - Sin-Il Sin
- Agriculture Research Center for Carbon Neutral and Healing, Gurye-gun 57607, Republic of Korea
| | - KyuBum Kwack
- Department of Biomedical Science, CHA University, Seongnam 13488, Republic of Korea; (Y.-J.L.); (Y.P.); (D.L.)
| | - Kun-Young Park
- Graduate School of Integrative Medicine, CHA University, Seongnam 13488, Republic of Korea
| |
Collapse
|
6
|
Almehdi AM, Soliman SSM, El-Shorbagi ANA, Westwell AD, Hamdy R. Design, Synthesis, and Potent Anticancer Activity of Novel Indole-Based Bcl-2 Inhibitors. Int J Mol Sci 2023; 24:14656. [PMID: 37834104 PMCID: PMC10572575 DOI: 10.3390/ijms241914656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 08/16/2023] [Accepted: 08/20/2023] [Indexed: 10/15/2023] Open
Abstract
The Bcl-2 family plays a crucial role in regulating cell apoptosis, making it an attractive target for cancer therapy. In this study, a series of indole-based compounds, U1-6, were designed, synthesized, and evaluated for their anticancer activity against Bcl-2-expressing cancer cell lines. The binding affinity, safety profile, cell cycle arrest, and apoptosis effects of the compounds were tested. The designed compounds exhibited potent inhibitory activity at sub-micromolar IC50 concentrations against MCF-7, MDA-MB-231, and A549 cell lines. Notably, U2 and U3 demonstrated the highest activity, particularly against MCF-7 cells. Respectively, both U2 and U3 showed potential BCL-2 inhibition activity with IC50 values of 1.2 ± 0.02 and 11.10 ± 0.07 µM using an ELISA binding assay compared with 0.62 ± 0.01 µM for gossypol, employed as a positive control. Molecular docking analysis suggested stable interactions of compound U2 at the Bcl-2 binding site through hydrogen bonding, pi-pi stacking, and hydrophobic interactions. Furthermore, U2 demonstrated significant induction of apoptosis and cell cycle arrest at the G1/S phase. Importantly, U2 displayed a favourable safety profile on HDF human dermal normal fibroblast cells at 10-fold greater IC50 values compared with MDA-MB-231 cells. These findings underscore the therapeutic potential of compound U2 as a Bcl-2 inhibitor and provide insights into its molecular mechanisms of action.
Collapse
Affiliation(s)
- Ahmed M. Almehdi
- College of Sciences, University of Sharjah, Sharjah P.O. Box 27272, United Arab Emirates;
- Research Institute for Science and Engineering (RISE), University of Sharjah, Sharjah P.O. Box 27272, United Arab Emirates
| | - Sameh S. M. Soliman
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah P.O. Box 27272, United Arab Emirates;
- College of Pharmacy, University of Sharjah, Sharjah P.O. Box 27272, United Arab Emirates;
| | | | - Andrew D. Westwell
- School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Redwood Building, Cardiff CF10 3NB, UK
| | - Rania Hamdy
- Research Institute for Science and Engineering (RISE), University of Sharjah, Sharjah P.O. Box 27272, United Arab Emirates
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah P.O. Box 27272, United Arab Emirates;
- Faculty of Pharmacy, Zagazig University, Zagazig 44519, Egypt
| |
Collapse
|
7
|
Pal P, Zhang P, Poddar SK, Zheng G. Patent landscape of inhibitors and PROTACs of the anti-apoptotic BCL-2 family proteins. Expert Opin Ther Pat 2022; 32:1003-1026. [PMID: 35993382 PMCID: PMC9942934 DOI: 10.1080/13543776.2022.2116311] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 08/19/2022] [Indexed: 11/04/2022]
Abstract
INTRODUCTION The anti-apoptotic BCL-2 family proteins, such as BCL-2, BCL-XL, and MCL-1, are excellent cancer therapeutic targets. The FDA approval of BCL-2 selective inhibitor venetoclax in 2016 validated the strategy of targeting these proteins with BH3 mimetic small molecule inhibitors. AREAS COVERED This review provides an overview of the patent literature between 2016 and 2021 covering inhibitors and PROTACs of the anti-apoptotic BCL-2 proteins. EXPERT OPINION Since the FDA approval of venetoclax, tremendous efforts have been made to develop its analogues with improved drug properties. These activities will likely result in new drugs in coming years. Significant progress on MCL-1 inhibitors has also been made, with multiple compounds entering clinical trials. However, MCL-1 inhibition could cause on-target toxicity to normal tissues especially the heart. Similar issue exists with BCL-XL inhibitors, which cause on-target platelet toxicity. To overcome this issue, several strategies have been applied, including prodrug, dendrimer-based drug delivery, antibody-drug conjugate (ADC), and proteolysis targeting chimera (PROTAC); and amazingly, each of these approaches has resulted in a drug candidate entering clinical trials. We envision technologies like ADC and PROTAC could also be utilized to increase the therapeutic index of MCL-1 inhibitors.
Collapse
Affiliation(s)
- Pratik Pal
- Department of Medicinal Chemistry, College of Pharmacy, University of Florida, Gainesville, FL, USA
| | - Peiyi Zhang
- Department of Medicinal Chemistry, College of Pharmacy, University of Florida, Gainesville, FL, USA
| | - Saikat K Poddar
- Department of Medicinal Chemistry, College of Pharmacy, University of Florida, Gainesville, FL, USA
| | - Guangrong Zheng
- Department of Medicinal Chemistry, College of Pharmacy, University of Florida, Gainesville, FL, USA
| |
Collapse
|
8
|
Hamid MB, Serafin AM, Akudugu JM. Selective therapeutic benefit of X-rays and inhibitors of EGFR, PI3K/mTOR, and Bcl-2 in breast, lung, and cervical cancer cells. Eur J Pharmacol 2021; 912:174612. [PMID: 34736967 DOI: 10.1016/j.ejphar.2021.174612] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 10/26/2021] [Accepted: 10/29/2021] [Indexed: 02/07/2023]
Abstract
Cancer continues to be a growing burden, especially in the resource limited regions of the world, and more effective and affordable therapies are highly desirable. In this study, the effect of X-ray irradiation and four inhibitors, viz. those against epidermal growth factor receptor (EGFR), phosphatidylinositol 3-kinase (PI3K), mammalian target of rapamycin (mTOR) and B-cell lymphoma 2 (Bcl-2) was evaluated in lung, breast, and cervical cancer cell lines, including normal cell lines to determine and compare the potential therapeutic benefit of these treatment modalities. A clonogenic survival assay was used to determine the radiosensitivity and cytotoxicity of inhibitors of EGFR, PI3K/mTOR, and Bcl-2 in the cell lines. From the data, the equivalent dose at which 50% of the cell populations were killed, for cancer and normal cells, was used to determine the relative cellular sensitivity to X-ray irradiation and inhibitor treatment. It was found that breast cancer cell lines were more sensitive to X-ray irradiation, whilst cervical and lung cancer cell lines were more sensitive to EGFR and PI3K/mTOR inhibitor therapy. These data suggest that patients with breast cancer possessing similar characteristics to MDA-MB-231 and MCF-7 cells may derive therapeutic benefit from X-ray irradiation, whilst EGFR and PI3K/mTOR inhibitor therapy may potentially benefit cancer patients possessing cancers similar to HeLa and A549 cells.
Collapse
Affiliation(s)
- Mogammad Baaghith Hamid
- Division of Radiobiology, Department of Medical Imaging and Clinical Oncology, Faculty of Medicine and Health Sciences, Stellenbosch University, Tygerberg, 7505, South Africa
| | - Antonio Mendes Serafin
- Division of Radiobiology, Department of Medical Imaging and Clinical Oncology, Faculty of Medicine and Health Sciences, Stellenbosch University, Tygerberg, 7505, South Africa.
| | - John Mbabuni Akudugu
- Division of Radiobiology, Department of Medical Imaging and Clinical Oncology, Faculty of Medicine and Health Sciences, Stellenbosch University, Tygerberg, 7505, South Africa.
| |
Collapse
|
9
|
Rasaratnam K, Nantasenamat C, Phaonakrop N, Roytrakul S, Tanyong D. A novel peptide isolated from garlic shows anticancer effect against leukemic cell lines via interaction with Bcl-2 family proteins. Chem Biol Drug Des 2021; 97:1017-1028. [PMID: 33595876 DOI: 10.1111/cbdd.13831] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 01/23/2021] [Accepted: 02/14/2021] [Indexed: 11/30/2022]
Abstract
Leukemia is a group of cancer caused by the abnormal proliferation and differentiation of hematopoietic stem cells. Efforts geared toward effective therapeutic strategies with minimal side effects are underway. Peptides derived from natural resources have recently gained special attention as alternative chemotherapeutic agents due to their minimal adverse effects. In the present study, the aim was to isolate peptides from garlic (Allium sativum) and investigate their anticancer activity against leukemic cell lines. The protein extract of A. sativum was pepsin-digested to obtain protein hydrolysate followed by sequential purification methods. A novel anticancer peptide, VKLRSLLCS (VS-9), was identified and characterized by mass spectrometric analysis. The peptide was demonstrated to significantly inhibit the cell proliferation of MOLT-4 and K562 leukemic cell lines while exhibiting minimal inhibition against normal PBMC. Particularly, VS-9 could induce apoptosis and upregulate mRNA levels of caspase 3, caspase 8, caspase 9, and Bax while downregulating Bcl-2, Bcl-xL, and Bcl-w. Molecular docking of VS-9 with the anti-apoptotic Bcl-2 protein family suggested that VS-9 could bind the binding groove of the BH3 domain on target proteins. Protein-peptide interaction analysis by affinity chromatography and LC-MS/MS further showed that VS-9 could bind Bcl-2 proteins. Results suggest VS-9 as a potential garlic-derived novel anticancer peptide possessing apoptosis-inducing properties against leukemic cell lines via anti-apoptotic Bcl-2 protein family.
Collapse
Affiliation(s)
- Karunaithas Rasaratnam
- Department of Clinical Microscopy, Faculty of Medical Technology, Mahidol University, Nakhon pathom, Thailand.,Department of Medical Laboratory Sciences, Faculty of Allied Health Sciences, University of Jaffna, Jaffna, Sri Lanka
| | - Chanin Nantasenamat
- Center of Data Mining and Biomedical Informatics, Faculty of Medical Technology, Mahidol University, Nakhon pathom, Thailand
| | - Narumon Phaonakrop
- Functional Ingredients and Food Innovation Research Group, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Pathum Thani, Thailand
| | - Sittiruk Roytrakul
- Functional Ingredients and Food Innovation Research Group, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Pathum Thani, Thailand
| | - Dalina Tanyong
- Department of Clinical Microscopy, Faculty of Medical Technology, Mahidol University, Nakhon pathom, Thailand
| |
Collapse
|
10
|
Interdiction at a protein-protein interface: MCL-1 inhibitors for oncology. Bioorg Med Chem Lett 2021; 32:127717. [DOI: 10.1016/j.bmcl.2020.127717] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 11/20/2020] [Accepted: 11/21/2020] [Indexed: 01/19/2023]
|
11
|
Sun L, Sun M, Ma K, Liu J. Let-7d-5p suppresses inflammatory response in neonatal rats with necrotizing enterocolitis via LGALS3-mediated TLR4/NF-κB signaling pathway. Am J Physiol Cell Physiol 2020; 319:C967-C979. [PMID: 32667865 DOI: 10.1152/ajpcell.00571.2019] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Necrotizing enterocolitis (NEC) is an acute intestinal condition accounting for severe mortality and morbidity in preterm infants. This study aimed to identify the possible roles of let-7d-5p in neonatal rats with NEC. The differentially expressed genes (DEGs) related to NEC were initially screened in silico. After establishment of NEC rat models, measurement of the expression of let-7d-5p, galectin-3 (LGALS3), Toll-like receptor 4 (TLR4), and nuclear factor-κB (NF-κB) as well as proinflammatory cytokines (TNF-α, IL-1β, and IL-6) was conducted. The interaction between let-7d-5p and LGALS3 or argonaute-2 (AGO2) was identified. Gain- and loss-of-function approaches were then performed in an attempt to investigate the regulatory roles of let-7d-5p and LGALS3 in inflammation and cell apoptosis in NEC neonatal rats. Let-7d-5p was poorly expressed, whereas LGALS3, TLR4, and NF-κB were highly expressed, in the intestinal tissues of NEC rats. Overexpression of let-7d-5p resulted in decreased levels of proinflammatory factors in the intestinal tissues of NEC rats. Through sequential experimentation, let-7d-5p was identified to target LGALS3 and bind to AGO2. In addition, LGALS3 silencing or LPS treatment blocked the TLR4/NF-κB signaling pathway, thereby suppressing intestinal epithelial cell apoptosis and inflammation in NEC. Collectively, let-7d-5p might exercise its inhibitory properties in the inflammatory response and intestinal epithelial cell apoptosis in NEC neonatal rats via inactivation of the LGALS3-dependent TLR4/NF-κB signaling pathway.
Collapse
Affiliation(s)
- Liqun Sun
- Department of Pediatric Outpatient, The First Hospital of Jilin University, Changchun, People's Republic of China
| | - Meihua Sun
- Department of Pediatric Outpatient, The First Hospital of Jilin University, Changchun, People's Republic of China
| | - Ke Ma
- Department of Pediatric Outpatient, The First Hospital of Jilin University, Changchun, People's Republic of China
| | - Jiangtao Liu
- Department of Pediatric Outpatient, The First Hospital of Jilin University, Changchun, People's Republic of China
| |
Collapse
|
12
|
do Carmo AL, Bettanin F, Oliveira Almeida M, Pantaleão SQ, Rodrigues T, Homem-de-Mello P, Honorio KM. Competition Between Phenothiazines and BH3 Peptide for the Binding Site of the Antiapoptotic BCL-2 Protein. Front Chem 2020; 8:235. [PMID: 32309275 PMCID: PMC7145989 DOI: 10.3389/fchem.2020.00235] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Accepted: 03/11/2020] [Indexed: 12/28/2022] Open
Abstract
The study of proteins and mechanisms involved in the apoptosis and new knowledge about cancer's biology are essential for planning new drugs. Tumor cells develop several strategies to gain proliferative advantages, including molecular alterations to evade from apoptosis. Failures in apoptosis could contribute to cancer pathogenesis, since these defects can cause the accumulation of dividing cells and do not remove genetic variants that have malignant potential. The apoptosis mechanism is composed by proteins that are members of BCL-2 and cysteine-protease families. BH3-only peptides are the “natural” intracellular ligands of BCL-2 family proteins. On the other hand, studies have proved that phenothiazine compounds influence the induction of cellular death. To understand the characteristics of phenothiazines and their effects on tumoral cells and organelles involved in the apoptosis, as well as evaluating their pharmacologic potential, we have carried out computational simulation with the purpose of relating the structures of the phenothiazines with their biological activity. Since the tridimensional (3D) structure of the target protein is known, we have employed the molecular docking approach to study the interactions between compounds and the protein's active site. Hereafter, the molecular dynamics technique was used to verify the temporal evolution of the BCL-2 complexes with phenothiazinic compounds and the BH3 peptide, the stability and the mobility of these molecules in the BCL-2 binding site. From these results, the calculation of binding free energy between the compounds and the biological target was carried out. Thus, it was possible to verify that thioridazine and trifluoperazine tend to increase the stability of the BCL-2 protein and can compete for the binding site with the BH3 peptide.
Collapse
Affiliation(s)
| | - Fernanda Bettanin
- Escola de Artes, Ciências e Humanidades, Universidade de São Paulo (USP), São Paulo, Brazil
| | | | | | - Tiago Rodrigues
- Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, Santo André, Brazil
| | - Paula Homem-de-Mello
- Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, Santo André, Brazil
| | - Kathia Maria Honorio
- Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, Santo André, Brazil.,Escola de Artes, Ciências e Humanidades, Universidade de São Paulo (USP), São Paulo, Brazil
| |
Collapse
|
13
|
Molecular Engineering Strategies Tailoring the Apoptotic Response to a MET Therapeutic Antibody. Cancers (Basel) 2020; 12:cancers12030741. [PMID: 32245152 PMCID: PMC7140090 DOI: 10.3390/cancers12030741] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Accepted: 03/11/2020] [Indexed: 12/13/2022] Open
Abstract
The MET oncogene encodes a tyrosine kinase receptor involved in the control of a complex network of biological responses that include protection from apoptosis and stimulation of cell growth during embryogenesis, tissue regeneration, and cancer progression. We previously developed an antagonist antibody (DN30) inducing the physical removal of the receptor from the cell surface and resulting in suppression of the biological responses to MET. In its bivalent form, the antibody displayed a residual agonist activity, due to dimerization of the lingering receptors, and partial activation of the downstream signaling cascade. The balance between the two opposing activities is variable in different biological systems and is hardly predictable. In this study, we generated and characterized two single-chain antibody fragments derived from DN30, sharing the same variable regions but including linkers different in length and composition. The two engineered molecules bind MET with high affinity but induce different biological responses. One behaves as a MET-antagonist, promoting programmed cell death in MET “addicted” cancer cells. The other acts as a hepatocyte growth factor (HGF)-mimetic, protecting normal cells from doxorubicin-induced apoptosis. Thus, by engineering the same receptor antibody, it is possible to generate molecules enhancing or inhibiting apoptosis either to kill cancer cells or to protect healthy tissues from the injuries of chemotherapy.
Collapse
|
14
|
Preston JA, Bewley MA, Marriott HM, McGarry Houghton A, Mohasin M, Jubrail J, Morris L, Stephenson YL, Cross S, Greaves DR, Craig RW, van Rooijen N, Bingle CD, Read RC, Mitchell TJ, Whyte MKB, Shapiro SD, Dockrell DH. Alveolar Macrophage Apoptosis-associated Bacterial Killing Helps Prevent Murine Pneumonia. Am J Respir Crit Care Med 2020; 200:84-97. [PMID: 30649895 DOI: 10.1164/rccm.201804-0646oc] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Rationale: Antimicrobial resistance challenges therapy of pneumonia. Enhancing macrophage microbicidal responses would combat this problem but is limited by our understanding of how alveolar macrophages (AMs) kill bacteria. Objectives: To define the role and mechanism of AM apoptosis-associated bacterial killing in the lung. Methods: We generated a unique CD68.hMcl-1 transgenic mouse with macrophage-specific overexpression of the human antiapoptotic Mcl-1 protein, a factor upregulated in AMs from patients at increased risk of community-acquired pneumonia, to address the requirement for apoptosis-associated killing. Measurements and Main Results: Wild-type and transgenic macrophages demonstrated comparable ingestion and initial phagolysosomal killing of bacteria. Continued ingestion (for ≥12 h) overwhelmed initial killing, and a second, late-phase microbicidal response killed viable bacteria in wild-type macrophages, but this response was blunted in CD68.hMcl-1 transgenic macrophages. The late phase of bacterial killing required both caspase-induced generation of mitochondrial reactive oxygen species and nitric oxide, the peak generation of which coincided with the late phase of killing. The CD68.hMcl-1 transgene prevented mitochondrial reactive oxygen species but not nitric oxide generation. Apoptosis-associated killing enhanced pulmonary clearance of Streptococcus pneumoniae and Haemophilus influenzae in wild-type mice but not CD68.hMcl-1 transgenic mice. Bacterial clearance was enhanced in vivo in CD68.hMcl-1 transgenic mice by reconstitution of apoptosis with BH3 mimetics or clodronate-encapsulated liposomes. Apoptosis-associated killing was not activated during Staphylococcus aureus lung infection. Conclusions: Mcl-1 upregulation prevents macrophage apoptosis-associated killing and establishes that apoptosis-associated killing is required to allow AMs to clear ingested bacteria. Engagement of macrophage apoptosis should be investigated as a novel, host-based antimicrobial strategy.
Collapse
Affiliation(s)
- Julie A Preston
- 1 The Florey Institute for Host-Pathogen Interactions and.,2 Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield Medical School, Sheffield, United Kingdom
| | - Martin A Bewley
- 1 The Florey Institute for Host-Pathogen Interactions and.,2 Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield Medical School, Sheffield, United Kingdom
| | - Helen M Marriott
- 1 The Florey Institute for Host-Pathogen Interactions and.,2 Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield Medical School, Sheffield, United Kingdom
| | - A McGarry Houghton
- 3 Clinical Research Division, Fred Hutchinson Cancer Research Center, and.,4 Division of Pulmonary and Critical Care Medicine, University of Washington, Seattle, Washington
| | - Mohammed Mohasin
- 5 Department of Biochemistry and Molecular Biology, University of Dhaka, Dhaka, Bangladesh
| | | | - Lucy Morris
- 1 The Florey Institute for Host-Pathogen Interactions and.,2 Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield Medical School, Sheffield, United Kingdom
| | - Yvonne L Stephenson
- 1 The Florey Institute for Host-Pathogen Interactions and.,2 Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield Medical School, Sheffield, United Kingdom
| | - Simon Cross
- 1 The Florey Institute for Host-Pathogen Interactions and.,2 Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield Medical School, Sheffield, United Kingdom.,7 Sheffield Teaching Hospitals, Sheffield, United Kingdom
| | - David R Greaves
- 8 Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
| | - Ruth W Craig
- 9 Department of Pharmacology and Toxicology, Geissel School of Medicine at Dartmouth, Hanover, New Hampshire
| | - Nico van Rooijen
- 10 Department of Molecular Cell Biology and Immunology, VU University Medical Center, Amsterdam, the Netherlands
| | - Colin D Bingle
- 1 The Florey Institute for Host-Pathogen Interactions and.,2 Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield Medical School, Sheffield, United Kingdom
| | - Robert C Read
- 11 University of Southampton Medical School, Southampton, United Kingdom.,12 National Institute for Health Research Southampton Biomedical Research Centre, Southampton, United Kingdom
| | - Timothy J Mitchell
- 13 Institute of Microbiology and Infection, School of Immunity and Infection, University of Birmingham, Birmingham, United Kingdom; and
| | - Moira K B Whyte
- 6 MRC Centre for Inflammation Research.,14 Department of Respiratory Medicine, and
| | - Steven D Shapiro
- 15 Division of Pulmonary, Allergy and Critical Care Medicine, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania
| | - David H Dockrell
- 6 MRC Centre for Inflammation Research.,16 Infection Medicine, University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
15
|
Montero J, Gstalder C, Kim DJ, Sadowicz D, Miles W, Manos M, Cidado JR, Paul Secrist J, Tron AE, Flaherty K, Stephen Hodi F, Yoon CH, Letai A, Fisher DE, Haq R. Destabilization of NOXA mRNA as a common resistance mechanism to targeted therapies. Nat Commun 2019; 10:5157. [PMID: 31727958 PMCID: PMC6856172 DOI: 10.1038/s41467-019-12477-y] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Accepted: 08/06/2019] [Indexed: 12/15/2022] Open
Abstract
Most targeted cancer therapies fail to achieve complete tumor regressions or attain durable remissions. To understand why these treatments fail to induce robust cytotoxic responses despite appropriately targeting oncogenic drivers, here we systematically interrogated the dependence of cancer cells on the BCL-2 family of apoptotic proteins after drug treatment. We observe that multiple targeted therapies, including BRAF or EGFR inhibitors, rapidly deplete the pro-apoptotic factor NOXA, thus creating a dependence on the anti-apoptotic protein MCL-1. This adaptation requires a pathway leading to destabilization of the NOXA mRNA transcript. We find that interruption of this mechanism of anti-apoptotic adaptive resistance dramatically increases cytotoxic responses in cell lines and a murine melanoma model. These results identify NOXA mRNA destabilization/MCL-1 adaptation as a non-genomic mechanism that limits apoptotic responses, suggesting that sequencing of MCL-1 inhibitors with targeted therapies could overcome such widespread and clinically important resistance. MAPK-targeted therapies fail to achieve complete remission. Here, the authors show that anti-apoptosis resistance is acquired in these targeted therapies through the mRNA destabilization of NOXA which leads to dependence on MCL-1, and that sequential combination of MCL-1 inhibition with targeted therapies overcomes this resistance.
Collapse
Affiliation(s)
- Joan Montero
- Division of Hematologic Neoplasia/Malignancies, Dana-Farber Cancer Institute, Harvard Medical School, 450 Brookline Ave, Boston, 02115, MA, USA.,Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, 450 Brookline Ave, Boston, 02115, MA, USA.,Institute for Bioengineering of Catalonia, C/Baldiri Reixac 15-21, Ed. Hèlix 3ª planta · 08028, Barcelona, Spain
| | - Cécile Gstalder
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, 450 Brookline Ave, Boston, 02115, MA, USA.,Division of Molecular and Cellular Oncology, Dana-Farber Cancer Institute, Harvard Medical School, 450 Brookline Ave, Boston, 02115, MA, USA
| | - Daniel J Kim
- Department of Dermatology and Cutaneous Biology Research Center, Massachusetts General Hospital, Harvard Medical School, 44 Fruit Street, Boston, MA, 02114, USA
| | - Dorota Sadowicz
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, 450 Brookline Ave, Boston, 02115, MA, USA.,Division of Molecular and Cellular Oncology, Dana-Farber Cancer Institute, Harvard Medical School, 450 Brookline Ave, Boston, 02115, MA, USA
| | - Wayne Miles
- Department of Molecular Genetics, The Ohio State University, 820 Biomedical Research Tower 460 West 12th Avenue, Columbus, 43210, OH, USA
| | - Michael Manos
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, 450 Brookline Ave, Boston, 02115, MA, USA
| | - Justin R Cidado
- Bioscience, Oncology IMED Biotech Unit, AstraZeneca, 35 Gatehouse Dr, Waltham, Boston, 02451, MA, USA
| | - J Paul Secrist
- Bioscience, Oncology IMED Biotech Unit, AstraZeneca, 35 Gatehouse Dr, Waltham, Boston, 02451, MA, USA.,LifeMine Therapeutics, 100 Acorn Park Drive, 6th Floor Cambridge, Cambridge, MA, 02140, USA
| | - Adriana E Tron
- Bioscience, Oncology IMED Biotech Unit, AstraZeneca, 35 Gatehouse Dr, Waltham, Boston, 02451, MA, USA
| | - Keith Flaherty
- Massachusetts General Hospital Cancer Center, Massachusetts General Hospital, Harvard Medical School, 44 Fruit Street, Boston, MA, 02114, USA
| | - F Stephen Hodi
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, 450 Brookline Ave, Boston, 02115, MA, USA
| | - Charles H Yoon
- Department of Surgery, Brigham and Women's Hospital, Harvard Medical School, 75 Francis Street, Boston, 02115, USA
| | - Anthony Letai
- Division of Hematologic Neoplasia/Malignancies, Dana-Farber Cancer Institute, Harvard Medical School, 450 Brookline Ave, Boston, 02115, MA, USA.,Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, 450 Brookline Ave, Boston, 02115, MA, USA
| | - David E Fisher
- Department of Dermatology and Cutaneous Biology Research Center, Massachusetts General Hospital, Harvard Medical School, 44 Fruit Street, Boston, MA, 02114, USA. .,Massachusetts General Hospital Cancer Center, Massachusetts General Hospital, Harvard Medical School, 44 Fruit Street, Boston, MA, 02114, USA.
| | - Rizwan Haq
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, 450 Brookline Ave, Boston, 02115, MA, USA. .,Division of Molecular and Cellular Oncology, Dana-Farber Cancer Institute, Harvard Medical School, 450 Brookline Ave, Boston, 02115, MA, USA.
| |
Collapse
|
16
|
Current overview on the clinical update of Bcl-2 anti-apoptotic inhibitors for cancer therapy. Eur J Pharmacol 2019; 862:172655. [PMID: 31494078 DOI: 10.1016/j.ejphar.2019.172655] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2019] [Revised: 08/25/2019] [Accepted: 09/04/2019] [Indexed: 12/27/2022]
Abstract
Apoptosis is one of the major mechanisms exhibited in response to cell death and induction of apoptosis in tumour cells signifies a potential target for cancer therapy. Bcl-2 family proteins play a key role in regulation of the apoptotic pathway. Bcl-2 overexpression is commonly associated with various cancers including breast cancer, prostate cancer, B-cell lymphomas and colorectal adenocarcinomas etc. Thus, Bcl-2 is a novel anti-cancer target attracting medicinal chemists across the globe. Research investigations underlying Bcl-2 target have resulted in the generation of small molecule inhibitors, named as 'BH3-mimetics' (Bcl-2 homology 3 mimetics). These drugs display binding to pro-survival Bcl-2 proteins resulting in actuation of apoptosis of cancer cells. The first BH3 mimetics discovered as an outcome of structure-based drug design and Nuclear Magnetic Resonance (NMR)-based screening was ABT-263, an N-acylsulfonamide analogue. Thrombocytopenia a major dose-limiting toxicity, associated with ABT-263 had provoked the invention of a highly selective Bcl-2 inhibitor venetoclax. Several Bcl-2 inhibitors as small molecules are under clinical development and the results indicated that these molecules alone or in combination could be of potential application in cancer therapy. This review summarizes an up to date knowledge of the available small molecule inhibitors, their discovery, synthesis, current clinical and pre-clinical status.
Collapse
|
17
|
Targeting cancer's Achilles’ heel: role of BCL-2 inhibitors in cellular senescence and apoptosis. Future Med Chem 2019; 11:2287-2312. [DOI: 10.4155/fmc-2018-0366] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Members of the antiapoptotic BCL-2 proteins are involved in tumor growth, progression and survival, and are also responsible for chemoresistance to conventional anticancer agents. Early efforts to target these proteins yielded some active compounds; however, newer methodologies involving structure-based drug design, Nuclear Magnetic Resonance (NMR)-based screening and fragment-based screening yielded more potent compounds. Discovery of specific as well as nonspecific inhibitors of this class of proteins has resulted in great advances in targeted chemotherapy and decrease in chemoresistance. Here, we review the history and current progress in direct as well as selective targeting of the BCL-2 proteins for anticancer therapy.
Collapse
|
18
|
Molecular docking studies of bioactive compounds from Annona muricata Linn as potential inhibitors for Bcl-2, Bcl-w and Mcl-1 antiapoptotic proteins. Apoptosis 2019; 23:27-40. [PMID: 29204721 DOI: 10.1007/s10495-017-1434-7] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Annona muricata Linn or usually identified as soursop is a potential anticancer plant that has been widely reported to contain valuable chemopreventive agents known as annonaceous acetogenins. The antiproliferative and anticancer activities of this tropical and subtropical plant have been demonstrated in cell culture and animal studies. A. muricata L. exerts inhibition against numerous types of cancer cells, involving multiple mechanism of actions such as apoptosis, a programmed cell death that are mainly regulated by Bcl-2 family of proteins. Nonetheless, the binding mode and the molecular interactions of the plant's bioactive constituents have not yet been unveiled for most of these mechanisms. In the current study, we aim to elucidate the binding interaction of ten bioactive phytochemicals of A. muricata L. to three Bcl-2 family of antiapoptotic proteins viz. Bcl-2, Bcl-w and Mcl-1 using an in silico molecular docking analysis software, Autodock 4.2. The stability of the complex with highest affinity was evaluated using MD simulation. We compared the docking analysis of these substances with pre-clinical Bcl-2 inhibitor namely obatoclax. The study identified the potential chemopreventive agent among the bioactive compounds. We also characterized the important interacting residues of protein targets which involve in the binding interaction. Results displayed that anonaine, a benzylisoquinoline alkaloid, showed a high affinity towards the Bcl-2, thus indicating that this compound is a potent inhibitor of the Bcl-2 antiapoptotic family of proteins.
Collapse
|
19
|
Zhou Z, Lu C, Meng S, Dun L, Yin N, An H, Xu H, Liu G, Cai Y. Silencing of PTGS2 exerts promoting effects on angiogenesis endothelial progenitor cells in mice with ischemic stroke via repression of the NF-κB signaling pathway. J Cell Physiol 2019; 234:23448-23460. [PMID: 31222746 DOI: 10.1002/jcp.28914] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Revised: 05/15/2019] [Accepted: 05/20/2019] [Indexed: 12/20/2022]
Abstract
The objective of the current study is to investigate the effect of PTGS2 on proliferation, migration, angiogenesis and apoptosis of endothelial progenitor cells (EPCs) in mice with ischemic stroke through the NF-κB signaling pathway. Middle cerebral artery occlusion (MCAO) model was established in mice. EPCs were identified, in which ectopic expression and depletion experiments were conducted. The mRNA and protein expression of related factors in tissues and cells were measured. Besides, proliferation, migration, angiogenesis, and apoptosis, as well as cell cycle distribution, of cells were determined. MCAO mice showed overexpression of interleukin-6 (IL-6), IL-17, and IL-23, and increased positive protein expression of PTGS2, as well as expression of PTGS2, nuclear factor-κB (NF-κB), tumor suppressor region 1 (TSP-1) and Bcl-2-associated X protein (Bax), but underexpression of vascular endothelial growth factor (VEGF), S-phase kinase associated protein 2 (Skp2), and B-cell lymphoma 2 (Bcl-2). Moreover, ectopic expression of tumor necrosis factor-α significantly elevated the expression of PTGS2, NF-κB, TSP-1, and Bax, as well as cell apoptosis and cell cycle arrest, but decreased the expression of VEGF, Skp2, and Bcl-2, as well as proliferation, migration and angiogenesis of EPCs, and the PTGS2-siRNA group showed an opposite trend. Taken together, we conclude that the specific knockdown of PTGS2 expression could repress the NF-κB signaling pathway, thereby inhibits apoptosis and promotes proliferation, migration and angiogenesis of EPCs, providing protective effect on mice with ischemic stroke.
Collapse
Affiliation(s)
- Zheyi Zhou
- Department of Neurology, Second Clinical Medical College of Guangzhou University of Chinese Medicine, Guangzhou, People's Republic of China.,Department of Neurology, Liuzhou Traditional Chinese Medical Hospital, Liuzhou, People's Republic of China
| | - Changjun Lu
- Department of Neurology, Liuzhou Traditional Chinese Medical Hospital, Liuzhou, People's Republic of China
| | - Shuhui Meng
- Department of Neurology, Second Clinical Medical College of Guangzhou University of Chinese Medicine, Guangzhou, People's Republic of China
| | - Linglu Dun
- Department of Neurology, Liuzhou Traditional Chinese Medical Hospital, Liuzhou, People's Republic of China
| | - Nannan Yin
- Guangxi University of Chinese Medicine, Nanning, People's Republic of China
| | - Hongwei An
- Department of Neurology, Liuzhou Traditional Chinese Medical Hospital, Liuzhou, People's Republic of China
| | - Hong Xu
- Department of Neurology, Liuzhou Traditional Chinese Medical Hospital, Liuzhou, People's Republic of China
| | - Guocheng Liu
- Department of Neurology, Liuzhou Traditional Chinese Medical Hospital, Liuzhou, People's Republic of China
| | - Yefeng Cai
- Department of Neurology, Second Clinical Medical College of Guangzhou University of Chinese Medicine, Guangzhou, People's Republic of China.,Department of Neurology, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, People's Republic of China
| |
Collapse
|
20
|
Adewole KE, Ishola AA. Phytosterols and triterpenes from Morinda lucida Benth (Rubiaceae) as potential inhibitors of anti-apoptotic BCL-XL, BCL-2, and MCL-1: an in-silico study. J Recept Signal Transduct Res 2019; 39:87-97. [DOI: 10.1080/10799893.2019.1625062] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Kayode Ezekiel Adewole
- Department of Biochemistry, Faculty of Basic Medical Sciences, University of Medical Sciences Ondo, Ondo City, Nigeria
| | - Ahmed Adebayo Ishola
- Department of Biochemistry, Faculty of Life Sciences, University of Ilorin, Ilorin, Nigeria
| |
Collapse
|
21
|
He N, Liu P, Wang Z, Guo Z, Yan X, Chen H, Zhang Z. Discovery of selective Mcl-1 inhibitors via structure-based design and structure-activity relationship analysis. Biochem Biophys Res Commun 2019; 512:921-926. [DOI: 10.1016/j.bbrc.2019.03.102] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Accepted: 03/17/2019] [Indexed: 11/25/2022]
|
22
|
Shakeel E, Kumar R, Sharma N, Akhtar S, Ahmad Khan MK, Lohani M, Siddiqui MH. Computational Outlook of Marine Compounds as Anti-Cancer Representatives Targeting BCL-2 and Survivin. Curr Comput Aided Drug Des 2019; 15:265-276. [PMID: 30706824 DOI: 10.2174/1573409915666190130173138] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Revised: 01/04/2019] [Accepted: 01/24/2019] [Indexed: 11/22/2022]
Abstract
INTRODUCTION The regulation of apoptosis via compounds originated from marine organisms signifies a new wave in the field of drug discovery. Marine organisms produce potent compounds as they hold the phenomenal diversity in chemical structures. The main focus of drug development is anticancer therapy. METHODS Expertise on manifold activities of compounds helps in the discovery of their derivatives for preclinical and clinical experiment that promotes improved activity of compounds for cancer patients. RESULTS These marine derived compounds stimulate apoptosis in cancer cells by targeting Bcl-2 and Survivin, highlighting the fact that instantaneous targeting of these proteins by novel derivatives results in efficacious and selective killing of cancer cells. CONCLUSION Our study reports the identification of Aplysin and Haterumaimide J as Bcl-2 inhibitors and Cortistatin A as an inhibitor of survivin protein, from a sequential virtual screening approach.
Collapse
Affiliation(s)
- Eram Shakeel
- Advanced Centre for Bioengineering and Bioinformatics (ACBB), Integral Information and Research Centre (IIRC), Integral University, Lucknow-226026, Uttar Pradesh, India.,Department of Bioengineering, Faculty of Engineering, Integral University, Lucknow-226026, Uttar Pradesh, India
| | - Rajnish Kumar
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Lucknow-226028, Uttar Pradesh, India
| | - Neha Sharma
- Advanced Centre for Bioengineering and Bioinformatics (ACBB), Integral Information and Research Centre (IIRC), Integral University, Lucknow-226026, Uttar Pradesh, India.,Department of Bioengineering, Faculty of Engineering, Integral University, Lucknow-226026, Uttar Pradesh, India
| | - Salman Akhtar
- Advanced Centre for Bioengineering and Bioinformatics (ACBB), Integral Information and Research Centre (IIRC), Integral University, Lucknow-226026, Uttar Pradesh, India.,Department of Bioengineering, Faculty of Engineering, Integral University, Lucknow-226026, Uttar Pradesh, India
| | - Mohd Kalim Ahmad Khan
- Advanced Centre for Bioengineering and Bioinformatics (ACBB), Integral Information and Research Centre (IIRC), Integral University, Lucknow-226026, Uttar Pradesh, India.,Department of Bioengineering, Faculty of Engineering, Integral University, Lucknow-226026, Uttar Pradesh, India
| | - Mohtashim Lohani
- Department of EMS, College of Applied Medical Sciences, University of Jazan, Jazan, Saudi Arabia
| | - Mohd Haris Siddiqui
- Advanced Centre for Bioengineering and Bioinformatics (ACBB), Integral Information and Research Centre (IIRC), Integral University, Lucknow-226026, Uttar Pradesh, India.,Department of Bioengineering, Faculty of Engineering, Integral University, Lucknow-226026, Uttar Pradesh, India
| |
Collapse
|
23
|
Synthesis and Evaluation of Novel Cholestanoheterocyclic Steroids as Anticancer Agents. Appl Biochem Biotechnol 2019; 188:635-662. [DOI: 10.1007/s12010-018-02943-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Accepted: 12/26/2018] [Indexed: 11/26/2022]
|
24
|
Sekiya K, Nishihara T, Abe N, Konishi A, Nandate H, Hamada T, Ikemune K, Takasaki Y, Tanaka J, Asano M, Yorozuya T. Carbon monoxide poisoning-induced delayed encephalopathy accompanies decreased microglial cell numbers: Distinctive pathophysiological features from hypoxemia-induced brain damage. Brain Res 2018; 1710:22-32. [PMID: 30578768 DOI: 10.1016/j.brainres.2018.12.027] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Revised: 12/15/2018] [Accepted: 12/18/2018] [Indexed: 11/15/2022]
Abstract
Carbon monoxide (CO) causes not only acute fatal poisoning but also may cause a delayed neurologic syndrome called delayed encephalopathy (DE), which occasionally occurs after an interval of several days to several weeks post-exposure. However, the mechanisms of DE have not been fully elucidated. This study aimed to clarify the pathophysiology of CO-induced DE and its distinctive features compared with hypoxemic hypoxia. Rats were randomly assigned to three groups; the air group, the CO group (exposed to CO), and the low O2 group (exposed to low concentration of O2). Impairment of memory function was observed only in the CO group. The hippocampus tissues were collected and analyzed for assessment of CO-induced changes and microglial reaction. Demyelination was observed only in the CO group and it was more severe and persisted longer than that observed in the low O2 group. Moreover, in the CO group, decreased in microglial cell numbers were observed using flow cytometry, and microglia with detached branches were observed were observed using immunohistochemistry. Conversely, microglial cells with shortened branches and enlarged somata were observed in the low O2 group. Furthermore, mRNAs encoding several neurotrophic factors expressed by microglia were decreased in the CO group but were increased in the low O2 group. Thus, CO-induced DE displayed distinctive pathological features from those of simple hypoxic insults: prolonged demyelination accompanying a significant decrease in microglial cells. Decreased neurotrophic factor expression by microglial cells may be one of the causes of CO-induced DE.
Collapse
Affiliation(s)
- Keisuke Sekiya
- Department of Anesthesia and Perioperative Medicine, Ehime University Graduate School of Medicine, Shitsukawa, Toon, Ehime 791-0295, Japan; Department of Legal Medicine, Ehime University Graduate School of Medicine, Shitsukawa, Toon, Ehime 791-0295, Japan
| | - Tasuku Nishihara
- Department of Anesthesia and Perioperative Medicine, Ehime University Graduate School of Medicine, Shitsukawa, Toon, Ehime 791-0295, Japan.
| | - Naoki Abe
- Department of Anesthesia and Perioperative Medicine, Ehime University Graduate School of Medicine, Shitsukawa, Toon, Ehime 791-0295, Japan
| | - Amane Konishi
- Department of Anesthesia and Perioperative Medicine, Ehime University Graduate School of Medicine, Shitsukawa, Toon, Ehime 791-0295, Japan.
| | - Hideyuki Nandate
- Department of Anesthesia and Perioperative Medicine, Ehime University Graduate School of Medicine, Shitsukawa, Toon, Ehime 791-0295, Japan
| | - Taisuke Hamada
- Department of Anesthesia and Perioperative Medicine, Ehime University Graduate School of Medicine, Shitsukawa, Toon, Ehime 791-0295, Japan
| | - Keizo Ikemune
- Department of Anesthesia and Perioperative Medicine, Ehime University Graduate School of Medicine, Shitsukawa, Toon, Ehime 791-0295, Japan.
| | - Yasushi Takasaki
- Department of Anesthesia and Perioperative Medicine, Ehime University Graduate School of Medicine, Shitsukawa, Toon, Ehime 791-0295, Japan
| | - Junya Tanaka
- Department of Molecular and Cellular Physiology, Ehime University Graduate School of Medicine, Shitsukawa, Toon, Ehime 791-0295, Japan.
| | - Migiwa Asano
- Department of Legal Medicine, Ehime University Graduate School of Medicine, Shitsukawa, Toon, Ehime 791-0295, Japan.
| | - Toshihiro Yorozuya
- Department of Anesthesia and Perioperative Medicine, Ehime University Graduate School of Medicine, Shitsukawa, Toon, Ehime 791-0295, Japan.
| |
Collapse
|
25
|
Shakeel E, Sharma N, Akhtar S, Khan MKA, Lohani M, Siddiqui MH. Decoding the antineoplastic efficacy of Aplysin targeting Bcl-2: A de novo perspective. Comput Biol Chem 2018; 77:390-401. [PMID: 30469054 DOI: 10.1016/j.compbiolchem.2018.09.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Revised: 08/28/2018] [Accepted: 09/02/2018] [Indexed: 12/24/2022]
Abstract
The B-cell lymphoma-2 (Bcl-2) family proteins have been attributed to be the key regulators in programmed cell death and apoptosis with a prominent role in human cancer. Understanding the fundamental principles of cell survival and death have been the main cornerstone in cancer drug discovery for identification of novel anticancer agents. In this context the Bcl-2 family of anti-and pro-apoptotic proteins provide an excellent opportunity for development of anticancer agents, as blocking the Bcl-2 or Bcl-XL functionally promotes apoptosis in tumor cells and also sensitize them to chemo- and radiotherapies. The present study reports the identification of novel Aplysin analogs as BCL-2 inhibitors from a sequential virtual screening approach using drug-like, ADMET, docking, pharmacophore filters and molecular dynamics simulation. We identified promising Aplysin analogs that have a potential to be Bcl-2 inhibitors just like the standard drug Obatoclax. One of the compound analog 11 was identified to be a promising inhibitor of Bcl-2 in the docking, pharmacophore and simulation based models.The molecular modeling information provided here can be vital in designing of the novel Bcl-2 inhibitors.
Collapse
Affiliation(s)
- Eram Shakeel
- Advanced Centre for Bioengineering and Bioinformatics (ACBB), Integral Information and Research Centre (IIRC), Integral University, Lucknow, Uttar Pradesh, 226026, India; Department of Bioengineering, Faculty of Engineering, Integral University, Lucknow, Uttar Pradesh, 226026, India
| | - Neha Sharma
- Advanced Centre for Bioengineering and Bioinformatics (ACBB), Integral Information and Research Centre (IIRC), Integral University, Lucknow, Uttar Pradesh, 226026, India; Department of Bioengineering, Faculty of Engineering, Integral University, Lucknow, Uttar Pradesh, 226026, India
| | - Salman Akhtar
- Advanced Centre for Bioengineering and Bioinformatics (ACBB), Integral Information and Research Centre (IIRC), Integral University, Lucknow, Uttar Pradesh, 226026, India; Department of Bioengineering, Faculty of Engineering, Integral University, Lucknow, Uttar Pradesh, 226026, India
| | - Mohd Kalim Ahmad Khan
- Advanced Centre for Bioengineering and Bioinformatics (ACBB), Integral Information and Research Centre (IIRC), Integral University, Lucknow, Uttar Pradesh, 226026, India; Department of Bioengineering, Faculty of Engineering, Integral University, Lucknow, Uttar Pradesh, 226026, India
| | - Mohtashim Lohani
- Department of EMS, College of Applied Medical Sciences, University of Jazan, Saudi Arabia
| | - Mohd Haris Siddiqui
- Advanced Centre for Bioengineering and Bioinformatics (ACBB), Integral Information and Research Centre (IIRC), Integral University, Lucknow, Uttar Pradesh, 226026, India; Department of Bioengineering, Faculty of Engineering, Integral University, Lucknow, Uttar Pradesh, 226026, India.
| |
Collapse
|
26
|
Mady ASA, Liao C, Bajwa N, Kump KJ, Abulwerdi FA, Lev KL, Miao L, Grigsby SM, Perdih A, Stuckey JA, Du Y, Fu H, Nikolovska-Coleska Z. Discovery of Mcl-1 inhibitors from integrated high throughput and virtual screening. Sci Rep 2018; 8:10210. [PMID: 29976942 PMCID: PMC6033896 DOI: 10.1038/s41598-018-27899-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Accepted: 06/05/2018] [Indexed: 02/06/2023] Open
Abstract
Protein-protein interactions (PPIs) represent important and promising therapeutic targets that are associated with the regulation of various molecular pathways, particularly in cancer. Although they were once considered “undruggable,” the recent advances in screening strategies, structure-based design, and elucidating the nature of hot spots on PPI interfaces, have led to the discovery and development of successful small-molecule inhibitors. In this report, we are describing an integrated high-throughput and computational screening approach to enable the discovery of small-molecule PPI inhibitors of the anti-apoptotic protein, Mcl-1. Applying this strategy, followed by biochemical, biophysical, and biological characterization, nineteen new chemical scaffolds were discovered and validated as Mcl-1 inhibitors. A novel series of Mcl-1 inhibitors was designed and synthesized based on the identified difuryl-triazine core scaffold and structure-activity studies were undertaken to improve the binding affinity to Mcl-1. Compounds with improved in vitro binding potency demonstrated on-target activity in cell-based studies. The obtained results demonstrate that structure-based analysis complements the experimental high-throughput screening in identifying novel PPI inhibitor scaffolds and guides follow-up medicinal chemistry efforts. Furthermore, our work provides an example that can be applied to the analysis of available screening data against numerous targets in the PubChem BioAssay Database, leading to the identification of promising lead compounds, fuelling drug discovery pipelines.
Collapse
Affiliation(s)
- Ahmed S A Mady
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI, USA.,Interdepartmental Graduate Program in Medicinal Chemistry, University of Michigan, College of Pharmacy, Ann Arbor, MI, USA
| | - Chenzhong Liao
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI, USA.,School of Medical Engineering, Hefei University of Technology, Hefei, Anhui, 230009, China
| | - Naval Bajwa
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI, USA.,Pfizer Inc, Lake Forest, IL, 60045, USA
| | - Karson J Kump
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI, USA.,Program in Chemical Biology, University of Michigan, Ann Arbor, MI, USA
| | - Fardokht A Abulwerdi
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI, USA.,Interdepartmental Graduate Program in Medicinal Chemistry, University of Michigan, College of Pharmacy, Ann Arbor, MI, USA.,Basic Research Laboratory, National Cancer Institute, Frederick, MD, 21702, USA
| | - Katherine L Lev
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Lei Miao
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Sierrah M Grigsby
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI, USA.,Molecular and Cellular Pathology Graduate Program, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Andrej Perdih
- National Institute of Chemistry, Ljubljana, Slovenia
| | - Jeanne A Stuckey
- Life Sciences Institute, University of Michigan, Ann Arbor, MI, USA
| | - Yuhong Du
- Department of Pharmacology, Emory University, Atlanta, GA, USA
| | - Haian Fu
- Department of Pharmacology, Emory University, Atlanta, GA, USA
| | - Zaneta Nikolovska-Coleska
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI, USA. .,Molecular and Cellular Pathology Graduate Program, University of Michigan Medical School, Ann Arbor, MI, USA. .,Interdepartmental Graduate Program in Medicinal Chemistry, University of Michigan, College of Pharmacy, Ann Arbor, MI, USA. .,Program in Chemical Biology, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
27
|
Zafar M, Sarfraz I, Rasul A, Jabeen F, Samiullah K, Hussain G, Riaz A, Ali M. Tubeimoside-1, Triterpenoid Saponin, as a Potential Natural Cancer Killer. Nat Prod Commun 2018. [DOI: 10.1177/1934578x1801300530] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Nature, an expert craftsman of molecules, has generated extensive array of bioactive molecular entities. It persists as an inexhaustible resource for discovery of drugs and supplied enormous scaffold diversification for development into effectual drugs to treat multiple pathological conditions. This review provides an update on the sources, biological, and pharmacological effects of nature's gift, a triterpenoid saponin, tubeimoside-1 which is a major bioactive constituent of the bulb of Bolbostemma paniculatum. Tubeimoside-1 is known to possess various pharmacological properties such as anti-cancer, anti-HIV, and anti-inflammatory. Recently, anti-proliferative potential of tubeimoside-1 has been widely studied. The present review article seeks to cover the recent developments of tubeimoside-1′s pharmacological position in the arena of herbal drugs, providing an insight into its current status in therapeutic pursuits. This anti-cancer triterpenoid saponin fight cancer progression by induction of apoptosis, cell cycle arrest, and inhibiting metastasis by specifically targeting multiple signaling pathways those are usually deregulated in various cancers. The reported data recommend tubeimoside-1′s mutitarget activity in preference to single effect that may perform an imperative role towards developing tubeimoside-1 into potential pharmacological drug.
Collapse
Affiliation(s)
- Muhammad Zafar
- Department of Zoology, Faculty of Life Sciences, Government College University Faisalabad, 38000 Faisalabad, Pakistan
| | - Iqra Sarfraz
- Department of Zoology, Faculty of Life Sciences, Government College University Faisalabad, 38000 Faisalabad, Pakistan
| | - Azhar Rasul
- Department of Zoology, Faculty of Life Sciences, Government College University Faisalabad, 38000 Faisalabad, Pakistan
| | - Faiza Jabeen
- Department of Zoology, Faculty of Life Sciences, Government College University Faisalabad, 38000 Faisalabad, Pakistan
| | - Khizar Samiullah
- Department of Zoology, Faculty of Life Sciences, Government College University Faisalabad, 38000 Faisalabad, Pakistan
| | - Ghulam Hussain
- Department of Physiology, Faculty of Life Sciences, Government College University Faisalabad, 38000 Faisalabad, Pakistan
| | - Ammara Riaz
- Department of Zoology, Faculty of Life Sciences, Government College University Faisalabad, 38000 Faisalabad, Pakistan
| | - Muhammad Ali
- Department of Zoology, Faculty of Life Sciences, Government College University Faisalabad, 38000 Faisalabad, Pakistan
| |
Collapse
|
28
|
Deng B, Su F, Xie R, Tang W. miR-371-5p suppresses the proliferative and migratory capacity of human nasopharyngeal carcinoma by targeting BCL2. Oncol Lett 2018; 15:9209-9215. [PMID: 29844823 PMCID: PMC5958798 DOI: 10.3892/ol.2018.8481] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2017] [Accepted: 02/27/2018] [Indexed: 12/31/2022] Open
Abstract
The aim of the present study was to investigate the expression and function of microRNA (miR)-371-5p in nasopharyngeal carcinoma (NPC). The levels of miR-371-5p were analyzed in nasopharyngeal epithelium tissues, NPC tissues, human NPC cell lines and NP69 cells using reverse transcription-quantitative polymerase chain reaction analysis. The association between the level of miR-371-5p and clinicopathological variables was also investigated. Cell proliferation was determined using an MTT assay, and the activities of cell metastasis were determined using wound healing and Transwell migration assays. To assess whether miR-371-5p can combine with the targeting sequence of B-cell lymphoma 2 (BCL2) mRNA or not, a luciferase activity assay was performed. An animal experiment was used to examine the effect of miR-371-5p on the development of NPC. The results revealed that the expression of miR-371-5p was reduced in NPC samples and NPC cells. The level of miR-371-5p was associated with clinical stage and distant metastasis in patients with NPC, and was inversely associated with the protein level of BCL-2 in NPC tissues. The upregulation of miR-371-5p reduced cell growth, migration and invasion, and inhibited carcinoma growth through targeting BCL2 mRNA. Taken together, the regulation of miR-371-5p was shown to offer potential as a novel treatment approach for NPC.
Collapse
Affiliation(s)
- Bifan Deng
- Department of Otorhinolaryngology, Head and Neck Surgery, Hezhou Renmin Hospital, Hezhou, Guangxi 542899, P.R. China
| | - Feiqun Su
- Department of Nursing, Hezhou Renmin Hospital, Hezhou, Guangxi 542899, P.R. China
| | - Ruibin Xie
- Department of Cardiovascular Medicine, Hezhou Renmin Hospital, Hezhou, Guangxi 542899, P.R. China
| | - Weiguang Tang
- Department of Nephrology and Rheumatology, Hezhou Renmin Hospital, Hezhou, Guangxi 542899, P.R. China
| |
Collapse
|
29
|
Li K, Tian H. Development of small-molecule immune checkpoint inhibitors of PD-1/PD-L1 as a new therapeutic strategy for tumour immunotherapy. J Drug Target 2018; 27:244-256. [PMID: 29448849 DOI: 10.1080/1061186x.2018.1440400] [Citation(s) in RCA: 93] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Cancer immunotherapy has been increasingly utilised to treat advanced malignancies. The signalling network of immune checkpoints has attracted considerable attention. Immune checkpoint inhibitors are revolutionising the treatment options and expectations for patients with cancer. The reported clinical success of targeting the T-cell immune checkpoint receptors PD-1/PD-L1 has demonstrated the importance of immune modulation. Indeed, antibodies binding to PD-1 or PD-L1 have shown remarkable efficacy. However, antibody drugs have many disadvantages, such as their production cost, stability, and immunogenicity and, therefore, small-molecule inhibitors of PD-1 and its ligand PD-L1 are being introduced. Small-molecule inhibitors could offer inherent advantages in terms of pharmacokinetics and druggability, thereby providing additional methods for cancer treatment and achieving better therapeutic effects. In this review, we first discuss how PD-1/PD-L1-targeting inhibitors modulate the relationship between immune cells and tumour cells in tumour immunotherapy. Second, we discuss how the immunomodulatory potential of these inhibitors can be exploited via rational combinations with immunotherapy and targeted therapy. Third, this review is the first to summarise the current clinical and preclinical evidence regarding small-molecule inhibitors of the PD-1/PD-L1 immune checkpoint, considering features and responses related to the tumours and to the host immune system.
Collapse
Affiliation(s)
- Kui Li
- a Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine , Chinese Academy of Medical Science & Peking Union Medical College , Tianjin , China
| | - Hongqi Tian
- a Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine , Chinese Academy of Medical Science & Peking Union Medical College , Tianjin , China
| |
Collapse
|
30
|
Zhu Z, Shaginian A, Grady LC, O’Keeffe T, Shi XE, Davie CP, Simpson GL, Messer JA, Evindar G, Bream RN, Thansandote PP, Prentice NR, Mason AM, Pal S. Design and Application of a DNA-Encoded Macrocyclic Peptide Library. ACS Chem Biol 2018; 13:53-59. [PMID: 29185700 DOI: 10.1021/acschembio.7b00852] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
A DNA-encoded macrocyclic peptide library was designed and synthesized with 2.4 × 1012 members composed of 4-20 natural and non-natural amino acids. Affinity-based selection was performed against two therapeutic targets, VHL and RSV N protein. On the basis of selection data, some peptides were selected for resynthesis without a DNA tag, and their activity was confirmed.
Collapse
Affiliation(s)
- Zhengrong Zhu
- GlaxoSmithKline, 200 Cambridge Park Dr., Cambridge, Massachusetts 02140, United States
| | - Alex Shaginian
- GlaxoSmithKline, 200 Cambridge Park Dr., Cambridge, Massachusetts 02140, United States
| | - LaShadric C. Grady
- GlaxoSmithKline, 200 Cambridge Park Dr., Cambridge, Massachusetts 02140, United States
| | - Thomas O’Keeffe
- GlaxoSmithKline, 200 Cambridge Park Dr., Cambridge, Massachusetts 02140, United States
| | - Xiangguo E. Shi
- GlaxoSmithKline, 200 Cambridge Park Dr., Cambridge, Massachusetts 02140, United States
| | - Christopher P. Davie
- GlaxoSmithKline, 200 Cambridge Park Dr., Cambridge, Massachusetts 02140, United States
| | - Graham L. Simpson
- GlaxoSmithKline, Gunnels Wood Road, Stevenage, SG1 2NY, United Kingdom
| | - Jeffrey A. Messer
- GlaxoSmithKline, 200 Cambridge Park Dr., Cambridge, Massachusetts 02140, United States
| | - Ghotas Evindar
- GlaxoSmithKline, 200 Cambridge Park Dr., Cambridge, Massachusetts 02140, United States
| | - Robert N. Bream
- GlaxoSmithKline, Gunnels Wood Road, Stevenage, SG1 2NY, United Kingdom
| | | | - Naomi R. Prentice
- GlaxoSmithKline, Gunnels Wood Road, Stevenage, SG1 2NY, United Kingdom
| | - Andrew M. Mason
- GlaxoSmithKline, Gunnels Wood Road, Stevenage, SG1 2NY, United Kingdom
| | - Sandeep Pal
- GlaxoSmithKline, Gunnels Wood Road, Stevenage, SG1 2NY, United Kingdom
| |
Collapse
|
31
|
Ma S, Bai Z, Wang W, Wu H. Retracted
: Effects of microrna‐93 on mouse cardiac microvascular endothelial cells injury and inflammatory response by mediating SPP1 through the NF‐ΚB pathway. J Cell Biochem 2017; 120:2847-2858. [DOI: 10.1002/jcb.26567] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Accepted: 12/01/2017] [Indexed: 12/22/2022]
Affiliation(s)
- Su‐Xia Ma
- Second Department of Cardiovascular Medicine The First People’s Hospital of Shangqiu City Shangqiu China
| | - Zhi‐Feng Bai
- Second Department of Cardiovascular Medicine The First People’s Hospital of Shangqiu City Shangqiu China
| | - Wei Wang
- Department of Cardiovascular Medicine Fuwai Cardiovascular Hospital Beijing China
| | - Hui‐Ying Wu
- Department of General Medicine Henan Provincial People’s Hospital Zhengzhou China
| |
Collapse
|
32
|
Adzavon YM, Zhao P, Zhang X, Liu M, Lv B, Yang L, Zhang X, Xie F, Zhang M, Ma J, Ma X. Genes and pathways associated with the occurrence of malignancy in benign lymphoepithelial lesions. Mol Med Rep 2017; 17:2177-2186. [PMID: 29207199 PMCID: PMC5783467 DOI: 10.3892/mmr.2017.8149] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Accepted: 09/06/2017] [Indexed: 12/24/2022] Open
Abstract
There is increasing evidence concerning the occurrence of malignant lymphoma among people suffering from Mikulicz disease, also termed benign lymphoepithelial lesion (BLEL) and immunoglobulin G4-associated disease. However, the underlying molecular mechanism of the malignant transformation remains unclear. The present study aimed to investigate the gene expression profile between BLEL and malignant lymphoepithelial lesion (MLEL) conditions using tissue microarray analysis, to identify genes and pathways which may be associated with the risk of malignant transformation. Comparing gene expression profiles between BLEL tissues (n=13) and MLEL (n=14), a total of 1,002 differentially expressed genes (DEGs) were identified including 364 downregulated and 638 upregulated DEGs in BLEL. The downregulated DEGs in BLEL were frequently associated with immune-based functions, immune cell differentiation, proliferation and survival, and metabolic functions, whereas the upregulated DEGs were primarily associated with organ, gland and tissue developmental processes. The B cell receptor signaling pathway, the transcription factor p65 signaling pathway, low affinity immunoglobulin γ Fc region receptor II-mediated phagocytosis, the high affinity immunoglobulin ε receptor subunit γ signaling pathway and Epstein-Barr virus infection, and pathways in cancer, were the pathways associated with the downregulated DEGs. The upregulated DEGs were associated with three pathways, including glutathione metabolism, salivary secretion and mineral absorption pathways. These results suggested that the identified signaling pathways and their associated genes may be crucial for understanding the molecular mechanisms underlying malignant transformation from BLEL, and they may be considered to be markers for predicting malignancy among the BLEL group.
Collapse
Affiliation(s)
- Yao Mawulikplimi Adzavon
- College of Life Science and Bio‑engineering, Beijing University of Technology, Beijing 100124, P.R. China
| | - Pengxiang Zhao
- College of Life Science and Bio‑engineering, Beijing University of Technology, Beijing 100124, P.R. China
| | - Xin Zhang
- College of Life Science and Bio‑engineering, Beijing University of Technology, Beijing 100124, P.R. China
| | - Mengyu Liu
- College of Life Science and Bio‑engineering, Beijing University of Technology, Beijing 100124, P.R. China
| | - Baobei Lv
- College of Life Science and Bio‑engineering, Beijing University of Technology, Beijing 100124, P.R. China
| | - Linqi Yang
- College of Life Science and Bio‑engineering, Beijing University of Technology, Beijing 100124, P.R. China
| | - Xujuan Zhang
- College of Life Science and Bio‑engineering, Beijing University of Technology, Beijing 100124, P.R. China
| | - Fei Xie
- College of Life Science and Bio‑engineering, Beijing University of Technology, Beijing 100124, P.R. China
| | - Mingzi Zhang
- Department of Plastic Surgery, Peking Union Medical College Hospital, Beijing 100730, P.R. China
| | - Jianmin Ma
- Beijing Ophthalmology and Vision Science Key Lab, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing 100730, P.R. China
| | - Xuemei Ma
- College of Life Science and Bio‑engineering, Beijing University of Technology, Beijing 100124, P.R. China
| |
Collapse
|
33
|
Singh AA, Mandoli A, Prange KHM, Laakso M, Martens JHA. AML associated oncofusion proteins PML-RARA, AML1-ETO and CBFB-MYH11 target RUNX/ETS-factor binding sites to modulate H3ac levels and drive leukemogenesis. Oncotarget 2017; 8:12855-12865. [PMID: 28030795 PMCID: PMC5355061 DOI: 10.18632/oncotarget.14150] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Accepted: 11/21/2016] [Indexed: 12/11/2022] Open
Abstract
Chromosomal translocations are one of the hallmarks of acute myeloid leukemia (AML), often leading to gene fusions and expression of an oncofusion protein. Over recent years it has become clear that most of the AML associated oncofusion proteins molecularly adopt distinct mechanisms for inducing leukemogenesis. Still these unique molecular properties of the chimeric proteins converge and give rise to a common pathogenic molecular mechanism. In the present study we compared genome-wide DNA binding and transcriptome data associated with AML1-ETO, CBFB-MYH11 and PML-RARA oncofusion protein expression to identify unique and common features. Our analyses revealed targeting of oncofusion binding sites to RUNX1 and ETS-factor occupied genomic regions. In addition, it revealed a highly comparable global histone acetylation pattern, similar expression of common target genes and related enrichment of several biological pathways critical for maintenance of AML, suggesting oncofusion proteins deregulate common gene programs despite their distinct binding signatures and mechanisms of action.
Collapse
Affiliation(s)
- Abhishek A Singh
- Radboud University, Department of Molecular Biology, Faculty of Science, Nijmegen Centre for Molecular Life Sciences, 6500 HB Nijmegen, The Netherlands
| | - Amit Mandoli
- Radboud University, Department of Molecular Biology, Faculty of Science, Nijmegen Centre for Molecular Life Sciences, 6500 HB Nijmegen, The Netherlands
| | - Koen H M Prange
- Radboud University, Department of Molecular Biology, Faculty of Science, Nijmegen Centre for Molecular Life Sciences, 6500 HB Nijmegen, The Netherlands
| | - Marko Laakso
- Genome Scale Biology Research Program, Research Programs Unit, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Joost H A Martens
- Radboud University, Department of Molecular Biology, Faculty of Science, Nijmegen Centre for Molecular Life Sciences, 6500 HB Nijmegen, The Netherlands
| |
Collapse
|
34
|
Abstract
OPINION STATEMENT There is no standard of care for older patients with acute myeloid leukemia (AML) unfit for intensive chemotherapy. AML in older patients remains an area of significant unmet need necessitating novel therapeutic strategies. In older patients with normal cytogenetics, molecular variables can be helpful in refining risk. This molecular revolution has promoted a shift in the treatment paradigm of AML. Open new questions concern the necessity of an individualized therapy that may take into account not only an increase in survival but also the maintenance or improvement in terms of quality of life, the management of symptoms, and a maximization of time outside of hospital care. Molecular abnormalities provide the genomic footprint for the development of targeted therapies. Clinical trials testing the activity of these new agents are ongoing and may reshape treatment strategies for these patients. One promising strategy is to combine low-intensity treatments with novel agents.
Collapse
Affiliation(s)
- Xavier Thomas
- Department of Hematology, Hospices Civils de Lyon, Lyon-Sud Hospital, Bat.1G, 165 chemin du Grand Revoyet, 69495, Pierre Bénite, France.
| | - Caroline Le Jeune
- Department of Hematology, Hospices Civils de Lyon, Lyon-Sud Hospital, Bat.1G, 165 chemin du Grand Revoyet, 69495, Pierre Bénite, France
| |
Collapse
|
35
|
Rodriguez-Barrueco R, Nekritz EA, Bertucci F, Yu J, Sanchez-Garcia F, Zeleke TZ, Gorbatenko A, Birnbaum D, Ezhkova E, Cordon-Cardo C, Finetti P, Llobet-Navas D, Silva JM. miR-424(322)/503 is a breast cancer tumor suppressor whose loss promotes resistance to chemotherapy. Genes Dev 2017; 31:553-566. [PMID: 28404630 PMCID: PMC5393051 DOI: 10.1101/gad.292318.116] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Accepted: 03/06/2017] [Indexed: 01/08/2023]
Abstract
In this study, Rodriguez-Barrueco et al. analyzed ∼3000 primary tumors and show that miR-424(322)/503 is commonly lost in a subset of aggressive breast cancers; they then describe the genetic aberrations that inactivate its expression. Their data show that miR-424(322)/503 is a tumor suppressor in breast cancer and provide a link between mammary epithelial involution, tumorigenesis, and the phenomenon of chemoresistance. The female mammary gland is a very dynamic organ that undergoes continuous tissue remodeling during adulthood. Although it is well established that the number of menstrual cycles and pregnancy (in this case transiently) increase the risk of breast cancer, the reasons are unclear. Growing clinical and experimental evidence indicates that improper involution plays a role in the development of this malignancy. Recently, we described the miR-424(322)/503 cluster as an important regulator of mammary epithelial involution after pregnancy. Here, through the analysis of ∼3000 primary tumors, we show that miR-424(322)/503 is commonly lost in a subset of aggressive breast cancers and describe the genetic aberrations that inactivate its expression. Furthermore, through the use of a knockout mouse model, we demonstrate for the first time that loss of miR-424(322)/503 promotes breast tumorigenesis in vivo. Remarkably, we found that loss of miR-424(322)/503 promotes chemoresistance due to the up-regulation of two of its targets: BCL-2 and insulin-like growth factor-1 receptor (IGF1R). Importantly, targeted therapies blocking the aberrant activity of these targets restore sensitivity to chemotherapy. Overall, our studies reveal miR-424(322)/503 as a tumor suppressor in breast cancer and provide a link between mammary epithelial involution, tumorigenesis, and the phenomenon of chemoresistance.
Collapse
Affiliation(s)
- Ruth Rodriguez-Barrueco
- Department of Pathology, Icahn School of Medicine at Mount Sinai, New York, New York 10029, USA.,Institute of Genetic Medicine, Newcastle University, Newcastle-Upon-Tyne NE1 3BZ, United Kingdom
| | - Erin A Nekritz
- Department of Pathology, Icahn School of Medicine at Mount Sinai, New York, New York 10029, USA
| | - François Bertucci
- Centre de Recherche en Cancérologie de Marseille, Institut Paoli-Calmettes, Aix-Marseille Université, Marseille 13009, France
| | - Jiyang Yu
- St. Jude Children's Research Hospital, Kay Research and Care Center, IA6053, Memphis, Tennessee 38105, USA
| | - Felix Sanchez-Garcia
- Department of Systems Biology, Center for Computational Biology and Bioinformatics, Herbert Irving Comprehensive Cancer Center, Columbia University, New York, New York 10032, USA
| | - Tizita Z Zeleke
- Department of Pathology, Icahn School of Medicine at Mount Sinai, New York, New York 10029, USA
| | - Andrej Gorbatenko
- Department of Pathology, Icahn School of Medicine at Mount Sinai, New York, New York 10029, USA
| | - Daniel Birnbaum
- Centre de Recherche en Cancérologie de Marseille, Institut Paoli-Calmettes, Aix-Marseille Université, Marseille 13009, France
| | - Elena Ezhkova
- Department of Cell, Developmental, and Regenerative Biology, Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029, USA
| | - Carlos Cordon-Cardo
- Department of Pathology, Icahn School of Medicine at Mount Sinai, New York, New York 10029, USA
| | - Pascal Finetti
- Centre de Recherche en Cancérologie de Marseille, Institut Paoli-Calmettes, Aix-Marseille Université, Marseille 13009, France
| | - David Llobet-Navas
- Department of Pathology, Icahn School of Medicine at Mount Sinai, New York, New York 10029, USA.,Institute of Genetic Medicine, Newcastle University, Newcastle-Upon-Tyne NE1 3BZ, United Kingdom
| | - Jose M Silva
- Department of Pathology, Icahn School of Medicine at Mount Sinai, New York, New York 10029, USA
| |
Collapse
|
36
|
Prognostic Significance of Apoptosis-related Markers in Patients With Soft-Tissue Sarcomas of Extremities. Appl Immunohistochem Mol Morphol 2016; 24:268-74. [PMID: 25906122 DOI: 10.1097/pai.0000000000000185] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Bcl-2 and Bax proteins are key regulators of apoptosis, a process that is deregulated in many human diseases, particularly cancer. Overexpression of antiapoptotic Bcl-2 protein is associated with drug resistance and poor clinical outcome in cancer patients, whereas the expression of proapoptotic Bax protein, commonly detected in soft-tissue sarcoma (STS), is often associated with chemiosensitivity in different tumors. Studies on the clinical implications of apoptosis-related markers Bcl-2 and Bax in STS are limited. In this study, immunohistochemistry for Bcl-2 and Bax was performed on tissue microarrays of 86 multiple types of adult STS of the extremities. Bcl-2 and Bax positive expression was detected in 25.9% and 66.7% of the sarcomas, respectively. Overexpression of both, Bcl-2 and Bax, was directly associated with histologic grade and clinical stage. A significant association between Bax and Bcl-2 expression was also observed (P=0.007). The 5-year overall survival for the group was 57%, and it was lower for cases that overexpressed Bcl-2 (47.6% vs. 58.3%) and Bax (50% vs. 66.7%), although not statistically significant. After multivariate analysis, only the high histologic grade appeared as an independent prognostic factor for the patients (P=0.043; HR=8.0; 95% CI, 1.1-60.1). In our study, Bcl-2 and Bax expression was significantly associated with histologic grade and clinical stage, which are classic factors of poor prognosis. We suggest the use of these proteins as potential prognostic markers in STS of extremities.
Collapse
|
37
|
Abstract
INTRODUCTION The myeloid cell leukemia-1 (MCL-1) protein is one of the key anti-apoptotic members of the B-cell lymphoma-2 (BCL-2) protein family. Over-expression of MCL-1 has been closely related to tumor progression as well as to resistance, not only to traditional chemotherapies but also to targeted therapeutics including BCL-2 inhibitors such as ABT-263. Therefore, there has been extensive research and development in the last decade in both academic and industrial settings to address this unmet medical need. Areas covered: This review covers the research and patent literature of the past 10 years in the field of discovery and development of small-molecule inhibitors of the MCL-1 anti-apoptotic protein. Expert opinion: Small-molecule strategies to disrupt the protein-protein interactions between MCL-1 and its pro-apoptotic counterparts, such as BAK and BIM, have recently emerged. Several small-molecules based on different scaffolds describe promising in vitro data as MCL-1 selective inhibitors. While many lead compounds remain at the in vitro preclinical development stage, the two most recent patent applications describe promising in vivo data, and one small molecule inhibitor has recently entered into clinical development. It is such an exciting moment that the long awaited clinical studies will generate some insight into the therapeutic potential of this anti-cancer approach, and possibly facilitate the further development of other early stage inhibitors.
Collapse
Affiliation(s)
- Lijia Chen
- a Department of Pharmaceutical Sciences , University of Maryland School of Pharmacy , Baltimore , MD , USA
| | - Steven Fletcher
- a Department of Pharmaceutical Sciences , University of Maryland School of Pharmacy , Baltimore , MD , USA
| |
Collapse
|
38
|
Castillo JJ, Hunter ZR, Yang G, Argyropoulos K, Palomba ML, Treon SP. Future therapeutic options for patients with Waldenström macroglobulinemia. Best Pract Res Clin Haematol 2016; 29:206-215. [PMID: 27825467 DOI: 10.1016/j.beha.2016.08.021] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Accepted: 08/29/2016] [Indexed: 11/29/2022]
Abstract
Waldenström macroglobulinemia (WM) is a rare lymphoma characterized by the accumulation of IgM-producing lymphoplasmacytic cells. Although WM patients can experience prolonged remissions, the disease invariably recurs. Therefore, novel treatments associated with higher success rates and lower toxicity profiles are needed. The discovery of recurrent mutations in the MYD88 and CXCR4 genes has unraveled potential therapeutic targets in WM patients. As a result of these findings and based on the design and execution of a prospective clinical trial, the FDA granted approval to ibrutinib, an oral Bruton tyrosine kinase (BTK) inhibitor, to treat patients with symptomatic WM. The present review focuses on potential therapies that could change the landscape of treatment of patients with WM, specifically focusing on inhibitors or antagonists or the proteasome, BTK, CD38, BCL2 and the CXCR4 and MYD88 genes themselves. Novel agents with novel mechanisms of action should be evaluated in the context of carefully designed clinical trials.
Collapse
Affiliation(s)
- Jorge J Castillo
- Bing Center for Waldenström Macroglobulinemia, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA.
| | - Zachary R Hunter
- Bing Center for Waldenström Macroglobulinemia, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Guang Yang
- Bing Center for Waldenström Macroglobulinemia, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Kimon Argyropoulos
- Division of Hematology and Oncology, Memorial Sloan-Kettering Cancer Center, New York, NY, USA
| | - M Lia Palomba
- Division of Hematology and Oncology, Memorial Sloan-Kettering Cancer Center, New York, NY, USA
| | - Steven P Treon
- Bing Center for Waldenström Macroglobulinemia, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
39
|
Drink E, Dugourd P, Dumont E, Aronssohn N, Antoine R, Loison C. Optical properties of prodigiosin and obatoclax: action spectroscopy and theoretical calculations. Phys Chem Chem Phys 2016; 17:25946-55. [PMID: 26120608 DOI: 10.1039/c5cp01498k] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Prodiginine molecules (prodigiosin and obatoclax) are well-known pH-chromic dyes with promising anti-tumor properties. They present multiple tautomeric and rotameric forms. The protonation state and the structure of such flexible ligands in interaction with a protein are crucial to understand and to model the protein's biological activities. The determination of the protonation state via UV/vis absorption is possible if the ligand spectra of the neutral and protonated states are sufficiently different, and also if we can eliminate other factors potentially impacting the spectrum. Upon measuring the absorption spectra of the ligand in solution, varying solvents and pH values, we have determined that the optical properties of prodigiosin and obatoclax depend on the protonation state and not on the solvent permittivity constant. In parallel, action spectroscopy (using tunable lasers coupled to ion traps) in the gas phase of protonated and sodiated prodigiosin and obatoclax molecules has been performed to evaluate the sensitivity of the charge and the conformational state to their optical properties free of solvent. The spectra are interpreted using computational simulations of molecular structures and electronic excitations. The excitation energies are only slightly sensitive to various isomerizations, and may be used to distinguish between protonated and deprotonated states, even in the presence of a sodium counter-ion.
Collapse
Affiliation(s)
- Evangeline Drink
- Institut Lumière Matière, UMR5306 Université Lyon 1-CNRS, Université de Lyon, 69622 Villeurbanne cedex, France.
| | | | | | | | | | | |
Collapse
|
40
|
Zhan MM, Hu XQ, Liu XX, Ruan BF, Xu J, Liao C. From monoclonal antibodies to small molecules: the development of inhibitors targeting the PD-1/PD-L1 pathway. Drug Discov Today 2016; 21:1027-36. [DOI: 10.1016/j.drudis.2016.04.011] [Citation(s) in RCA: 95] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2016] [Revised: 03/29/2016] [Accepted: 04/11/2016] [Indexed: 12/25/2022]
|
41
|
Besbes S, Mirshahi M, Pocard M, Billard C. New dimension in therapeutic targeting of BCL-2 family proteins. Oncotarget 2016; 6:12862-71. [PMID: 25970783 PMCID: PMC4536985 DOI: 10.18632/oncotarget.3868] [Citation(s) in RCA: 86] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2015] [Accepted: 04/01/2015] [Indexed: 01/22/2023] Open
Abstract
Proteins of the BCL-2 family control the mitochondrial pathway of apoptosis. Targeting these proteins proves to be an attractive strategy for anticancer therapy. The biological context is based on the fact that BH3-only members of the family are specific antagonists of prosurvival members. This prompted the identification of “BH3 mimetic” compounds. These small peptides or organic molecules indeed mimic the BH3 domain of BH3-only proteins: by selectively binding and antagonizing prosurvival proteins, they can induce apoptosis in malignant cells. Some small-molecule inhibitors of prosurvival proteins have already entered clinical trials in cancer patients and two of them have shown significant therapeutic effects. The latest developments in the field of targeting BCL-2 family proteins highlight several new antagonists of prosurvival proteins as well as direct activators of proapoptotic proteins. These compounds open up novel prospects for the development of BH3 mimetic anticancer drugs.
Collapse
Affiliation(s)
- Samaher Besbes
- INSERM U 965, Hôpital Lariboisière, Paris, France.,Université Paris Diderot, UMR S965, Paris, France
| | - Massoud Mirshahi
- INSERM U 965, Hôpital Lariboisière, Paris, France.,Université Paris Diderot, UMR S965, Paris, France
| | - Marc Pocard
- INSERM U 965, Hôpital Lariboisière, Paris, France.,Université Paris Diderot, UMR S965, Paris, France
| | - Christian Billard
- INSERM U 965, Hôpital Lariboisière, Paris, France.,Université Paris Diderot, UMR S965, Paris, France
| |
Collapse
|
42
|
Thomas X, Le Jeune C. The safety of treatment options for elderly people with acute myeloid leukemia. Expert Opin Drug Saf 2016; 15:635-45. [PMID: 26943698 DOI: 10.1517/14740338.2016.1161020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
INTRODUCTION Life expectancy in elderly patients with acute myeloid leukemia (AML) is a function of age, disability, and co-morbidity, combined with leukemia characteristics. There is currently no consensus regarding the optimal therapeutic strategy for older adults with AML. Although selected older adults with AML can benefit from intensive therapies, recent evidence supports the use of lower-intensity therapies in most patients and emphasizes the importance of tolerability and quality of life. AREAS COVERED Results of the current clinical trials and safety data are reviewed. EXPERT OPINION Treatment recommendations for elderly patients with AML need to be individualized. In order to avoid toxicities, hematologists should collaborate more with geriatricians to identify clues of vulnerability in elderly patients through the study of functional physical, physiological, cognitive, social, and psychological parameters.
Collapse
Affiliation(s)
- Xavier Thomas
- a Hematology Department , Hospices Civils de Lyon, Lyon-Sud Hospital , Pierre-Bénite , France
| | - Caroline Le Jeune
- a Hematology Department , Hospices Civils de Lyon, Lyon-Sud Hospital , Pierre-Bénite , France
| |
Collapse
|
43
|
Nhu D, Lessene G, Huang DCS, Burns CJ. Small molecules targeting Mcl-1: the search for a silver bullet in cancer therapy. MEDCHEMCOMM 2016. [DOI: 10.1039/c5md00582e] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Progress towards the development of potent and selective inhibitors of the pro-survival protein Mcl-1 is reviewed.
Collapse
Affiliation(s)
- Duong Nhu
- The Walter and Eliza Hall Institute of Medical Research
- Australia
- Department of Medical Biology
- The University of Melbourne
- Australia
| | - Guillaume Lessene
- The Walter and Eliza Hall Institute of Medical Research
- Australia
- Department of Medical Biology
- The University of Melbourne
- Australia
| | - David C. S. Huang
- The Walter and Eliza Hall Institute of Medical Research
- Australia
- Department of Medical Biology
- The University of Melbourne
- Australia
| | - Christopher J. Burns
- The Walter and Eliza Hall Institute of Medical Research
- Australia
- Department of Medical Biology
- The University of Melbourne
- Australia
| |
Collapse
|
44
|
Söderholm S, Anastasina M, Islam MM, Tynell J, Poranen MM, Bamford DH, Stenman J, Julkunen I, Šaulienė I, De Brabander JK, Matikainen S, Nyman TA, Saelens X, Kainov D. Immuno-modulating properties of saliphenylhalamide, SNS-032, obatoclax, and gemcitabine. Antiviral Res 2015; 126:69-80. [PMID: 26738783 DOI: 10.1016/j.antiviral.2015.12.011] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Revised: 12/21/2015] [Accepted: 12/24/2015] [Indexed: 12/24/2022]
Abstract
Influenza A viruses (IAVs) impact the public health and global economy by causing yearly epidemics and occasional pandemics. Several anti-IAV drugs are available and many are in development. However, the question remains which of these antiviral agents may allow activation of immune responses and protect patients against co- and re-infections. To answer to this question, we analysed immuno-modulating properties of the antivirals saliphenylhalamide (SaliPhe), SNS-032, obatoclax, and gemcitabine, and found that only gemcitabine did not impair immune responses in infected cells. It also allowed activation of innate immune responses in lipopolysaccharide (LPS)- and interferon alpha (IFNα)-stimulated macrophages. Moreover, immuno-mediators produced by gemcitabine-treated IAV-infected macrophages were able to prime immune responses in non-infected cells. Thus, we identified an antiviral agent which might be beneficial for treatment of patients with severe viral infections.
Collapse
Affiliation(s)
- Sandra Söderholm
- Institute of Biotechnology, University of Helsinki, Finland; Finnish Institute of Occupational Health (TTL), Helsinki, Finland
| | - Maria Anastasina
- The Institute for Molecular Medicine Finland, FIMM, University of Helsinki, Finland
| | | | - Janne Tynell
- National Institute for Health and Welfare (THL), Helsinki, Finland
| | | | - Dennis H Bamford
- Institute of Biotechnology, University of Helsinki, Finland; Department of Biosciences, University of Helsinki, Finland
| | - Jakob Stenman
- Minerva Foundation Institute for Medical Research, Helsinki, Finland
| | - Ilkka Julkunen
- National Institute for Health and Welfare (THL), Helsinki, Finland; Department of Virology, University of Turku, Turku, Finland
| | - Ingrida Šaulienė
- Department of Environmental Research, Siauliai University, Siauliai, Lithuania
| | - Jef K De Brabander
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, USA
| | | | - Tuula A Nyman
- Institute of Biotechnology, University of Helsinki, Finland
| | - Xavier Saelens
- Medical Biotechnology Center, VIB, Ghent, Belgium; Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Denis Kainov
- The Institute for Molecular Medicine Finland, FIMM, University of Helsinki, Finland; Department of Virology, University of Turku, Turku, Finland.
| |
Collapse
|
45
|
Dai W, Gao Q, Qiu J, Yuan J, Wu G, Shen G. Quercetin induces apoptosis and enhances 5-FU therapeutic efficacy in hepatocellular carcinoma. Tumour Biol 2015; 37:6307-13. [DOI: 10.1007/s13277-015-4501-0] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Accepted: 11/24/2015] [Indexed: 12/15/2022] Open
|
46
|
Broecker-Preuss M, Viehof J, Jastrow H, Becher-Boveleth N, Fuhrer D, Mann K. Cell death induction by the BH3 mimetic GX15-070 in thyroid carcinoma cells. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2015. [PMID: 26198850 PMCID: PMC4510903 DOI: 10.1186/s13046-015-0186-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Background The evasion of cell death is one of the hallmarks of cancer, contributing to both tumor progression and resistance to therapy. Dedifferentiated and anaplastic thyroid carcinomas that do not take up radioiodine are resistant to conventional anticancer treatments and patients with these tumors are difficult to treat. BH3 mimetics are a new class of drugs that target anti-apoptotic proteins of the BCL-2 family and promote cell death. The purpose of this study was to analyze the molecular effects of the BH3 mimetic GX15-070 on thyroid carcinoma cell lines and to characterize cell death induced by GX15-070. Methods A total of 17 cell lines derived from follicular, papillary, and anaplastic thyroid carcinomas were treated with GX15-070. Cell viability was measured with MTT assay while cell cycle phase distribution and subG1 peaks were determined after propidium iodide staining. We assessed cell death via the caspase 3/7 activity, caspase cleavage products, lactate dehydrogenase (LDH) liberation assays, and a LC3 analysis by western blot. Ultrastructural changes were analysed by electron microscopy of GX15-070-treated cells. Results After GX15-070 treatment, the number of viable cells was decreased in all cell lines examined, with IC50 values ranging from 48nM to 3.25 μM. We observed biochemical markers of autophagic cell death and necrosis like LC3 conversion and LDH release after the GX15-070 treatment. Electron microscopy revealed several common characteristic ultrastructural changes like swelling of mitochondria, dilatation of rough endoplasmic reticulum, membrane blebbing and formation of vacuoles. GX15-070 treatment induced DNA fragmentation detected by subG1-peak induction and an arrest in G1 phase of the cell cycle. Caspase activation after GX15-070 incubation was detected but had no effect on viability of cells. Conclusions With these experiments we demonstrated the efficacy of the BH3 mimetic drug GX15-070 acting against dedifferentiated thyroid carcinoma cells of various histological origins by the induction of cell death. GX15-070-treated cells underwent non-classical cell death with signs of apoptosis, autophagy and necrosis in parallel. GX15-07 and related compounds thus may be a new therapeutic option for dedifferentiated thyroid carcinoma of various histological subtypes.
Collapse
Affiliation(s)
- Martina Broecker-Preuss
- Department of Endocrinology and Metabolism, and Division of Laboratory Research, University Hospital Essen, Hufelandstrasse 55, Essen, Germany. .,Present address: Department of Clinical Chemistry, University Hospital Essen, Hufelandstrasse 55, 45122, Essen, Germany.
| | - Jan Viehof
- Department of Endocrinology and Metabolism, and Division of Laboratory Research, University Hospital Essen, Hufelandstrasse 55, Essen, Germany. .,Present address: Ruhrlandklinik, University Hospital Essen, Tüschener Weg 40, 45239, Essen, Germany.
| | - Holger Jastrow
- Institute of Anatomy, University Hospital Essen, Hufelandstrasse 55, Essen, Germany.
| | - Nina Becher-Boveleth
- Department of Endocrinology and Metabolism, and Division of Laboratory Research, University Hospital Essen, Hufelandstrasse 55, Essen, Germany. .,Present address: Clinic of Nuclear Medicine, University Hospital Essen, Hufelandstr. 55, 45122, Essen, Germany.
| | - Dagmar Fuhrer
- Department of Endocrinology and Metabolism, and Division of Laboratory Research, University Hospital Essen, Hufelandstrasse 55, Essen, Germany.
| | - Klaus Mann
- Department of Endocrinology and Metabolism, and Division of Laboratory Research, University Hospital Essen, Hufelandstrasse 55, Essen, Germany. .,Present address: Center of Endocrinology Alter Hof München, Dienerstr. 12, 80331, Munich, Germany.
| |
Collapse
|
47
|
Gowthaman R, Miller SA, Rogers S, Khowsathit J, Lan L, Bai N, Johnson DK, Liu C, Xu L, Anbanandam A, Aubé J, Roy A, Karanicolas J. DARC: Mapping Surface Topography by Ray-Casting for Effective Virtual Screening at Protein Interaction Sites. J Med Chem 2015; 59:4152-70. [PMID: 26126123 DOI: 10.1021/acs.jmedchem.5b00150] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Protein-protein interactions represent an exciting and challenging target class for therapeutic intervention using small molecules. Protein interaction sites are often devoid of the deep surface pockets presented by "traditional" drug targets, and crystal structures reveal that inhibitors typically engage these sites using very shallow binding modes. As a consequence, modern virtual screening tools developed to identify inhibitors of traditional drug targets do not perform as well when they are instead deployed at protein interaction sites. To address the need for novel inhibitors of important protein interactions, here we introduce an alternate docking strategy specifically designed for this regime. Our method, termed DARC (Docking Approach using Ray-Casting), matches the topography of a surface pocket "observed" from within the protein to the topography "observed" when viewing a potential ligand from the same vantage point. We applied DARC to carry out a virtual screen against the protein interaction site of human antiapoptotic protein Mcl-1 and found that four of the top-scoring 21 compounds showed clear inhibition in a biochemical assay. The Ki values for these compounds ranged from 1.2 to 21 μM, and each had ligand efficiency comparable to promising small-molecule inhibitors of other protein-protein interactions. These hit compounds do not resemble the natural (protein) binding partner of Mcl-1, nor do they resemble any known inhibitors of Mcl-1. Our results thus demonstrate the utility of DARC for identifying novel inhibitors of protein-protein interactions.
Collapse
Affiliation(s)
- Ragul Gowthaman
- Center for Computational Biology, ‡Department of Molecular Biosciences, §Center of Biomedical Research Excellence, Center for Cancer Experimental Therapeutics, ∥Department of Radiation Oncology, ⊥Biomolecular NMR Laboratory, #Department of Medicinal Chemistry, and ∇High Throughput Screening Laboratory University of Kansas , 2030 Becker Drive, Lawrence, Kansas 66045-7534, United States
| | - Sven A Miller
- Center for Computational Biology, ‡Department of Molecular Biosciences, §Center of Biomedical Research Excellence, Center for Cancer Experimental Therapeutics, ∥Department of Radiation Oncology, ⊥Biomolecular NMR Laboratory, #Department of Medicinal Chemistry, and ∇High Throughput Screening Laboratory University of Kansas , 2030 Becker Drive, Lawrence, Kansas 66045-7534, United States
| | - Steven Rogers
- Center for Computational Biology, ‡Department of Molecular Biosciences, §Center of Biomedical Research Excellence, Center for Cancer Experimental Therapeutics, ∥Department of Radiation Oncology, ⊥Biomolecular NMR Laboratory, #Department of Medicinal Chemistry, and ∇High Throughput Screening Laboratory University of Kansas , 2030 Becker Drive, Lawrence, Kansas 66045-7534, United States
| | - Jittasak Khowsathit
- Center for Computational Biology, ‡Department of Molecular Biosciences, §Center of Biomedical Research Excellence, Center for Cancer Experimental Therapeutics, ∥Department of Radiation Oncology, ⊥Biomolecular NMR Laboratory, #Department of Medicinal Chemistry, and ∇High Throughput Screening Laboratory University of Kansas , 2030 Becker Drive, Lawrence, Kansas 66045-7534, United States
| | - Lan Lan
- Center for Computational Biology, ‡Department of Molecular Biosciences, §Center of Biomedical Research Excellence, Center for Cancer Experimental Therapeutics, ∥Department of Radiation Oncology, ⊥Biomolecular NMR Laboratory, #Department of Medicinal Chemistry, and ∇High Throughput Screening Laboratory University of Kansas , 2030 Becker Drive, Lawrence, Kansas 66045-7534, United States
| | - Nan Bai
- Center for Computational Biology, ‡Department of Molecular Biosciences, §Center of Biomedical Research Excellence, Center for Cancer Experimental Therapeutics, ∥Department of Radiation Oncology, ⊥Biomolecular NMR Laboratory, #Department of Medicinal Chemistry, and ∇High Throughput Screening Laboratory University of Kansas , 2030 Becker Drive, Lawrence, Kansas 66045-7534, United States
| | - David K Johnson
- Center for Computational Biology, ‡Department of Molecular Biosciences, §Center of Biomedical Research Excellence, Center for Cancer Experimental Therapeutics, ∥Department of Radiation Oncology, ⊥Biomolecular NMR Laboratory, #Department of Medicinal Chemistry, and ∇High Throughput Screening Laboratory University of Kansas , 2030 Becker Drive, Lawrence, Kansas 66045-7534, United States
| | - Chunjing Liu
- Center for Computational Biology, ‡Department of Molecular Biosciences, §Center of Biomedical Research Excellence, Center for Cancer Experimental Therapeutics, ∥Department of Radiation Oncology, ⊥Biomolecular NMR Laboratory, #Department of Medicinal Chemistry, and ∇High Throughput Screening Laboratory University of Kansas , 2030 Becker Drive, Lawrence, Kansas 66045-7534, United States
| | - Liang Xu
- Center for Computational Biology, ‡Department of Molecular Biosciences, §Center of Biomedical Research Excellence, Center for Cancer Experimental Therapeutics, ∥Department of Radiation Oncology, ⊥Biomolecular NMR Laboratory, #Department of Medicinal Chemistry, and ∇High Throughput Screening Laboratory University of Kansas , 2030 Becker Drive, Lawrence, Kansas 66045-7534, United States
| | - Asokan Anbanandam
- Center for Computational Biology, ‡Department of Molecular Biosciences, §Center of Biomedical Research Excellence, Center for Cancer Experimental Therapeutics, ∥Department of Radiation Oncology, ⊥Biomolecular NMR Laboratory, #Department of Medicinal Chemistry, and ∇High Throughput Screening Laboratory University of Kansas , 2030 Becker Drive, Lawrence, Kansas 66045-7534, United States
| | - Jeffrey Aubé
- Center for Computational Biology, ‡Department of Molecular Biosciences, §Center of Biomedical Research Excellence, Center for Cancer Experimental Therapeutics, ∥Department of Radiation Oncology, ⊥Biomolecular NMR Laboratory, #Department of Medicinal Chemistry, and ∇High Throughput Screening Laboratory University of Kansas , 2030 Becker Drive, Lawrence, Kansas 66045-7534, United States
| | - Anuradha Roy
- Center for Computational Biology, ‡Department of Molecular Biosciences, §Center of Biomedical Research Excellence, Center for Cancer Experimental Therapeutics, ∥Department of Radiation Oncology, ⊥Biomolecular NMR Laboratory, #Department of Medicinal Chemistry, and ∇High Throughput Screening Laboratory University of Kansas , 2030 Becker Drive, Lawrence, Kansas 66045-7534, United States
| | - John Karanicolas
- Center for Computational Biology, ‡Department of Molecular Biosciences, §Center of Biomedical Research Excellence, Center for Cancer Experimental Therapeutics, ∥Department of Radiation Oncology, ⊥Biomolecular NMR Laboratory, #Department of Medicinal Chemistry, and ∇High Throughput Screening Laboratory University of Kansas , 2030 Becker Drive, Lawrence, Kansas 66045-7534, United States
| |
Collapse
|
48
|
Elsayed NM, Abou El Ella DA, Serya RA, Abouzid KA. Targeting apoptotic machinery as approach for anticancer therapy: Smac mimetics as anticancer agents. FUTURE JOURNAL OF PHARMACEUTICAL SCIENCES 2015. [DOI: 10.1016/j.fjps.2015.05.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
|
49
|
Larsen MJ, Larsen SD, Fribley A, Grembecka J, Homan K, Mapp A, Haak A, Nikolovska-Coleska Z, Stuckey JA, Sun D, Sherman DH. The role of HTS in drug discovery at the University of Michigan. Comb Chem High Throughput Screen 2015; 17:210-30. [PMID: 24409957 DOI: 10.2174/1386207317666140109121546] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2013] [Revised: 11/05/2013] [Accepted: 01/07/2014] [Indexed: 12/17/2022]
Abstract
High throughput screening (HTS) is an integral part of a highly collaborative approach to drug discovery at the University of Michigan. The HTS lab is one of four core centers that provide services to identify, produce, screen and follow-up on biomedical targets for faculty. Key features of this system are: protein cloning and purification, protein crystallography, small molecule and siRNA HTS, medicinal chemistry and pharmacokinetics. Therapeutic areas that have been targeted include anti-bacterial, metabolic, neurodegenerative, cardiovascular, anti-cancer and anti-viral. The centers work in a coordinated, interactive environment to affordably provide academic investigators with the technology, informatics and expertise necessary for successful drug discovery. This review provides an overview of these centers at the University of Michigan, along with case examples of successful collaborations with faculty.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - David H Sherman
- Center for Chemical Genomics, Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109, USA.
| |
Collapse
|
50
|
Tarighi P, Montazeri H, Khorramizadeh M, sobhani AM, Ostad S, Ghahremani M. uPAR peptide antagonist alters regulation of MAP kinases and Bcl-2 family members in favor of apoptosis in MDA-MB-231 cell line. Res Pharm Sci 2015; 10:200-5. [PMID: 26600846 PMCID: PMC4621626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Urokinase plasminogen activator receptor (uPAR) and its ligands play a major role in many tumors by mediating extracellular matrix degradation and signaling cascades leading to tumor growth, invasion and metastasis. Recently we introduced uPAR decapeptide antagonist with cytotoxic effect on MDA-MB-231 cell line. In this study we assessed the alteration in uPAR downstream signaling following treatment with the peptide antagonist. In this regard, extracellular-signal-regulated kinase (ERK) and p38 from mitogen-activated protein kinase family and Bcl-2, Bim and Bax from Bcl-2 protein family were investigated. Our data revealed that the peptide caused p38 activation and low ERK activation. On the other hand, the peptide induced down-regulation of Bcl-2 and up-regulation of Bim without Bax modulation. Changes in target protein expression/activation explain the apoptotic property of the peptide and highlight its potential to be used as a therapeutic agent in cancerous cells expressing high levels of uPAR.
Collapse
Affiliation(s)
- P. Tarighi
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, I.R. Iran
| | - H. Montazeri
- Department of Molecular Biology, Pasteur Institute of Iran, Tehran, I.R. Iran
| | - M.R. Khorramizadeh
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, I.R. Iran,Biosensor Research Center, Endocrinology and Metabolism Molecular -Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, I.R. Iran
| | - A. Madadkar sobhani
- Department of Bioinformatics, Institute of Biochemistry and Biophysics, Tehran University, Tehran, I.R. Iran
| | - S.N. Ostad
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, I.R. Iran
| | - M.H. Ghahremani
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, I.R. Iran,Department of Molecular Medicine, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, I.R. Iran,Corresponding author: M.H. Ghahremani Tel: 0098 21 66959102, Fax: 0098 21 66959102
| |
Collapse
|