1
|
Shrestha A, Hwang SY, Kunwar S, Man Kadayat T, Park S, Liu Y, Jo H, Sheen N, Seo M, Lee ES, Kwon Y. Di-indenopyridines as topoisomerase II-selective anticancer agents: Design, synthesis, and structure-activity relationships. Bioorg Med Chem 2023; 91:117403. [PMID: 37418826 DOI: 10.1016/j.bmc.2023.117403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 06/29/2023] [Accepted: 07/02/2023] [Indexed: 07/09/2023]
Abstract
Topoisomerases are key molecular enzymes responsible for altering DNA topology, thus they have long been considered as attractive targets for novel chemotherapeutic agents. Topoisomerase type II (Topo II) catalytic inhibitors embrace a fresh perspective meant to get beyond drawbacks caused by topo II poisons, such as cardiotoxicity and secondary malignancies. Based on previously reported 5H-indeno[1,2-b]pyridines, here we presented new twenty-three hybrid di-indenopyridines along with their topo I/IIα inhibitory and antiproliferative activity. Most of the prepared 11-phenyl-diindenopyridines showed negligible topo I inhibitory activity, showing selectivity over topo II. Among the series, we finally selected compound 17, which displayed 100 % topo IIα inhibition at 20 μM concentration and comparable antiproliferative activity against the tested cell lines. Through competitive EtBr displacement assay, cleavable complex assay, and comet assay, compound 17 was finally determined as a non-intercalative catalytic topo IIα inhibitor. The findings in this study highlight the significance of phenolic, halophenyl, thienyl, and furyl groups at the 4-position of the indane ring in the design and synthesis of di-indenopyridines as potent catalytic topo IIα inhibitors with remarkable anticancer effects.
Collapse
Affiliation(s)
- Aarajana Shrestha
- College of Pharmacy, Yeungnam University, Gyeongsan 38541, Republic of Korea; Department of Pharmaceutical Sciences, University of Kentucky College of Pharmacy, Lexington, KY 40508, USA
| | - Soo-Yeon Hwang
- College of Pharmacy, Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul 120-750, Republic of Korea
| | - Surendra Kunwar
- College of Pharmacy, Yeungnam University, Gyeongsan 38541, Republic of Korea
| | - Tara Man Kadayat
- College of Pharmacy, Yeungnam University, Gyeongsan 38541, Republic of Korea; Department of Pharmaceutical Sciences, University of Kentucky College of Pharmacy, Lexington, KY 40508, USA
| | - Seojeong Park
- College of Pharmacy, Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul 120-750, Republic of Korea
| | - Yi Liu
- College of Pharmacy, Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul 120-750, Republic of Korea
| | - Hyunji Jo
- College of Pharmacy, Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul 120-750, Republic of Korea
| | - Naeun Sheen
- College of Pharmacy, Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul 120-750, Republic of Korea
| | - Minjung Seo
- College of Pharmacy, Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul 120-750, Republic of Korea
| | - Eung-Seok Lee
- College of Pharmacy, Yeungnam University, Gyeongsan 38541, Republic of Korea.
| | - Youngjoo Kwon
- College of Pharmacy, Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul 120-750, Republic of Korea.
| |
Collapse
|
2
|
Huang G, Cierpicki T, Grembecka J. 2-Aminobenzothiazoles in anticancer drug design and discovery. Bioorg Chem 2023; 135:106477. [PMID: 36989736 PMCID: PMC10718064 DOI: 10.1016/j.bioorg.2023.106477] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 02/26/2023] [Accepted: 03/10/2023] [Indexed: 03/22/2023]
Abstract
Cancer is one of the major causes of mortality and morbidity worldwide. Substantial research efforts have been made to develop new chemical entities with improved anticancer efficacy. 2-Aminobenzothiazole is an important class of heterocycles containing one sulfur and two nitrogen atoms, which is associated with a broad spectrum of medical and pharmacological activities, including antitumor, antibacterial, antimalarial, anti-inflammatory, and antiviral activities. In recent years, an extraordinary collection of potent and low-toxicity 2-aminobenzothiazole compounds have been discovered as new anticancer agents. Herein, we provide a comprehensive review of this class of compounds based on their activities against tumor-related proteins, including tyrosine kinases (CSF1R, EGFR, VEGFR-2, FAK, and MET), serine/threonine kinases (Aurora, CDK, CK, RAF, and DYRK2), PI3K kinase, BCL-XL, HSP90, mutant p53 protein, DNA topoisomerase, HDAC, NSD1, LSD1, FTO, mPGES-1, SCD, hCA IX/XII, and CXCR. In addition, the anticancer potentials of 2-aminobenzothiazole-derived chelators and metal complexes are also described here. Moreover, the design strategies, mechanism of actions, structure-activity relationships (SAR) and more advanced stages of pre-clinical development of 2-aminobenzothiazoles as new anticancer agents are extensively reviewed in this article. Finally, the examples that 2-aminobenzothiazoles showcase an advantage over other heterocyclic systems are also highlighted.
Collapse
Affiliation(s)
- Guang Huang
- Department of Pathology, University of Michigan, Ann Arbor, MI, 48109, USA.
| | - Tomasz Cierpicki
- Department of Pathology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Jolanta Grembecka
- Department of Pathology, University of Michigan, Ann Arbor, MI, 48109, USA
| |
Collapse
|
3
|
Olatunde OZ, Yong J, Lu C, Ming Y. A Review on Shikonin and Its Derivatives as Potent Anticancer Agents Targeted against Topoisomerases. Curr Med Chem 2023; 31:CMC-EPUB-129356. [PMID: 36752292 DOI: 10.2174/0929867330666230208094828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 11/12/2022] [Accepted: 11/30/2022] [Indexed: 02/09/2023]
Abstract
The topoisomerases (TOPO) play indispensable roles in DNA metabolism, by regulating the topological state of DNA. Topoisomerase I and II are the well-established drug-targets for the development of anticancer agents and antibiotics. These drugs-targeting enzymes have been used to establish the relationship between drug-stimulated DNA cleavable complex formation and cytotoxicity. Some anticancer drugs (such as camptothecin, anthracyclines, mitoxantrone) are also widely used as Topo I and Topo II inhibitors, but the poor water solubility, myeloma suppression, dose-dependent cardiotoxicity, and multidrug resistance (MDR) limited their prolong use as therapeutics. Also, most of these agents displayed selective inhibition only against Topo I or II. In recent years, researchers focus on the design and synthesis of the dual Topo I and II inhibitors, or the discovery of the dual Topo I and II inhibitors from natural products. Shikonin (a natural compound with anthraquinone skeleton, isolated from the roots of Lithospermum erythrorhizon) has drawn much attention due to its wide spectrum of anticancer activities, especially due to its dual Topo inhibitive performance, and without the adverse side effects, and different kinds of shikonin derivatives have been synthesized as TOPO inhibitors for the development of anticancer agents. In this review, the progress of the shikonin and its derivatives together with their anticancer activities, anticancer mechanism, and their structure-activity relationship (SAR) was comprehensively summarized by searching the CNKI, PubMed, Web of Science, Scopus, and Google Scholar databases.
Collapse
Affiliation(s)
- Olagoke Zacchaeus Olatunde
- Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian,350002, China
| | - Jianping Yong
- Xiamen Institute of Rare-earth Materials, Chinese Academy of Sciences, Xiamen, Fujian, 361021, China
| | - Canzhong Lu
- Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian,350002, China
- Xiamen Institute of Rare-earth Materials, Chinese Academy of Sciences, Xiamen, Fujian, 361021, China
| | - Yanlin Ming
- Fujian Institute of Subtropical Botany, Xiamen, Fujian, 361006, China
| |
Collapse
|
4
|
Banerjee P, Gaddam N, Pandita TK, Chakraborty S. Cellular Senescence as a Brake or Accelerator for Oncogenic Transformation and Role in Lymphatic Metastasis. Int J Mol Sci 2023; 24:ijms24032877. [PMID: 36769195 PMCID: PMC9917379 DOI: 10.3390/ijms24032877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 01/29/2023] [Accepted: 01/30/2023] [Indexed: 02/05/2023] Open
Abstract
Cellular senescence-the irreversible cell cycle arrest driven by a variety of mechanisms and, more specifically, the senescence-associated secretory phenotype (SASP)-is an important area of research in the context of different age-related diseases, such as cardiovascular disease and cancer. SASP factors play both beneficial and detrimental roles in age-related disease progression depending on the source of the SASPs, the target cells, and the microenvironment. The impact of senescence and the SASP on different cell types, the immune system, and the vascular system has been widely discussed. However, the impact of replicative or stress-induced senescence on lymphatic biology and pathological lymphangiogenesis remains underexplored. The lymphatic system plays a crucial role in the maintenance of body fluid homeostasis and immune surveillance. The perturbation of lymphatic function can hamper normal physiological function. Natural aging or stress-induced premature aging influences the lymphatic vessel structure and function, which significantly affect the role of lymphatics in tumor dissemination and metastasis. In this review, we focus on the role of senescence on lymphatic pathobiology, its impact on cancer, and potential therapeutic interventions to manipulate the aged or senescent lymphatic system for disease management.
Collapse
Affiliation(s)
- Priyanka Banerjee
- Department of Medical Physiology, Texas A&M Health Science Center, Bryan, TX 77807, USA
| | - Niyanshi Gaddam
- Department of Medical Physiology, Texas A&M Health Science Center, Bryan, TX 77807, USA
| | - Tej K. Pandita
- Center for Genomics and Precision Medicine, Texas A&M College of Medicine, Houston, TX 77030, USA
| | - Sanjukta Chakraborty
- Department of Medical Physiology, Texas A&M Health Science Center, Bryan, TX 77807, USA
- Correspondence: ; Tel.: +1-979-436-0697
| |
Collapse
|
5
|
Dual Topoisomerase I/II Inhibition-Induced Apoptosis and Necro-Apoptosis in Cancer Cells by a Novel Ciprofloxacin Derivative via RIPK1/RIPK3/MLKL Activation. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27227993. [PMID: 36432094 PMCID: PMC9694631 DOI: 10.3390/molecules27227993] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 11/11/2022] [Accepted: 11/15/2022] [Indexed: 11/19/2022]
Abstract
Fluoroquinolones (FQs) are synthetic broad-spectrum antimicrobial agents that have been recently repurposed to anticancer candidates. Designing new derivatives of FQs with different moieties to target DNA topoisomerases could improve their anticancer efficacy. The present study aimed to synthesize a novel ciprofloxacin derivative, examine its anticancer activity against HepG2 and A549 cancer cells, and investigate the possible molecular mechanism underlying this activity by examining its ability to inhibit the topo I/II activity and to induce the apoptotic and necro-apoptotic pathways. Molecular docking, cell viability, cell migration, colony formation, cell cycle, Annexin V, lactate dehydrogenase (LDH) release, ELISA, and western blotting assays were utilized. Molecular docking results showed that this novel ciprofloxacin derivative exerted dual topo I and topo II binding and inhibition. It significantly inhibited the proliferation of A549 and HepG2 cancer cells and decreased their cell migration and colony formation abilities. In addition, it significantly increased the % of apoptotic cells, caused cell cycle arrest at G2/M phase, and elevated the LDH release levels in both cancer cells. Furthermore, it increased the expression of cleaved caspase 3, RIPK1, RIPK3, and MLKL proteins. This novel ciprofloxacin derivative exerted substantial dual inhibition of topo I/II enzyme activities, showed antiproliferative activity, suppressed the cell migration and colony formation abilities for A549 and HepG2 cancer cells and activated the apoptotic pathway. In addition, it initiated another backup deadly pathway, necro-apoptosis, through the activation of the RIPK1/RIPK3/MLKL pathway.
Collapse
|
6
|
Gaikwad M, Konkimalla VB, Salunke-Gawali S. Metal complexes as topoisomerase inhibitors. Inorganica Chim Acta 2022. [DOI: 10.1016/j.ica.2022.121089] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
7
|
Sarkar S, Samanta R. Weakly Coordinating tert-Amide-Assisted Ru(II)-Catalyzed Synthesis of Azacoumestans via Migratory Insertion of Quinoid Carbene: Application in the Total Synthesis of Isolamellarins. Org Lett 2022; 24:4536-4541. [PMID: 35735263 DOI: 10.1021/acs.orglett.2c01556] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
A weakly coordinating tert-amide-directed straightforward method was developed for the synthesis of azacoumestans using the corresponding azaheterocycle derivatives and diazonaphthoquinones under cheap Ru(II)-catalyzed conditions. The reaction proceeds via migratory insertion of quinoid carbene and subsequent Brønstead acid-mediated cyclization. The optimized C2-selective method offered a wide scope of important azaheterocycles. Bioactive natural products like isolamellarins A and B were synthesized via the developed protocol. Preliminary mechanistic studies highlighted the probable mechanistic pathway.
Collapse
Affiliation(s)
- Souradip Sarkar
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Rajarshi Samanta
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| |
Collapse
|
8
|
Topoisomerase I inhibitors: Challenges, progress and the road ahead. Eur J Med Chem 2022; 236:114304. [DOI: 10.1016/j.ejmech.2022.114304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 03/14/2022] [Accepted: 03/15/2022] [Indexed: 11/17/2022]
|
9
|
New trinuclear nickel(II) complexes as potential topoisomerase I/IIα inhibitors: in vitro DNA binding, cleavage and cytotoxicity against human cancer cell lines. CHEMICAL PAPERS 2022. [DOI: 10.1007/s11696-021-02005-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
10
|
Luan S, Gao Y, Liang X, Zhang L, Wu Q, Hu Y, Yin L, He C, Liu S. Aconitine linoleate, a natural lipo-diterpenoid alkaloid, stimulates anti-proliferative activity reversing doxorubicin resistance in MCF-7/ADR breast cancer cells as a selective topoisomerase IIα inhibitor. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2022; 395:65-76. [PMID: 34727218 DOI: 10.1007/s00210-021-02172-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 10/21/2021] [Indexed: 11/27/2022]
Abstract
Aconitine linoleate (1) is a lipo-diterpenoid alkaloid, isolated from Aconitum sinchiangense W. T. Wang. The study aimed at investigating the anti-proliferative efficacy and the underlying mechanisms of 1 against MCF-7 and MCF-7/ADR cells, as well as obvious the safety evaluation in vivo. The cytotoxic activities of 1 were measured in vitro. Also, we investigated the latent mechanism of 1 by cell cycle analysis in MCF-7/ADR cells and topo I and topo IIα inhibition assay. Molecular docking is done by Discovery Studio 3.5 and Autodock vina 1.1.2. Finally, the acute toxicity of 1 was detected on mice. 1 exhibited significant antitumor activity against both MCF-7 and MCF-7/ADR cells, with IC50 values of 7.58 and 7.02 μM, which is 2.38 times and 5.05 times more active, respectively than etoposide in both cell lines, and being 9.63 times more active than Adriamycin in MCF-7/ADR cell lines. The molecular docking and the topo inhibition test found that it is a selective inhibitor of topoisomerase IIα. Moreover, activation of the damage response pathway of the DNA leads to cell cycle arrest at the G0G1 phase. Furthermore, the in vivo acute toxicity of 1 in mice displayed lower toxicity than aconitine, with LD50 of 2.2 × 105 nmol/kg and only slight pathological changes in liver and lung tissue, 489 times safer than aconitine. In conclusion, compared with aconitine, 1 has more significant anti-proliferative activity against MCF-7 and MCF-7/ADR cells and greatly reduces in vivo toxicity, which suggests this kind of lipo-alkaloids is powerful and promising antitumor compounds for breast cancer.
Collapse
Affiliation(s)
- Shangxian Luan
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, People's Republic of China
| | - Yingying Gao
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, People's Republic of China
| | - Xiaoxia Liang
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, People's Republic of China.
| | - Li Zhang
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, People's Republic of China
| | - Qiang Wu
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, People's Republic of China
| | - Yunkai Hu
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, People's Republic of China
| | - Lizi Yin
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, People's Republic of China
| | - Changliang He
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, People's Republic of China
| | - Shixi Liu
- School of Chemical Science and Technology, Yunnan University, Kunming, People's Republic of China
| |
Collapse
|
11
|
Discovery of a 2,4-diphenyl-5,6-dihydrobenzo(h)quinolin-8-amine derivative as a novel DNA intercalating topoisomerase IIα poison. Eur J Med Chem 2021; 226:113860. [PMID: 34597897 DOI: 10.1016/j.ejmech.2021.113860] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 09/04/2021] [Accepted: 09/17/2021] [Indexed: 12/22/2022]
Abstract
Several anticancer agents have been developed and innovative approaches have been made toward cancer type-specific medicines for cancer treatment. As a continuous effort to develop potential chemotherapeutic agents, a novel series of 2,4-diphenyl-5,6-dihydrobenzo(h)quinolin-8-amines containing amino groups, hydroxyphenyl and fluorine functionalities were designed and synthesized. The compounds were evaluated for topo IIα inhibitory and cytotoxicity against HCT15, and HeLa human cancer cell lines. Among synthesized thirty compounds, the majority exhibited strong topo IIα inhibition and anti-proliferation against HCT15 colorectal adenocarcinoma cell line. The structure-activity relationship study revealed that compounds with -CF3 and -OCF3 substituents at 4- position and 3' or 4'-hydroxyphenyl at 2-position attached to the central pyridine ring displayed potent topo IIα and anti-proliferative activity in colorectal and cervix cancer cell line. In vitro studies provided the evidence that compounds 16, 19, 22, and 28 possess excellent topo IIα inhibition and antiproliferative activity. For a better understanding, topo IIα cleavage complex, EtBr displacement, KI quenching assays and molecular docking of compound 19 was performed and the results revealed the mode of action as a DNA intercalative topo IIα poison inhibitor. The results obtained from this study provide insight into the DNA binding mechanism of 2,4-diphenyl-5,6-dihydrobenzo(h)quinolin-8-amines and alteration in topo IIα inhibitory and antiproliferative activity with modifications in the rigid structure.
Collapse
|
12
|
Haider K, Rehman S, Pathak A, Najmi AK, Yar MS. Advances in 2-substituted benzothiazole scaffold-based chemotherapeutic agents. Arch Pharm (Weinheim) 2021; 354:e2100246. [PMID: 34467567 DOI: 10.1002/ardp.202100246] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Revised: 08/10/2021] [Accepted: 08/13/2021] [Indexed: 01/25/2023]
Abstract
Targeted therapy plays a pivotal role in cancer therapeutics by countering the drawbacks of conventional treatment like adverse events and drug resistance. Over the last decade, heterocyclic derivatives have received considerable attention as cytotoxic agents by modulating various signaling pathways. Benzothiazole is an important heterocyclic scaffold that has been explored for its therapeutic potential. Benzothiazole-based derivatives have emerged as potent inhibitors of enzymes such as EGFR, VEGFR, PI3K, topoisomerases, and thymidylate kinases. Several researchers have designed, synthesized, and evaluated benzothiazole scaffold-based enzyme inhibitors. Of these, several inhibitors have entered various phases of clinical trials. This review describes the recent advances and developments of benzothiazole architecture-based derivatives as potent anticancer agents.
Collapse
Affiliation(s)
- Kashif Haider
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research (SPER), Jamia Hamdard, New Delhi, India
| | - Sara Rehman
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research (SPER), Jamia Hamdard, New Delhi, India
| | - Ankita Pathak
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research (SPER), Jamia Hamdard, New Delhi, India
| | - Abul K Najmi
- Department of Pharmacology, School of Pharmaceutical Education and Research (SPER), Jamia Hamdard, New Delhi, India
| | - Mohammad S Yar
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research (SPER), Jamia Hamdard, New Delhi, India
| |
Collapse
|
13
|
Gupta P, Kumar RV, Kwon CH, Chen ZS. Synthesis and anticancer evaluation of sulfur containing 9-anilinoacridines. Recent Pat Anticancer Drug Discov 2021; 17:102-119. [PMID: 34323200 DOI: 10.2174/1574892816666210728122910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 03/18/2021] [Accepted: 04/17/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND DNA topoisomerases are a class of enzymes that play a critical role in fundamental biological processes of replication, transcription, recombination, repair and chromatin remodeling. Amsacrine (m-AMSA), the best-known compound of 9-anilinoacridines series was one of the first DNA-intercalating agents to be considered as a Topoisomerase II inhibitor. OBJECTIVE A series of sulfur containing 9-anilinoacridines related to amsacrine were synthesized and evaluated for their anticancer activity. METHODS Cell viability was assessed by the MTT assay. The topoisomerase II inhibitory assay was performed using the Human topoisomerase II Assay kit and flow cytometry was used to evaluate the effects on cell cycle of K562 cells. Molecular docking was performed using Schrödinger Maestro program. RESULTS Compound 36 was found to be the most cytotoxic of the sulfide series against SW620, K562, and MCF-7. The limited SAR suggested the importance of the methansulfonamidoacetamide side chain functionality, the lipophilicity and relative metabolic stability of 36 in contributing to the cytotoxicity. Topoisomerase II α inhibitory activity appeared to be involved in the cytotoxicity of 36 through inhibition of decatenation of kinetoplast DNA (kDNA) in a concentration dependent manner. Cell cycle analysis further showed the Topo II inhibition through accumulation of K562 cells in G2/M phase of cell cycle. Docking of 36 into the Topo II α-DNA complex suggested that it may be an allosteric inhibitor of Topo II α. CONCLUSION Compound 36 exhibits anticancer activity by inhibiting topoisomerase II and it could further be evaluated in in vivo models.
Collapse
Affiliation(s)
- Pranav Gupta
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, New York 11439, United States
| | - Radhika V Kumar
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, New York 11439, United States
| | - Chul-Hoon Kwon
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, New York 11439, United States
| | - Zhe-Sheng Chen
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, New York 11439, United States
| |
Collapse
|
14
|
Kaur M, Mehta V, Arora S, Munshi A, Singh S, Kumar R. Design, Synthesis and Biological Evaluation of New 5‐(2‐Nitrophenyl)‐1‐aryl‐1
H
‐pyrazoles as Topoisomerase Inhibitors. ChemistrySelect 2021. [DOI: 10.1002/slct.202101459] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Affiliation(s)
- Manpreet Kaur
- Laboratory for Drug Design and Synthesis Department of Pharmaceutical Sciences and Natural Products School of Pharmaceutical Sciences Central University of Punjab Ghudda Bathinda 151401 India
| | - Vikrant Mehta
- Department of Human Genetics and Molecular Medicine Central University of Punjab Ghudda Bathinda 151401 India
| | - Sahil Arora
- Laboratory for Drug Design and Synthesis Department of Pharmaceutical Sciences and Natural Products School of Pharmaceutical Sciences Central University of Punjab Ghudda Bathinda 151401 India
| | - Anjana Munshi
- Department of Human Genetics and Molecular Medicine Central University of Punjab Ghudda Bathinda 151401 India
| | - Sandeep Singh
- Department of Human Genetics and Molecular Medicine Central University of Punjab Ghudda Bathinda 151401 India
| | - Raj Kumar
- Laboratory for Drug Design and Synthesis Department of Pharmaceutical Sciences and Natural Products School of Pharmaceutical Sciences Central University of Punjab Ghudda Bathinda 151401 India
| |
Collapse
|
15
|
Selas A, Martin-Encinas E, Fuertes M, Masdeu C, Rubiales G, Palacios F, Alonso C. A patent review of topoisomerase I inhibitors (2016-present). Expert Opin Ther Pat 2021; 31:473-508. [PMID: 33475439 DOI: 10.1080/13543776.2021.1879051] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
INTRODUCTION Topoisomerases are important targets for therapeutic improvement in the treatment of some diseases, including cancer. Inhibitors and poisons of topoisomerase I can limit the activity of this enzyme in its enzymatic cycle. This fact implies an anticancer effect of these drugs, since most cancer cells are characterized by both a higher activity of topoisomerase I and a higher replication rate compared to non-cancerous cells. Clinically approved inhibitors include camptothecin (CPT) and its derivatives. However, their limitations have encouraged different research groups to prepare new compounds, proof of which are the numerous research works and patents, some of them in the last five years. AREAS COVERED This review covers patent literature on topoisomerase I inhibitors and their application published between 2016-present. EXPERT OPINION The highest contribution toward patent development has been obtained from academics or small biotechnology companies. The most important fields of innovation include the preparation of prodrugs or inhibitors combined with other agents, as biocompatible polymers or antibodies. A promising development of topoisomerase I inhibitors is expected in the next years, directed to the treatment of diverse diseases, specifically toward different types of cancer and infectious diseases, among others.
Collapse
Affiliation(s)
- Asier Selas
- Departamento De Química Orgánica I, Facultad De Farmacia. Universidad Del País Vasco/Euskal Herriko Unibertsitatea (UPV/EHU), Vitoria-Gasteiz, Spain
| | - Endika Martin-Encinas
- Departamento De Química Orgánica I, Facultad De Farmacia. Universidad Del País Vasco/Euskal Herriko Unibertsitatea (UPV/EHU), Vitoria-Gasteiz, Spain
| | - Maria Fuertes
- Departamento De Química Orgánica I, Facultad De Farmacia. Universidad Del País Vasco/Euskal Herriko Unibertsitatea (UPV/EHU), Vitoria-Gasteiz, Spain
| | - Carme Masdeu
- Departamento De Química Orgánica I, Facultad De Farmacia. Universidad Del País Vasco/Euskal Herriko Unibertsitatea (UPV/EHU), Vitoria-Gasteiz, Spain
| | - Gloria Rubiales
- Departamento De Química Orgánica I, Facultad De Farmacia. Universidad Del País Vasco/Euskal Herriko Unibertsitatea (UPV/EHU), Vitoria-Gasteiz, Spain
| | - Francisco Palacios
- Departamento De Química Orgánica I, Facultad De Farmacia. Universidad Del País Vasco/Euskal Herriko Unibertsitatea (UPV/EHU), Vitoria-Gasteiz, Spain
| | - Concepción Alonso
- Departamento De Química Orgánica I, Facultad De Farmacia. Universidad Del País Vasco/Euskal Herriko Unibertsitatea (UPV/EHU), Vitoria-Gasteiz, Spain
| |
Collapse
|
16
|
Thapa Magar TB, Hee Seo S, Shrestha A, Kim JA, Kunwar S, Bist G, Kwon Y, Lee ES. Synthesis and structure-activity relationships of hydroxylated and halogenated 2,4-diaryl benzofuro[3,2-b]pyridin-7-ols as selective topoisomerase IIα inhibitors. Bioorg Chem 2021; 111:104884. [PMID: 33872925 DOI: 10.1016/j.bioorg.2021.104884] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 02/17/2021] [Accepted: 03/29/2021] [Indexed: 12/28/2022]
Abstract
The objective of this study was to discover potential topoisomerase (topo) targeting anticancer agents. Novel series of hydroxylated and halogenated(-F, -Cl, and -CF3) 2,4-diaryl benzofuro[3,2-b]pyridin-7-ols were systematically designed and synthesized by faster, economic, and environmentally friendly l-proline catalyzed and microwave-assisted one pot reaction method. The synthesized compounds were assessed for topo I and IIα inhibitory and anti-proliferative activities. The in vitroevaluation displayed that most of the compounds have selective topo IIα inhibitoryactivity as well as selectivity towards T47D human cancer cell line. Structure-activity relationship study suggested that the introduction of additional hydroxyl functionality at 7-positon of benzofuro[3,2-b]pyridine skeleton is crucial for selective topo IIα inhibitory activity. Placement of phenolic moiety on the 4-position of the tricyclic system imparts better topo IIα inhibitory and anti-proliferative activity.
Collapse
Affiliation(s)
| | - Seung Hee Seo
- College of Pharmacy, Graduate School of Pharmaceutical Sciences, Ewha Global Top 5 Program, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Aarajana Shrestha
- College of Pharmacy, Yeungnam University, Gyeongsan 38541, Republic of Korea
| | - Jeong-Ahn Kim
- College of Pharmacy, Graduate School of Pharmaceutical Sciences, Ewha Global Top 5 Program, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Surendra Kunwar
- College of Pharmacy, Yeungnam University, Gyeongsan 38541, Republic of Korea
| | - Ganesh Bist
- College of Pharmacy, Yeungnam University, Gyeongsan 38541, Republic of Korea
| | - Youngjoo Kwon
- College of Pharmacy, Graduate School of Pharmaceutical Sciences, Ewha Global Top 5 Program, Ewha Womans University, Seoul 03760, Republic of Korea.
| | - Eung-Seok Lee
- College of Pharmacy, Yeungnam University, Gyeongsan 38541, Republic of Korea.
| |
Collapse
|
17
|
Ma J, Yang R, Guo H, Zhang K, Liu J, Feng Y, Zhou J, Jin R, Li Z, Guo D, Yan YG, Zhu H, Tang Y. Synthesis, Antitumor Activity, Oil-Water Partition Coefficient, and Theoretical Calculation of 2 New Rutaecarpine Derivatives With Methoxy Groups. Nat Prod Commun 2021. [DOI: 10.1177/1934578x21991686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Two rutaecarpine (RUT) derivatives, substituted with methoxy groups, namely, 2-methoxyl rutaecarpine (RUT-OCH3, 3a), and 2,10-dimethoxy rutaecarpine (RUT-(OCH3)2, 3b), were synthesized and characterized using 1H nuclear magnetic resonance (NMR), 13C NMR and mass spectra. The in vitro antitumor activities of compounds RUT, 3a, and 3b against A549, H1299, and HepG2 cells were studied by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide assay. The results showed that the activity of compounds 3a and 3b was stronger than that of compound RUT, and the activity of compound 3a was stronger than that of 3b, indicating that the activity of the compounds was improved after structural modification. The apparent oil-water partition coefficients of compound RUT, 3a, and 3b were explored using ultraviolet spectrometry. The results indicated that hydrophobicity affects the physicochemical properties of the molecules and influences antitumor activities. In addition, the Natural Electron Configuration, frontier molecular orbital (highest occupied molecular orbital, lowest unoccupied molecular orbital) bandgaps of compounds have been studied based on density functional theory (DFT) by means of DFT-B3LYP/6‐31G (d) in Gaussian 16. The calculation results showed that bandgap of 3a is highest, indicating that the stability of 3a is weakest, so 3a has higher activity than RUT and 3b, which agrees with the results of antitumor activities experiment.
Collapse
Affiliation(s)
- Jingjing Ma
- College of Pharmacy, Shaanxi Key Lab Basic & New Herbal Medicament Res, Shaanxi University of Chinese Medicine, Xian Yang, Shaanxi, China
| | - Ruolan Yang
- College of Pharmacy, Shaanxi Key Lab Basic & New Herbal Medicament Res, Shaanxi University of Chinese Medicine, Xian Yang, Shaanxi, China
| | - Hui Guo
- College of Pharmacy, Shaanxi Key Lab Basic & New Herbal Medicament Res, Shaanxi University of Chinese Medicine, Xian Yang, Shaanxi, China
| | - Keyao Zhang
- College of Pharmacy, Shaanxi Key Lab Basic & New Herbal Medicament Res, Shaanxi University of Chinese Medicine, Xian Yang, Shaanxi, China
| | - Jingli Liu
- College of Pharmacy, Shaanxi Key Lab Basic & New Herbal Medicament Res, Shaanxi University of Chinese Medicine, Xian Yang, Shaanxi, China
| | - Yifan Feng
- Institute of Modern Physics, Shaanxi Key Laboratory for Theoretical Physics Frontier, Northwest University, Xi’an, Shaanxi, China
| | - Jing Zhou
- College of Pharmacy, Shaanxi Key Lab Basic & New Herbal Medicament Res, Shaanxi University of Chinese Medicine, Xian Yang, Shaanxi, China
| | - Ruyi Jin
- College of Pharmacy, Shaanxi Key Lab Basic & New Herbal Medicament Res, Shaanxi University of Chinese Medicine, Xian Yang, Shaanxi, China
| | - Zhi Li
- College of Pharmacy, Shaanxi Key Lab Basic & New Herbal Medicament Res, Shaanxi University of Chinese Medicine, Xian Yang, Shaanxi, China
| | - Dongyan Guo
- College of Pharmacy, Shaanxi Key Lab Basic & New Herbal Medicament Res, Shaanxi University of Chinese Medicine, Xian Yang, Shaanxi, China
| | - Yong-gang Yan
- College of Pharmacy, Shaanxi Key Lab Basic & New Herbal Medicament Res, Shaanxi University of Chinese Medicine, Xian Yang, Shaanxi, China
| | - Haiyan Zhu
- Institute of Modern Physics, Shaanxi Key Laboratory for Theoretical Physics Frontier, Northwest University, Xi’an, Shaanxi, China
| | - Yuping Tang
- College of Pharmacy, Shaanxi Key Lab Basic & New Herbal Medicament Res, Shaanxi University of Chinese Medicine, Xian Yang, Shaanxi, China
| |
Collapse
|
18
|
A computational molecular docking study of camptothecin similars as inhibitors for topoisomerase 1. Struct Chem 2020. [DOI: 10.1007/s11224-020-01633-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
19
|
Reuvers TGA, Kanaar R, Nonnekens J. DNA Damage-Inducing Anticancer Therapies: From Global to Precision Damage. Cancers (Basel) 2020; 12:E2098. [PMID: 32731592 PMCID: PMC7463878 DOI: 10.3390/cancers12082098] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 07/24/2020] [Accepted: 07/26/2020] [Indexed: 12/11/2022] Open
Abstract
DNA damage-inducing therapies are of tremendous value for cancer treatment and function by the direct or indirect formation of DNA lesions and subsequent inhibition of cellular proliferation. Of central importance in the cellular response to therapy-induced DNA damage is the DNA damage response (DDR), a protein network guiding both DNA damage repair and the induction of cancer-eradicating mechanisms such as apoptosis. A detailed understanding of DNA damage induction and the DDR has greatly improved our knowledge of the classical DNA damage-inducing therapies, radiotherapy and cytotoxic chemotherapy, and has paved the way for rational improvement of these treatments. Moreover, compounds targeting specific DDR proteins, selectively impairing DNA damage repair in cancer cells, form a promising novel therapy class that is now entering the clinic. In this review, we give an overview of the current state and ongoing developments, and discuss potential avenues for improvement for DNA damage-inducing therapies, with a central focus on the role of the DDR in therapy response, toxicity and resistance. Furthermore, we describe the relevance of using combination regimens containing DNA damage-inducing therapies and how they can be utilized to potentiate other anticancer strategies such as immunotherapy.
Collapse
Affiliation(s)
- Thom G. A. Reuvers
- Department of Molecular Genetics, Erasmus MC, Dr. Molenwaterplein 40, 3015 GD Rotterdam, The Netherlands; (T.G.A.R.); (R.K.)
- Department of Radiology and Nuclear Medicine, Erasmus MC, Dr. Molenwaterplein 40, 3015 GD Rotterdam, The Netherlands
| | - Roland Kanaar
- Department of Molecular Genetics, Erasmus MC, Dr. Molenwaterplein 40, 3015 GD Rotterdam, The Netherlands; (T.G.A.R.); (R.K.)
- Oncode Institute, Office Jaarbeurs Innovation Mile (JIM), Jaarbeursplein 6, 3561 AL Utrecht, The Netherlands
| | - Julie Nonnekens
- Department of Molecular Genetics, Erasmus MC, Dr. Molenwaterplein 40, 3015 GD Rotterdam, The Netherlands; (T.G.A.R.); (R.K.)
- Department of Radiology and Nuclear Medicine, Erasmus MC, Dr. Molenwaterplein 40, 3015 GD Rotterdam, The Netherlands
- Oncode Institute, Office Jaarbeurs Innovation Mile (JIM), Jaarbeursplein 6, 3561 AL Utrecht, The Netherlands
| |
Collapse
|
20
|
Morikawa D, Morii K, Yasuda Y, Mori A, Okano K. Convergent Total Synthesis of Lamellarins and Their Congeners. J Org Chem 2020; 85:8603-8617. [PMID: 32462869 DOI: 10.1021/acs.joc.0c00998] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
A convergent total synthesis of lamellarins S and Z is described. The synthesis features a halogen dance of an easily accessible α,β-dibromopyrrole promoted by an ester moiety. The resultant β,β'-dibromopyrrole undergoes a ligand-controlled Suzuki-Miyaura coupling to provide a range of diarylated pyrrole derivatives. The established synthetic method was also applicable to the synthesis of ningalin B and lukianols A and B.
Collapse
Affiliation(s)
- Daiki Morikawa
- Department of Chemical Science and Engineering, Kobe University, 1-1 Rokkodai, Nada, Kobe 657-8501, Japan
| | - Kazuki Morii
- Department of Chemical Science and Engineering, Kobe University, 1-1 Rokkodai, Nada, Kobe 657-8501, Japan
| | - Yuto Yasuda
- Department of Chemical Science and Engineering, Kobe University, 1-1 Rokkodai, Nada, Kobe 657-8501, Japan
| | - Atsunori Mori
- Department of Chemical Science and Engineering, Kobe University, 1-1 Rokkodai, Nada, Kobe 657-8501, Japan.,Research Center for Membrane and Film Technology, Kobe University, 1-1 Rokkodai, Nada, Kobe 657-8501, Japan
| | - Kentaro Okano
- Department of Chemical Science and Engineering, Kobe University, 1-1 Rokkodai, Nada, Kobe 657-8501, Japan
| |
Collapse
|
21
|
Zidar N, Secci D, Tomašič T, Mašič LP, Kikelj D, Passarella D, Argaez ANG, Hyeraci M, Dalla Via L. Synthesis, Antiproliferative Effect, and Topoisomerase II Inhibitory Activity of 3-Methyl-2-phenyl-1 H-indoles. ACS Med Chem Lett 2020; 11:691-697. [PMID: 32435372 DOI: 10.1021/acsmedchemlett.9b00557] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Accepted: 01/24/2020] [Indexed: 12/24/2022] Open
Abstract
A series of 3-methyl-2-phenyl-1H-indoles was prepared and investigated for antiproliferative activity on three human tumor cell lines, HeLa, A2780, and MSTO-211H, and some structure-activity relationships were drawn up. The GI50 values of the most potent compounds (32 and 33) were lower than 5 μM in all tested cell lines. For the most biologically relevant derivatives, the effect on human DNA topoisomerase II relaxation activity was investigated, which highlighted the good correlation between the antiproliferative effect and topoisomerase II inhibition. The most potent derivative, 32, was shown to induce the apoptosis pathway. The obtained results highlight 3-methyl-2-phenyl-1H-indole as a promising scaffold for further optimization of compounds with potent antiproliferative and antitopoisomerase II activities.
Collapse
Affiliation(s)
- Nace Zidar
- University of Ljubljana, Faculty of Pharmacy, Aškerčeva cesta 7, 1000 Ljubljana, Slovenia
| | - Daniela Secci
- University of Ljubljana, Faculty of Pharmacy, Aškerčeva cesta 7, 1000 Ljubljana, Slovenia
| | - Tihomir Tomašič
- University of Ljubljana, Faculty of Pharmacy, Aškerčeva cesta 7, 1000 Ljubljana, Slovenia
| | - Lucija Peterlin Mašič
- University of Ljubljana, Faculty of Pharmacy, Aškerčeva cesta 7, 1000 Ljubljana, Slovenia
| | - Danijel Kikelj
- University of Ljubljana, Faculty of Pharmacy, Aškerčeva cesta 7, 1000 Ljubljana, Slovenia
| | - Daniele Passarella
- Department of Chemistry, University of Milan, Via Golgi 19, 20133 Milan, Italy
| | - Aida Nelly Garcia Argaez
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Via Marzolo 5, I-35131 Padova, Italy
| | - Mariafrancesca Hyeraci
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Via Marzolo 5, I-35131 Padova, Italy
| | - Lisa Dalla Via
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Via Marzolo 5, I-35131 Padova, Italy
| |
Collapse
|
22
|
Alven S, Nqoro X, Buyana B, Aderibigbe BA. Polymer-Drug Conjugate, a Potential Therapeutic to Combat Breast and Lung Cancer. Pharmaceutics 2020; 12:E406. [PMID: 32365495 PMCID: PMC7284459 DOI: 10.3390/pharmaceutics12050406] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2019] [Revised: 12/19/2019] [Accepted: 12/30/2019] [Indexed: 12/31/2022] Open
Abstract
Cancer is a chronic disease that is responsible for the high death rate, globally. The administration of anticancer drugs is one crucial approach that is employed for the treatment of cancer, although its therapeutic status is not presently satisfactory. The anticancer drugs are limited pharmacologically, resulting from the serious side effects, which could be life-threatening. Polymer drug conjugates, nano-based drug delivery systems can be utilized to protect normal body tissues from the adverse side effects of anticancer drugs and also to overcome drug resistance. They transport therapeutic agents to the target cell/tissue. This review article is based on the therapeutic outcomes of polymer-drug conjugates against breast and lung cancer.
Collapse
|
23
|
Nie LF, Wang SS, Cao JG, Liu FZ, Xiamuxi H, Aisa HA, Huang GZ. Straightforward synthesis, characterization, and cytotoxicity evaluation of hybrids of natural alkaloid evodiamine/rutaecarpine and thieno[2,3- d]pyrimidinones. JOURNAL OF ASIAN NATURAL PRODUCTS RESEARCH 2020; 22:69-82. [PMID: 30588834 DOI: 10.1080/10286020.2018.1540599] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Revised: 10/18/2018] [Accepted: 10/18/2018] [Indexed: 06/09/2023]
Abstract
Dozens of hybrids of natural alkaloid evodiamine/rutaecarpine and thieno[2,3-d]pyrimidinones were synthesized in a straightforward method by condensation of substituted 2H-thieno[2,3-d][1, 3]oxazine-2,4(1H)-diones or N-methyl-2H-thieno[2,3-d][1, 3]oxazine-2,4(1H)-dione with 3,4-dihydro-β-carbolines. In vitro cytotoxic assay discovered that compounds 9a, 10e, 11a, 11d, 11f, and 12a could induce antiproliferation against four different types of human cancer cells while compounds 10f and 12e were inactive. Notably, compound 11a displayed potent cell cytotoxicity for human non-small cell lung cancer cells A549, PC-9, human prostate cancer cells PC-3, and human breast cancer cell line MCF-7. Furthermore, compound 11a exhibited strong colony formation inhibition to A549 cells. These results unfold potential anticancer therapeutic applications of hybrids of thieno[2,3-d]pyrimidinones and quinazolinones.
Collapse
Affiliation(s)
- Li-Fei Nie
- Key Laboratory of Plant Resources and Chemistry of Arid Zone, State Key Laboratory Basis of Xinjiang Indigenous Medicinal Plants Resource Utilization, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi 830011, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Si-Si Wang
- College of Life and Environmental Sciences, Shanghai Normal University, Shanghai 201418, China
| | - Jian-Guo Cao
- College of Life and Environmental Sciences, Shanghai Normal University, Shanghai 201418, China
| | - Fei-Ze Liu
- Key Laboratory of Plant Resources and Chemistry of Arid Zone, State Key Laboratory Basis of Xinjiang Indigenous Medicinal Plants Resource Utilization, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi 830011, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hainimu Xiamuxi
- Key Laboratory of Plant Resources and Chemistry of Arid Zone, State Key Laboratory Basis of Xinjiang Indigenous Medicinal Plants Resource Utilization, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi 830011, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Haji Akber Aisa
- Key Laboratory of Plant Resources and Chemistry of Arid Zone, State Key Laboratory Basis of Xinjiang Indigenous Medicinal Plants Resource Utilization, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi 830011, China
| | - Guo-Zheng Huang
- Key Laboratory of Plant Resources and Chemistry of Arid Zone, State Key Laboratory Basis of Xinjiang Indigenous Medicinal Plants Resource Utilization, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi 830011, China
- College of Life and Environmental Sciences, Shanghai Normal University, Shanghai 201418, China
| |
Collapse
|
24
|
Xiao L, Xu J, Weng Q, Zhou L, Wang M, Liu M, Li Q. Mechanism of a Novel Camptothecin-Deoxycholic Acid Derivate Induced Apoptosis against Human Liver Cancer HepG2 Cells and Human Colon Cancer HCT116 Cells. Recent Pat Anticancer Drug Discov 2019; 14:370-382. [PMID: 31644410 DOI: 10.2174/1574892814666191016162346] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Revised: 09/25/2019] [Accepted: 10/09/2019] [Indexed: 01/10/2023]
Abstract
BACKGROUND Camptothecin (CPT) is known as an anticancer drug in traditional Chinese medicine. However, due to the lack of targeting, low solubility, and instability of CPT, its therapeutic applications are hampered. Therefore, we synthesized a series of CPT-bile acid analogues that obtained a national patent to improve their tumour-targeting chemotherapeutic effects on liver or colon cancers. Among these analogues, the compound G2 shows high antitumor activity with enhanced liver targeting and improved oral absorption. It is significant to further investigate the possible anticancer mechanism of G2 for its further clinical research and application. OBJECTIVE We aimed to unearth the anticancer mechanism of G2 in HepG2 and HCT116 cells. METHODS Cell viability was measured using MTT assay; cell cycle, Mitochondrial Membrane Potential (MMP), and cell apoptosis were detected by flow cytometer; ROS was measured by Fluorescent Microplate Reader; the mRNA and protein levels of cell cycle-related and apoptosis-associated proteins were examined by RT-PCR and western blot, respectively. RESULTS We found that G2 inhibited cells proliferation of HepG2 and HCT116 remarkably in a dosedependent manner. Moreover, G2-treatment led to S and G2/M phase arrest in both cells, which could be elucidated by the change of mRNA levels of p21, p27 and Cyclin E and the increased protein level of p21. G2 also induced dramatically ROS accumulated and MMP decreased, which contributed to the apoptosis through activation of both the extrinsic and intrinsic pathways via changing the genes and proteins expression involved in apoptosis pathway in both of HepG2 and HCT116 cells. CONCLUSION These findings suggested that the apoptosis in both cell lines induced by G2 was related to the extrinsic and intrinsic pathways.
Collapse
Affiliation(s)
- Linxia Xiao
- Collaborative Innovation Center of Yangtze River Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, China
| | - Jialin Xu
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, China
| | - Qi Weng
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, China
| | - Leilei Zhou
- Collaborative Innovation Center of Yangtze River Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, China
| | - Mengke Wang
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, China
| | - Miao Liu
- College of Life Sciences, Northeast Agricultural University, Harbin, China
| | - Qingyong Li
- Collaborative Innovation Center of Yangtze River Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, China.,College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, China
| |
Collapse
|
25
|
Luan J, Gao X, Hu F, Zhang Y, Gou X. SLFN11 is a general target for enhancing the sensitivity of cancer to chemotherapy (DNA-damaging agents). J Drug Target 2019; 28:33-40. [PMID: 31092045 DOI: 10.1080/1061186x.2019.1616746] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
In patients with cancer, drug tolerance often occurs during the use of chemotherapy drugs, seriously affecting patient prognosis and survival. Therefore, scientists began to study the factors that affect chemotherapy drug sensitivity, and the high correlation between Schlafen-11 (SLFN11) and sensitivity to chemical drugs (mainly DNA-damaging agents, DDAs) has received increasing attention since it was discovered through bioinformatics analyses. Regarding the mechanism, SLFN11 may sensitise cells to chemotherapy drugs by preventing DNA damage repair. In recent years, SLFN11 has gradually become a hot research topic, and the results are enriching our understanding of this molecule. Indeed, the biological functions of SLFN11 under normal physiological conditions and in cancer, changes in its expression levels and mechanisms promoting apoptosis within the context of chemotherapeutic interventions have gradually been uncovered. Studies to date provide knowledge and the experimental and theoretical bases underlying SLFN11 and its effects on sensitivity to chemotherapy drugs. This review summarises the existing research on SLFN11 with the aim of achieving a more comprehensive understanding and furthering the development of strategies to target SLFN11 in the treatment of cancer.
Collapse
Affiliation(s)
- Jing Luan
- Shaanxi Key Laboratory of Brain Disorders & Institute of Basic and Translational Medicine, Xi'an Medical University, Xi'an, Shaanxi, China
| | - Xingchun Gao
- Shaanxi Key Laboratory of Brain Disorders & Institute of Basic and Translational Medicine, Xi'an Medical University, Xi'an, Shaanxi, China
| | - Fengrui Hu
- Shaanxi Key Laboratory of Brain Disorders & Institute of Basic and Translational Medicine, Xi'an Medical University, Xi'an, Shaanxi, China
| | - Yuelin Zhang
- Shaanxi Key Laboratory of Brain Disorders & Institute of Basic and Translational Medicine, Xi'an Medical University, Xi'an, Shaanxi, China
| | - Xingchun Gou
- Shaanxi Key Laboratory of Brain Disorders & Institute of Basic and Translational Medicine, Xi'an Medical University, Xi'an, Shaanxi, China
| |
Collapse
|
26
|
Assessment of DNA Topoisomerase I Unwinding Activity, Radical Scavenging Capacity, and Inhibition of Breast Cancer Cell Viability of N-alkyl-acridones and N, N'-dialkyl-9,9'-biacridylidenes. Biomolecules 2019; 9:biom9050177. [PMID: 31072044 PMCID: PMC6572364 DOI: 10.3390/biom9050177] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2019] [Revised: 05/06/2019] [Accepted: 05/07/2019] [Indexed: 11/26/2022] Open
Abstract
The anticancer activity of acridone derivatives has attracted increasing interest, therefore, a variety of substituted analogs belonging to this family have been developed and evaluated for their anti-cancer properties. A series of N-alkyl-acridones 1–6 and N,N′-dialkyl-9,9′-biacridylidenes 7–12 with variable alkyl chains were examined for their topoisomerase I activity at neutral and acidic conditions as well as for their binding capacity to calf thymus and possible radical trapping antioxidant activity. It was found that at a neutral pH, topoisomerase I activity of both classes of compounds was similar, while under acidic conditions, enhanced intercalation was observed. N-alkyl-acridone derivatives 1–6 exhibited stronger, dose-dependent, cytotoxic activity against MCF-7 human breast epithelial cancer cells than N,N′-dialkyl-9,9′-biacridylidenes 7–12, revealing that conjugation of the heteroaromatic system plays a significant role on the effective distribution of the compound in the intracellular environment. Cellular investigation of long alkyl derivatives against cell migration exhibited 40–50% wound healing effects and cytoplasm diffusion, while compounds with shorter alkyl chains were accumulated both in the nucleus and cytoplasm. All N,N′-dialkyl-9,9′-biacridylidenes showed unexpected high scavenging activity towards DPPH or ABTS radicals which may be explained by higher stabilization of radical cations by the extended conjugation of heteroaromatic ring system.
Collapse
|
27
|
Liang X, Wu Q, Luan S, Yin Z, He C, Yin L, Zou Y, Yuan Z, Li L, Song X, He M, Lv C, Zhang W. A comprehensive review of topoisomerase inhibitors as anticancer agents in the past decade. Eur J Med Chem 2019; 171:129-168. [PMID: 30917303 DOI: 10.1016/j.ejmech.2019.03.034] [Citation(s) in RCA: 129] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 03/14/2019] [Accepted: 03/14/2019] [Indexed: 01/28/2023]
Abstract
The topoisomerase enzymes play an important role in DNA metabolism, and searching for enzyme inhibitors is an important target in the search for new anticancer drugs. Discovery of new anticancer chemotherapeutical capable of inhibiting topoisomerase enzymes is highlighted in anticancer research. Therefore, biologists, organic chemists and medicinal chemists all around the world have been identifying, designing, synthesizing and evaluating a variety of novel bioactive molecules targeting topoisomerase. This review summarizes types of topoisomerase inhibitors in the past decade, and divides them into nine classes by structural characteristics, including N-heterocycles compounds, quinone derivatives, flavonoids derivatives, coumarin derivatives, lignan derivatives, polyphenol derivatives, diterpenes derivatives, fatty acids derivatives, and metal complexes. Then we discussed the application prospect and development of these anticancer compounds, as well as concluded parts of their structural-activity relationships. We believe this review would be invaluable in helping to further search potential topoisomerase inhibition as antitumor agent in clinical usage.
Collapse
Affiliation(s)
- Xiaoxia Liang
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, PR China.
| | - Qiang Wu
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, PR China
| | - Shangxian Luan
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, PR China
| | - Zhongqiong Yin
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, PR China
| | - Changliang He
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, PR China
| | - Lizi Yin
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, PR China
| | - Yuanfeng Zou
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, PR China
| | - Zhixiang Yuan
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, PR China
| | - Lixia Li
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, PR China
| | - Xu Song
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, PR China
| | - Min He
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, PR China
| | - Cheng Lv
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, PR China
| | - Wei Zhang
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, PR China
| |
Collapse
|
28
|
de Camargo MS, De Grandis RA, da Silva MM, da Silva PB, Santoni MM, Eismann CE, Menegário AA, Cominetti MR, Zanelli CF, Pavan FR, Batista AA. Determination of in vitro absorption in Caco-2 monolayers of anticancer Ru(II)-based complexes acting as dual human topoisomerase and PARP inhibitors. Biometals 2018; 32:89-100. [PMID: 30506342 DOI: 10.1007/s10534-018-0160-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Accepted: 11/28/2018] [Indexed: 11/27/2022]
Abstract
Due to their unique and versatile biochemical properties, ruthenium-based compounds have emerged as promising anticancer agents. Previous studies showed that three ruthenium(II) compounds: [Ru(pySH)(bipy)(dppb)]PF6 (1), [Ru(HSpym)(bipy)(dppb)]PF6 (2) and Ru[(SpymMe2)(bipy)(dppb)]PF6 (3) presented anticancer properties higher than doxorubicin and cisplatin and acted as human topoisomerase IB (Topo I) inhibitors. Here, we focused our studies on in vitro intestinal permeability and anticancer mechanisms of these three complexes. Caco-2 permeation studies showed that 1 did not permeate the monolayer of intestinal cells, suggesting a lack of absorption on oral administration, while 2 and 3 permeated the cells after 60 and 120 min, respectively. Complexes 2 and 3 fully inhibited Topo II relaxation activity at 125 µM. In previously studies, 3 was the most potent inhibitor of Topo I, here, we concluded that it is a dual topoisomerase inhibitor. Moreover, it presented selectivity to cancer cells when evaluated by clonogenic assay. Thus, 3 was selected to gene expression assay front MDA-MB-231 cells from triple-negative breast cancer (TNBC), which represents the highly aggressive subgroup of breast cancers with poor prognosis. The analyses revealed changes of 27 out of 84 sought target genes. PARP1 and PARP2 were 5.29 and 1.83 times down-regulated after treatment with 3, respectively. PARPs have been attractive antitumor drug targets, considering PARP inhibition could suppress DNA damage repair and sensitize tumor cells to DNA damage agents. Recent advances in DNA repair studies have shown that an approach that causes cell lethality using synthetic PARP-inhibiting drugs has produced promising results in TNBC.
Collapse
Affiliation(s)
- Mariana S de Camargo
- Center of Exact Sciences and Technology, Federal University of São Carlos, São Carlos, SP, 13565-905, Brazil.
| | - Rone A De Grandis
- School of Pharmaceutical Sciences, São Paulo State University, Araraquara, SP, 14800-903, Brazil
| | - Monize M da Silva
- Center of Exact Sciences and Technology, Federal University of São Carlos, São Carlos, SP, 13565-905, Brazil
| | - Patricia B da Silva
- Department of Genetics and Morphology, University of Brasilia, Federal District, DF, 70910-970, Brazil
| | - Mariana M Santoni
- School of Pharmaceutical Sciences, São Paulo State University, Araraquara, SP, 14800-903, Brazil
| | - Carlos E Eismann
- Center of Environmental Studies, São Paulo State University, Rio Claro, SP, 13506-900, Brazil
| | - Amauri A Menegário
- Center of Environmental Studies, São Paulo State University, Rio Claro, SP, 13506-900, Brazil
| | - Marcia R Cominetti
- Department of Gerontology, Federal University of São Carlos, São Carlos, SP, 13565-905, Brazil
| | - Cleslei F Zanelli
- School of Pharmaceutical Sciences, São Paulo State University, Araraquara, SP, 14800-903, Brazil
| | - Fernando R Pavan
- School of Pharmaceutical Sciences, São Paulo State University, Araraquara, SP, 14800-903, Brazil
| | - Alzir A Batista
- Center of Exact Sciences and Technology, Federal University of São Carlos, São Carlos, SP, 13565-905, Brazil
| |
Collapse
|
29
|
Tejería A, Pérez-Pertejo Y, Reguera RM, Balaña-Fouce R, Alonso C, González M, Rubiales G, Palacios F. Substituted 1,5-naphthyridine derivatives as novel antileishmanial agents. Synthesis and biological evaluation. Eur J Med Chem 2018; 152:137-147. [PMID: 29704722 DOI: 10.1016/j.ejmech.2018.04.033] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Revised: 04/11/2018] [Accepted: 04/16/2018] [Indexed: 10/17/2022]
Abstract
Visceral leishmaniasis is a parasitic disease that affects, among other areas, both sides of the Mediterranean Basin. The drugs classically used in clinical practice are pentavalent antimonials (SbV) and amphotericin B, which are nephrotoxic, require parenteral administration, and increasing drug resistance in visceral leishmaniasis has been observed. These circumstances justify the search of new families of compounds to find effective drugs against the disease. Eukaryotic type I DNA topoisomerase (TopIB) has been found essential for the viability of the parasites, and therefore represents a promising target in the development of an antileishmanial therapy. In this search, heterocyclic compounds, such as 1,5-naphthyridines, have been prepared by cycloaddition reaction between N-(3-pyridyl)aldimines and acetylenes and their antileishmanial activity on promastigotes and amastigote-infected splenocytes of Leishmania infantum has been evaluated. In addition, the cytotoxic effects of newly synthesized compounds were assessed on host murine splenocytes in order to calculate the corresponding selective indexes (SI). Excellent antileishmanial activity of 1,5-naphthyridine 19, 21, 22, 24 and 27 has been observed with similar activity than the standard drug amphotericin B and higher selective index (SI > 100) towards L. infantum amastigotes than amphotericin B (SI > 62.5). Special interest shows the 1,5-naphthyridine 22 with an IC50 value (0.58 ± 0.03 μM) similar to the standard drug amphotericin B (0.32 ± 0.05 μM) and with the highest selective index (SI = 271.5). In addition, this compound shows remarkable inhibition on leishmanial TopIB. However, despite these interesting results, further studies are needed to disclose other potential targets involved in the antileishmanial effect of these novel compounds.
Collapse
Affiliation(s)
- Ana Tejería
- Departamento de Ciencias Biomédicas, Universidad de León, Campus de Vegazana s/n, 24071, León, Spain
| | - Yolanda Pérez-Pertejo
- Departamento de Ciencias Biomédicas, Universidad de León, Campus de Vegazana s/n, 24071, León, Spain
| | - Rosa M Reguera
- Departamento de Ciencias Biomédicas, Universidad de León, Campus de Vegazana s/n, 24071, León, Spain
| | - Rafael Balaña-Fouce
- Departamento de Ciencias Biomédicas, Universidad de León, Campus de Vegazana s/n, 24071, León, Spain
| | - Concepción Alonso
- Departamento de Química Orgánica I, Facultad de Farmacia and Centro de Investigación Lascaray (Lascaray Research Center), Universidad del País Vasco/Euskal Herriko Unibertsitatea (UPV/EHU), Paseo de la Universidad 7, 01006, Vitoria-Gasteiz, Spain
| | - María González
- Departamento de Química Orgánica I, Facultad de Farmacia and Centro de Investigación Lascaray (Lascaray Research Center), Universidad del País Vasco/Euskal Herriko Unibertsitatea (UPV/EHU), Paseo de la Universidad 7, 01006, Vitoria-Gasteiz, Spain
| | - Gloria Rubiales
- Departamento de Química Orgánica I, Facultad de Farmacia and Centro de Investigación Lascaray (Lascaray Research Center), Universidad del País Vasco/Euskal Herriko Unibertsitatea (UPV/EHU), Paseo de la Universidad 7, 01006, Vitoria-Gasteiz, Spain
| | - Francisco Palacios
- Departamento de Química Orgánica I, Facultad de Farmacia and Centro de Investigación Lascaray (Lascaray Research Center), Universidad del País Vasco/Euskal Herriko Unibertsitatea (UPV/EHU), Paseo de la Universidad 7, 01006, Vitoria-Gasteiz, Spain.
| |
Collapse
|
30
|
Konkoľová E, Janočková J, Perjési P, Vašková J, Kožurková M. Selected ferrocenyl chalcones as DNA/BSA-interacting agents and inhibitors of DNA topoisomerase I and II activity. J Organomet Chem 2018. [DOI: 10.1016/j.jorganchem.2018.01.031] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
31
|
Wahner Hendrickson AE, Menefee ME, Hartmann LC, Long HJ, Northfelt DW, Reid JM, Boakye-Agyeman F, Kayode O, Flatten KS, Harrell MI, Swisher EM, Poirier GG, Satele D, Allred J, Lensing JL, Chen A, Ji J, Zang Y, Erlichman C, Haluska P, Kaufmann SH. A Phase I Clinical Trial of the Poly(ADP-ribose) Polymerase Inhibitor Veliparib and Weekly Topotecan in Patients with Solid Tumors. Clin Cancer Res 2018; 24:744-752. [PMID: 29138343 PMCID: PMC7580251 DOI: 10.1158/1078-0432.ccr-17-1590] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Revised: 10/03/2017] [Accepted: 11/08/2017] [Indexed: 12/27/2022]
Abstract
Purpose: To determine the dose limiting toxicities (DLT), maximum tolerated dose (MTD), and recommended phase II dose (RP2D) of veliparib in combination with weekly topotecan in patients with solid tumors. Correlative studies were included to assess the impact of topotecan and veliparib on poly(ADP-ribose) levels in peripheral blood mononuclear cells, serum pharmacokinetics of both agents, and potential association of germline repair gene mutations with outcome.Experimental Design: Eligible patients had metastatic nonhematologic malignancies with measurable disease. Using a 3 + 3 design, patients were treated with veliparib orally twice daily on days 1-3, 8-10, and 15-17 and topotecan intravenously on days 2, 9, and 16 every 28 days. Tumor responses were assessed by RECIST.Results: Of 58 patients enrolled, 51 were evaluable for the primary endpoint. The MTD and RP2D was veliparib 300 mg twice daily on days 1-3, 8-10, and 15-17 along with topotecan 3 mg/m2 on days 2, 9, and 16 of a 28-day cycle. DLTs were grade 4 neutropenia lasting >5 days. The median number of cycles was 2 (1-26). The objective response rate was 10%, with 1 complete and 4 partial responses. Twenty-two patients (42%) had stable disease ranging from 4 to 26 cycles. Patients with germline BRCA1, BRCA2, or RAD51D mutations remained on study longer than those without homologous recombination repair (HRR) gene mutations (median 4 vs. 2 cycles).Conclusions: Weekly topotecan in combination with veliparib has a manageable safety profile and appears to warrant further investigation. Clin Cancer Res; 24(4); 744-52. ©2017 AACR.
Collapse
|
32
|
Nadysev GY, Tikhomirov AS, Lin MH, Yang YT, Dezhenkova LG, Chen HY, Kaluzhny DN, Schols D, Shtil AA, Shchekotikhin AE, Chueh PJ. Aminomethylation of heliomycin: Preparation and anticancer characterization of the first series of semi-synthetic derivatives. Eur J Med Chem 2018; 143:1553-1562. [DOI: 10.1016/j.ejmech.2017.10.055] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2017] [Revised: 10/16/2017] [Accepted: 10/17/2017] [Indexed: 01/06/2023]
|
33
|
Kim TI, Shin B, Kim GJ, Choi H, Lee CS, Woo MH, Oh DC, Son JK. DNA Topoisomerase Inhibitory Activity of Constituents from the Fruits of Illicium verum. Chem Pharm Bull (Tokyo) 2017; 65:1179-1184. [PMID: 28954937 DOI: 10.1248/cpb.c17-00466] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Three new compounds, a sesquilignan (1) and two glucosylated phenylpropanoids (2, 3), and seven known compounds (4-10), were isolated from the fruits of Illicium verum HOOK. FIL. (Illiciaceae). The structures of 1-3 were determined based on one and two dimensional (1D- and 2D-) NMR data and electronic circular dichroism (ECD) spectra analyses. Compounds 3, 5, 6, and 8-10 exhibited potent inhibitory activities against topoisomerase II with IC50 values of 54.6, 25.5, 17.9, 12.1, 0.3 and 1.0 µM, respectively, compared to etoposide, the positive control, with an IC50 of 43.8 µM.
Collapse
Affiliation(s)
- Tae In Kim
- College of Pharmacy, Yeungnam University
| | - Bora Shin
- College of Pharmacy, Seoul National University
| | | | | | | | - Mi Hee Woo
- College of Pharmacy, Catholic University of Daegu
| | | | | |
Collapse
|
34
|
Khadka DB, Park S, Jin Y, Han J, Kwon Y, Cho WJ. Design, synthesis, and biological evaluation of 1,3-diarylisoquinolines as novel topoisomerase I catalytic inhibitors. Eur J Med Chem 2017; 143:200-215. [PMID: 29174815 DOI: 10.1016/j.ejmech.2017.11.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Revised: 11/03/2017] [Accepted: 11/04/2017] [Indexed: 12/30/2022]
Abstract
With a goal of identifying potent topoisomerase (topo) inhibitor, the C4-aromatic ring of the anticancer agent, 3,4-diarylisoquinolone, was strategically shifted to design 1,3-diarylisoquinoline. Twenty-two target compounds were synthesized in three simple and efficient steps. The 1,3-diarylisoquinolines exhibited potent anti-proliferative effects on cancer cells but few compounds spared non-cancerous cells. Inhibition of topo I/IIα-mediated DNA relaxation by several derivatives was greater than that by camptothecin (CPT)/etoposide even at low concentration (20 μM). In addition, these compounds had little or no effect on polymerization of tubulin. A series of biological evaluations performed with the most potent derivative 4cc revealed that the compound is a non-intercalative topo I catalytic inhibitor interacting with free topo I. Collectively, the potent cytotoxic effect on cancer cells including the drug resistance ones, absence of lethal effect on normal cells, and different mechanism of action than topo I poisons suggest that the 1,3-diarylisoquinolines might be a promising class of anticancer agents worthy of further pursuit.
Collapse
Affiliation(s)
- Daulat Bikram Khadka
- College of Pharmacy, Research Institute of Drug Development, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Seojeong Park
- College of Pharmacy, Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Yifeng Jin
- College of Pharmacy, Research Institute of Drug Development, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Jinhe Han
- College of Pharmacy, Research Institute of Drug Development, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Youngjoo Kwon
- College of Pharmacy, Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul 03760, Republic of Korea.
| | - Won-Jea Cho
- College of Pharmacy, Research Institute of Drug Development, Chonnam National University, Gwangju 61186, Republic of Korea.
| |
Collapse
|
35
|
Bist G, Park S, Song C, Thapa Magar TB, Shrestha A, Kwon Y, Lee ES. Dihydroxylated 2,6-diphenyl-4-chlorophenylpyridines: Topoisomerase I and IIα dual inhibitors with DNA non-intercalative catalytic activity. Eur J Med Chem 2017; 133:69-84. [DOI: 10.1016/j.ejmech.2017.03.048] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Revised: 03/22/2017] [Accepted: 03/23/2017] [Indexed: 01/10/2023]
|
36
|
Slator C, Molphy Z, McKee V, Kellett A. Triggering autophagic cell death with a di-manganese(II) developmental therapeutic. Redox Biol 2017; 12:150-161. [PMID: 28236767 PMCID: PMC5328722 DOI: 10.1016/j.redox.2017.01.024] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Revised: 01/07/2017] [Accepted: 01/11/2017] [Indexed: 12/16/2022] Open
Abstract
There is an unmet need for novel metal-based chemotherapeutics with alternative modes of action compared to clinical agents such as cisplatin and metallo-bleomycin. Recent attention in this field has focused on designing intracellular ROS-mediators as powerful cytotoxins of human cancers and identifying potentially unique toxic mechanisms underpinning their utility. Herein, we report the developmental di-manganese(II) therapeutic [Mn2(μ-oda)(phen)4(H2O)2][Mn2(μ-oda)(phen)4(oda)2]·4H2O (Mn-Oda) induces autophagy-promoted apoptosis in human ovarian cancer cells (SKOV3). The complex was initially identified to intercalate DNA by topoisomerase I unwinding and circular dichroism spectroscopy. Intracellular DNA damage, detected by γH2AX and the COMET assay, however, is not linked to direct Mn-Oda free radical generation, but is instead mediated through the promotion of intracellular reactive oxygen species (ROS) leading to autophagic vacuole formation and downstream nuclear degradation. To elucidate the cytotoxic profile of Mn-Oda, a wide range of biomarkers specific to apoptosis and autophagy including caspase release, mitochondrial membrane integrity, fluorogenic probe localisation, and cell cycle analysis were employed. Through these techniques, the activity of Mn-Oda was compared directly to i.) the pro-apoptotic clinical anticancer drug doxorubicin, ii.) the multimodal histone deacetylase inhibitor suberoyanilide hydroxamic acid, and iii.) the autophagy inducer rapamycin. In conjunction with ROS-specific trapping agents and established inhibitors of autophagy, we have identified autophagy-induction linked to mitochondrial superoxide production, with confocal image analysis of SKOV3 cells further supporting autophagosome formation.
Collapse
Affiliation(s)
- Creina Slator
- School of Chemical Sciences and National Institute for Cellular Biotechnology, Dublin City University, Glasnevin, Dublin 9, Ireland
| | - Zara Molphy
- School of Chemical Sciences and National Institute for Cellular Biotechnology, Dublin City University, Glasnevin, Dublin 9, Ireland
| | - Vickie McKee
- School of Chemical Sciences and National Institute for Cellular Biotechnology, Dublin City University, Glasnevin, Dublin 9, Ireland
| | - Andrew Kellett
- School of Chemical Sciences and National Institute for Cellular Biotechnology, Dublin City University, Glasnevin, Dublin 9, Ireland.
| |
Collapse
|
37
|
Arepalli SK, Park B, Jung JK, Lee K, Lee H. A facile one-pot regioselective synthesis of functionalized novel benzo[f]chromeno[4,3-b][1,7]naphthyridines and benzo[f][1,7]naphthyridines via an imino Diels-Alder reaction. Tetrahedron Lett 2017. [DOI: 10.1016/j.tetlet.2016.12.050] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
38
|
Tejería A, Pérez-Pertejo Y, Reguera RM, Balaña-Fouce R, Alonso C, Fuertes M, González M, Rubiales G, Palacios F. Antileishmanial effect of new indeno-1,5-naphthyridines, selective inhibitors of Leishmania infantum type IB DNA topoisomerase. Eur J Med Chem 2016; 124:740-749. [DOI: 10.1016/j.ejmech.2016.09.017] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Revised: 09/01/2016] [Accepted: 09/06/2016] [Indexed: 12/11/2022]
|
39
|
Pham Thi T, Le Nhat TG, Ngo Hanh T, Luc Quang T, Pham The C, Dang Thi TA, Nguyen HT, Nguyen TH, Hoang Thi P, Van Nguyen T. Synthesis and cytotoxic evaluation of novel indenoisoquinoline-substituted triazole hybrids. Bioorg Med Chem Lett 2016; 26:3652-7. [PMID: 27342752 DOI: 10.1016/j.bmcl.2016.05.092] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Revised: 05/26/2016] [Accepted: 05/31/2016] [Indexed: 01/14/2023]
Abstract
The synthesis of various substituted triazole-indenoisoquinoline hybrids was performed based on a CuI-catalyzed 1,3-cycloaddition between propargyl-substituted derivatives and the azide-containing indenoisoquinoline. Besides, a variety of N-(alkyl)propargylindenoisoquinolines was used as substrates for the construction of triazole-indenoisoquinoline-AZT conjugated via a click chemistry-mediated coupling with 3'-azido-3'-deoxythymidine (AZT). Thus, twenty three new indenoisoquinoline-substituted triazole hybrids were successfully prepared and evaluated as cytotoxic agents, revealing an interesting anticancer activity of four triazole linker-indenoisoquinoline-AZT hybrids in KB and HepG2 cancer cell lines.
Collapse
Affiliation(s)
- Tham Pham Thi
- Institute of Chemistry, Vietnam Academy of Science and Technology, 18-Hoang Quoc Viet, Cau Giay, Hanoi, Vietnam; Thuyloi University, 175, Tay Son, Hanoi, Vietnam
| | - Thuy Giang Le Nhat
- Institute of Chemistry, Vietnam Academy of Science and Technology, 18-Hoang Quoc Viet, Cau Giay, Hanoi, Vietnam
| | - Thuong Ngo Hanh
- Institute of Chemistry, Vietnam Academy of Science and Technology, 18-Hoang Quoc Viet, Cau Giay, Hanoi, Vietnam
| | - Tan Luc Quang
- Institute of Chemistry, Vietnam Academy of Science and Technology, 18-Hoang Quoc Viet, Cau Giay, Hanoi, Vietnam; Hanoi Pedagogical University No. 2, Vietnam
| | - Chinh Pham The
- Institute of Chemistry, Vietnam Academy of Science and Technology, 18-Hoang Quoc Viet, Cau Giay, Hanoi, Vietnam; Thainguyen University of Science, Tanthinh, Thainguyen, Vietnam
| | - Tuyet Anh Dang Thi
- Institute of Chemistry, Vietnam Academy of Science and Technology, 18-Hoang Quoc Viet, Cau Giay, Hanoi, Vietnam
| | - Ha Thanh Nguyen
- Institute of Chemistry, Vietnam Academy of Science and Technology, 18-Hoang Quoc Viet, Cau Giay, Hanoi, Vietnam
| | - Thu Ha Nguyen
- Institute of Chemistry, Vietnam Academy of Science and Technology, 18-Hoang Quoc Viet, Cau Giay, Hanoi, Vietnam
| | - Phuong Hoang Thi
- Institute of Chemistry, Vietnam Academy of Science and Technology, 18-Hoang Quoc Viet, Cau Giay, Hanoi, Vietnam
| | - Tuyen Van Nguyen
- Institute of Chemistry, Vietnam Academy of Science and Technology, 18-Hoang Quoc Viet, Cau Giay, Hanoi, Vietnam.
| |
Collapse
|
40
|
Rajamuthy V, Eltayeb NE, Subramaniam R, Rosiyah Y. New anticancer zinc(II) complexes comprising thiosemicarbazones of saturated ring: structure, DNA/protein binding, DNA cleavage, topoisomerase-1 inhibition and anti-proliferation studies. Appl Organomet Chem 2016. [DOI: 10.1002/aoc.3458] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Vikneswaran Rajamuthy
- Centre for Ionics University of Malaya, Faculty of Science; University of Malaya; Lembah Pantai 50603 Kuala Lumpur Malaysia
| | - Naser Eltaher Eltayeb
- Department of Chemistry, Sciences and Arts College - Rabigh; King Abdulaziz University; Rabigh Saudi Arabia
| | - Ramesh Subramaniam
- Centre for Ionics University of Malaya, Faculty of Science; University of Malaya; Lembah Pantai 50603 Kuala Lumpur Malaysia
| | - Yahya Rosiyah
- Department of Chemistry, Faculty of Science; University of Malaya; Lembah Pantai 50603 Kuala Lumpur Malaysia
| |
Collapse
|
41
|
Yi JM, Zhang XF, Huan XJ, Song SS, Wang W, Tian QT, Sun YM, Chen Y, Ding J, Wang YQ, Yang CH, Miao ZH. Dual targeting of microtubule and topoisomerase II by α-carboline derivative YCH337 for tumor proliferation and growth inhibition. Oncotarget 2016; 6:8960-73. [PMID: 25840421 PMCID: PMC4496195 DOI: 10.18632/oncotarget.3264] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2015] [Accepted: 01/31/2015] [Indexed: 12/21/2022] Open
Abstract
Both microtubule and topoisomerase II (Top2) are important anticancer targets and their respective inhibitors are widely used in combination for cancer therapy. However, some combinations could be mutually antagonistic and drug resistance further limits their therapeutic efficacy. Here we report YCH337, a novel α-carboline derivative that targets both microtubule and Top2, eliciting tumor proliferation and growth inhibition and overcoming drug resistance. YCH337 inhibited microtubule polymerization by binding to the colchicine site and subsequently led to mitotic arrest. It also suppressed Top2 and caused DNA double-strand breaks. It disrupted microtubule more potently than Top2. YCH337 induced reversible mitotic arrest at low concentrations but persistent DNA damage. YCH337 caused intrinsic and extrinsic apoptosis and decreased MCL-1, cIAP1 and XIAP proteins. In this aspect, YCH337 behaved differently from the combination of vincristine and etoposide. YCH337 inhibited proliferation of tumor cells with an averaged IC50 of 0.3 μM. It significantly suppressed the growth of HT-29 xenografts in nude mice too. Importantly, YCH337 nearly equally killed different-mechanism-mediated resistant tumor cells and corresponding parent cells. Together with the novelty of its chemical structure, YCH337 could serve as a promising lead for drug development and a prototype for a dual microtubule/Top2 targeting strategy for cancer therapy.
Collapse
Affiliation(s)
- Jun-Mei Yi
- Division of Antitumor Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, People's Republic of China
| | - Xiao-Fei Zhang
- Division of Medicinal Chemistry, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, People's Republic of China
| | - Xia-Juan Huan
- Division of Antitumor Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, People's Republic of China
| | - Shan-Shan Song
- Division of Antitumor Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, People's Republic of China
| | - Wei Wang
- Division of Antitumor Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, People's Republic of China
| | - Qian-Ting Tian
- Division of Antitumor Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, People's Republic of China
| | - Yi-Ming Sun
- Division of Antitumor Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, People's Republic of China
| | - Yi Chen
- Division of Antitumor Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, People's Republic of China
| | - Jian Ding
- Division of Antitumor Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, People's Republic of China
| | - Ying-Qing Wang
- Division of Antitumor Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, People's Republic of China
| | - Chun-Hao Yang
- Division of Medicinal Chemistry, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, People's Republic of China
| | - Ze-Hong Miao
- Division of Antitumor Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, People's Republic of China
| |
Collapse
|
42
|
Patel AG, Flatten KS, Peterson KL, Beito TG, Schneider PA, Perkins AL, Harki DA, Kaufmann SH. Immunodetection of human topoisomerase I-DNA covalent complexes. Nucleic Acids Res 2016; 44:2816-26. [PMID: 26917015 PMCID: PMC4824114 DOI: 10.1093/nar/gkw109] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Accepted: 02/15/2016] [Indexed: 12/29/2022] Open
Abstract
A number of established and investigational anticancer drugs slow the religation step of DNA topoisomerase I (topo I). These agents induce cytotoxicity by stabilizing topo I-DNA covalent complexes, which in turn interact with advancing replication forks or transcription complexes to generate lethal lesions. Despite the importance of topo I-DNA covalent complexes, it has been difficult to detect these lesions within intact cells and tumors. Here, we report development of a monoclonal antibody that specifically recognizes covalent topo I-DNA complexes, but not free topo I or DNA, by immunoblotting, immunofluorescence or flow cytometry. Utilizing this antibody, we demonstrate readily detectable topo I-DNA covalent complexes after treatment with camptothecins, indenoisoquinolines and cisplatin but not nucleoside analogues. Topotecan-induced topo I-DNA complexes peak at 15-30 min after drug addition and then decrease, whereas indotecan-induced complexes persist for at least 4 h. Interestingly, simultaneous staining for covalent topo I-DNA complexes, phospho-H2AX and Rad51 suggests that topotecan-induced DNA double-strand breaks occur at sites distinct from stabilized topo I-DNA covalent complexes. These studies not only provide new insight into the action of topo I-directed agents, but also illustrate a strategy that can be applied to study additional topoisomerases and their inhibitors in vitro and in vivo.
Collapse
Affiliation(s)
- Anand G Patel
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN 55905, USA
| | - Karen S Flatten
- Division of Oncology Research, Mayo Clinic, Rochester, MN 55905, USA
| | - Kevin L Peterson
- Division of Oncology Research, Mayo Clinic, Rochester, MN 55905, USA
| | - Thomas G Beito
- Department of Immunology, Mayo Clinic, Rochester, MN 55905, USA
| | - Paula A Schneider
- Division of Oncology Research, Mayo Clinic, Rochester, MN 55905, USA
| | - Angela L Perkins
- Department of Medicinal Chemistry, University of Minnesota, Minneapolis, MN 55455, USA
| | - Daniel A Harki
- Department of Medicinal Chemistry, University of Minnesota, Minneapolis, MN 55455, USA
| | - Scott H Kaufmann
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN 55905, USA Division of Oncology Research, Mayo Clinic, Rochester, MN 55905, USA
| |
Collapse
|
43
|
Shchekotikhin AE, Dezhenkova LG, Tsvetkov VB, Luzikov YN, Volodina YL, Tatarskiy VV, Kalinina AA, Treshalin MI, Treshalina HM, Romanenko VI, Kaluzhny DN, Kubbutat M, Schols D, Pommier Y, Shtil AA, Preobrazhenskaya MN. Discovery of antitumor anthra[2,3-b]furan-3-carboxamides: Optimization of synthesis and evaluation of antitumor properties. Eur J Med Chem 2016; 112:114-129. [PMID: 26890118 DOI: 10.1016/j.ejmech.2016.01.050] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Revised: 01/27/2016] [Accepted: 01/28/2016] [Indexed: 01/30/2023]
Abstract
Anthraquinones and their analogues, in particular heteroarene-fused anthracendiones, are prospective scaffolds for new compounds with improved antitumor characteristics. We herein report the use of a 'scaffold hopping' approach for the replacement of the core structure in the previously discovered hit compound naphtho[2,3-f]indole-5,10-dione 2 with an alternative anthra[2,3-b]furan-5,10-dione scaffold. Among 13 newly synthesized derivatives the majority of 4,11-dihydroxy-2-methyl-5,10-dioxoanthra[2,3-b]furan-3-carboxamides demonstrated a high antiproliferative potency against a panel of wild type and drug resistant tumor cell lines, a property superior over the reference drug doxorubicin or lead naphtho[2,3-f]indole-5,10-dione 2. At low micromolar concentrations the selected derivative of (R)-3-aminopyrrolidine 3c and its stereoisomer (S)-3-aminopyrrolidine 3d caused an apoptotic cell death preceded by an arrest in the G2/M phase. Studies of intracellular targets showed that 3c and 3d formed stable intercalative complexes with the duplex DNA as determined by spectral analysis and molecular docking. Both 3c and 3d attenuated topoisomerase 1 and 2 mediated unwinding of the supercoiled DNA via a mechanism different from conventional DNA-enzyme tertiary complex formation. Furthermore, 3d decreased the activity of selected human protein kinases in vitro, indicating multiple targeting by the new chemotype. Finally, 3d demonstrated an antitumor activity in a model of murine intraperitoneally transplanted P388 leukemia, achieving the increase of animal life span up to 262% at tolerable doses. Altogether, the 'scaffold hopping' demonstrated its productivity for obtaining new perspective antitumor drug candidates.
Collapse
Affiliation(s)
- Andrey E Shchekotikhin
- Gause Institute of New Antibiotics, 11 B. Pirogovskaya Street, Moscow 119021, Russia; Mendeleyev University of Chemical Technology, 9 Miusskaya Square, Moscow 125190, Russia.
| | - Lyubov G Dezhenkova
- Gause Institute of New Antibiotics, 11 B. Pirogovskaya Street, Moscow 119021, Russia
| | - Vladimir B Tsvetkov
- Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, 29 Leninsky Avenue, 119991 Moscow, Russia; Institute for Physical-Chemical Medicine, 1A M. Pirogovskaya Street, Moscow 119435, Russia
| | - Yuri N Luzikov
- Gause Institute of New Antibiotics, 11 B. Pirogovskaya Street, Moscow 119021, Russia
| | - Yulia L Volodina
- Federal State Budgetary Scientific Institution «N.N. Blokhin Cancer Research Center» of the Ministry of Health of the Russian Federation, 24 Kashirskoye Shosse, Moscow 115478, Russia
| | - Victor V Tatarskiy
- Federal State Budgetary Scientific Institution «N.N. Blokhin Cancer Research Center» of the Ministry of Health of the Russian Federation, 24 Kashirskoye Shosse, Moscow 115478, Russia
| | - Anastasia A Kalinina
- Federal State Budgetary Scientific Institution «N.N. Blokhin Cancer Research Center» of the Ministry of Health of the Russian Federation, 24 Kashirskoye Shosse, Moscow 115478, Russia
| | - Michael I Treshalin
- Gause Institute of New Antibiotics, 11 B. Pirogovskaya Street, Moscow 119021, Russia
| | - Helen M Treshalina
- Federal State Budgetary Scientific Institution «N.N. Blokhin Cancer Research Center» of the Ministry of Health of the Russian Federation, 24 Kashirskoye Shosse, Moscow 115478, Russia
| | - Vladimir I Romanenko
- Federal State Budgetary Scientific Institution «N.N. Blokhin Cancer Research Center» of the Ministry of Health of the Russian Federation, 24 Kashirskoye Shosse, Moscow 115478, Russia
| | - Dmitry N Kaluzhny
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 32 Vavilov Street, Moscow 119991, Russia
| | | | - Dominique Schols
- Rega Institute for Medical Research, KU Leuven, 3000 Leuven, Belgium
| | - Yves Pommier
- Developmental Therapeutics Branch, National Cancer Institute, NIH, 37 Convent Drive, 37-5068, Bethesda, MD 20892, USA
| | - Alexander A Shtil
- Gause Institute of New Antibiotics, 11 B. Pirogovskaya Street, Moscow 119021, Russia; Federal State Budgetary Scientific Institution «N.N. Blokhin Cancer Research Center» of the Ministry of Health of the Russian Federation, 24 Kashirskoye Shosse, Moscow 115478, Russia
| | | |
Collapse
|
44
|
Chauhan M, Joshi G, Kler H, Kashyap A, Amrutkar SM, Sharma P, Bhilare KD, Chand Banerjee U, Singh S, Kumar R. Dual inhibitors of epidermal growth factor receptor and topoisomerase IIα derived from a quinoline scaffold. RSC Adv 2016. [DOI: 10.1039/c6ra15118c] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Based on the quinazoline bearing EGFR inhibitors, a series of thirty four compounds having a quinoline scaffold were synthesized and evaluated in vitro for EGFR kinase inhibitory and anticancer activities.
Collapse
Affiliation(s)
- Monika Chauhan
- Laboratory for Drug Design and Synthesis
- Centre for Pharmaceutical Sciences and Natural Products
- Central University of Punjab
- Bathinda
- India
| | - Gaurav Joshi
- Laboratory for Drug Design and Synthesis
- Centre for Pharmaceutical Sciences and Natural Products
- Central University of Punjab
- Bathinda
- India
| | - Harveen Kler
- Laboratory for Drug Design and Synthesis
- Centre for Pharmaceutical Sciences and Natural Products
- Central University of Punjab
- Bathinda
- India
| | - Archana Kashyap
- Laboratory for Drug Design and Synthesis
- Centre for Pharmaceutical Sciences and Natural Products
- Central University of Punjab
- Bathinda
- India
| | - Suyog M. Amrutkar
- Department of Pharmaceutical Technology (Biotechnology)
- National Institute of Pharmaceutical Education and Research (NIPER)
- Mohali
- India
| | - Praveen Sharma
- Centre for Human Genetics and Molecular Medicine
- Central University of Punjab
- Bathinda
- India
| | - Kiran D. Bhilare
- Department of Pharmaceutical Technology (Biotechnology)
- National Institute of Pharmaceutical Education and Research (NIPER)
- Mohali
- India
| | - Uttam Chand Banerjee
- Department of Pharmaceutical Technology (Biotechnology)
- National Institute of Pharmaceutical Education and Research (NIPER)
- Mohali
- India
| | - Sandeep Singh
- Centre for Human Genetics and Molecular Medicine
- Central University of Punjab
- Bathinda
- India
| | - Raj Kumar
- Laboratory for Drug Design and Synthesis
- Centre for Pharmaceutical Sciences and Natural Products
- Central University of Punjab
- Bathinda
- India
| |
Collapse
|
45
|
Piao D, Kim T, Zhang HY, Choi HG, Lee CS, Choi HJ, Chang HW, Woo MH, Son JK. DNA Topoisomerase Inhibitory Activity of Constituents from the Flowers of Inula japonica. Chem Pharm Bull (Tokyo) 2016; 64:276-81. [DOI: 10.1248/cpb.c15-00780] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
| | - Taein Kim
- College of Pharmacy, Yeungnam University
| | | | | | | | | | | | - Mi-Hee Woo
- College of Pharmacy, Catholic University of Daegu
| | | |
Collapse
|
46
|
Tikhomirov AS, Shchekotikhin AE, Lee YH, Chen YA, Yeh CA, Tatarskiy VV, Dezhenkova LG, Glazunova VA, Balzarini J, Shtil AA, Preobrazhenskaya MN, Chueh PJ. Synthesis and Characterization of 4,11-Diaminoanthra[2,3-b]furan-5,10-diones: Tumor Cell Apoptosis through tNOX-Modulated NAD(+)/NADH Ratio and SIRT1. J Med Chem 2015; 58:9522-34. [PMID: 26633734 DOI: 10.1021/acs.jmedchem.5b00859] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
A series of new 4,11-diaminoanthra[2,3-b]furan-5,10-dione derivatives with different side chains were synthesized. Selected 2-unsubstituted derivatives 11-14 showed high antiproliferative potency on a panel of mammalian tumor cell lines including multidrug resistance variants. Compounds 11-14 utilized multiple mechanisms of cytotoxicity including inhibition of Top1/Top2-mediated DNA relaxation, reduced NAD(+)/NADH ratio through tNOX inhibition, suppression of a NAD(+)-dependent sirtuin 1 (SIRT1) deacetylase activity, and activation of caspase-mediated apoptosis. Here, for the first time, we report that tumor-associated NADH oxidase (tNOX) and SIRT1 are important cellular targets of antitumor anthracene-9,10-diones.
Collapse
Affiliation(s)
- Alexander S Tikhomirov
- Gause Institute of New Antibiotics , 11 Bolshaya Pirogovskaya Street, Moscow 119021, Russia.,Mendeleyev University of Chemical Technology , 9 Miusskaya Square, Moscow 125190, Russia
| | - Andrey E Shchekotikhin
- Gause Institute of New Antibiotics , 11 Bolshaya Pirogovskaya Street, Moscow 119021, Russia.,Mendeleyev University of Chemical Technology , 9 Miusskaya Square, Moscow 125190, Russia
| | - Yi-Hui Lee
- Institute of Biomedical Sciences, National Chung Hsing University , Taichung 40227, Taiwan
| | - Yi-Ann Chen
- Institute of Biomedical Sciences, National Chung Hsing University , Taichung 40227, Taiwan
| | - Chia-An Yeh
- Institute of Biomedical Sciences, National Chung Hsing University , Taichung 40227, Taiwan
| | | | - Lyubov G Dezhenkova
- Gause Institute of New Antibiotics , 11 Bolshaya Pirogovskaya Street, Moscow 119021, Russia
| | | | - Jan Balzarini
- Rega Institute for Medical Research, Katholieke Universiteit Leuven , 3000 Leuven, Belgium
| | - Alexander A Shtil
- Blokhin Cancer Center , 24 Kashirskoye Shosse, Moscow 115478, Russia.,National University of Science and Technology "MISIS", 4 Leninsky Avenue, Moscow 119991, Russia
| | | | - Pin Ju Chueh
- Institute of Biomedical Sciences, National Chung Hsing University , Taichung 40227, Taiwan.,Graduate Institute of Basic Medicine, China Medical University , Taichung 40402, Taiwan.,Department of Medical Research, China Medical University Hospital , Taichung 40402, Taiwan.,Department of Biotechnology, Asia University , Taichung 41354, Taiwan
| |
Collapse
|
47
|
Dellafiora L, Dall’Asta C, Cruciani G, Galaverna G, Cozzini P. Molecular modelling approach to evaluate poisoning of topoisomerase I by alternariol derivatives. Food Chem 2015; 189:93-101. [DOI: 10.1016/j.foodchem.2015.02.083] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2014] [Revised: 02/16/2015] [Accepted: 02/17/2015] [Indexed: 11/30/2022]
|
48
|
The Effect of Dimethyl Sulfoxide on Supercoiled DNA Relaxation Catalyzed by Type I Topoisomerases. BIOMED RESEARCH INTERNATIONAL 2015; 2015:320490. [PMID: 26682217 PMCID: PMC4670693 DOI: 10.1155/2015/320490] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/25/2015] [Revised: 10/26/2015] [Accepted: 11/01/2015] [Indexed: 11/30/2022]
Abstract
The effects of dimethyl sulfoxide (DMSO) on supercoiled plasmid DNA relaxation catalyzed by two typical type I topoisomerases were investigated in our studies. It is shown that DMSO in a low concentration (less than 20%, v/v) can induce a dose-related enhancement of the relaxation efficiency of Escherichia coli topoisomerase I (type IA). Conversely, obvious inhibitory effect on the activity of calf thymus topoisomerase I (type IB) was observed when the same concentration of DMSO is used. In addition, our studies demonstrate that 20% DMSO has an ability to reduce the inhibitory effect on EcTopo I, which was induced by double-stranded oligodeoxyribonucleotides while the same effect cannot be found in the case of CtTopo I. Moreover, our AFM examinations suggested that DMSO can change the conformation of negatively supercoiled plasmid by creating some locally loose regions in DNA molecules. Combining all the lines of evidence, we proposed that DMSO enhanced EcTopo I relaxation activity by (1) increasing the single-stranded DNA regions for the activities of EcTopo I in the early and middle stages of the reaction and (2) preventing the formation of double-stranded DNA-enzyme complex in the later stage, which can elevate the effective concentration of the topoisomerase in the reaction solution.
Collapse
|
49
|
Wu J, Yang C, Guo C, Li X, Yang N, Zhao L, Hang H, Liu S, Chu P, Sun Z, Sun B, Lin Y, Peng J, Han G, Wang S, Tang Z. SZC015, a synthetic oleanolic acid derivative, induces both apoptosis and autophagy in MCF-7 breast cancer cells. Chem Biol Interact 2015; 244:94-104. [PMID: 26612655 DOI: 10.1016/j.cbi.2015.11.013] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Revised: 10/19/2015] [Accepted: 11/09/2015] [Indexed: 12/22/2022]
Abstract
Breast cancer is one of the most common cancers among women with high mortality and morbidity. The present study was aimed to investigate the cytotoxic mechanism of SZC015, a synthetic oleanolic acid (OA) derivative, in MCF-7 human breast cancer cells. SZC015 reduced MCF-7 cell viability with an IC50 value of only 24.19 μM at 24 h by activating both apoptosis and autophagy pathways. More specifically, we found that SZC015 was able to activate intrinsic apoptosis, which was proved by activations of caspase3, caspase9, release of cytochrome C, cleavage of PARP and increasing ratio of Bax/Bcl-2. SZC015 induced autophagy in MCF-7 cells evidenced by the increase of LC3II/LC3I and up-regulation of Atg5 and beclin1. Moreover, these two cell death pathways were modulated by inhibiting phosphatidylinositide 3-kinase/protein kinase B/mammalian target of rapamycin/nuclear factor-κB (PI3K/Akt/mTOR/NF-κB), mitogen-activated protein kinase (MAPK) signaling pathways. SZC015 also induced S phase cell cycle arrest in MCF-7 cells. Furthermore, analysis of topoisomerase I (Top I) and topoisomerase IIα (Top IIα) proteins suggested that SZC015 may interfere the DNA topological phenomenon. The computer-assisted molecular docking study also showed SZC015 had lower interaction energy with Top I and Top IIα than that of OA. In conclusion, the current study revealed SZC015 played an important role in the regulation of autophagy and apoptosis in breast cancer cells.
Collapse
Affiliation(s)
- Jingjun Wu
- Pharmacology Department, Dalian Medical University, Dalian, China
| | - Chun Yang
- Pharmacology Department, Dalian Medical University, Dalian, China
| | - Chao Guo
- Pharmaceutical Biology Department, Groningen Research Institute of Pharmacy, University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands
| | - Xiaorui Li
- Pharmacology Department, Dalian Medical University, Dalian, China
| | - Nan Yang
- Pharmacology Department, Dalian Medical University, Dalian, China
| | - Lijian Zhao
- Pharmacology Department, Dalian Medical University, Dalian, China
| | - Hongdong Hang
- Department of Internal Medicine, First Hospital Affiliated to Dalian Medical University, Dalian, China
| | - Shumin Liu
- Pharmacology Department, Dalian Medical University, Dalian, China
| | - Peng Chu
- Pharmacology Department, Dalian Medical University, Dalian, China
| | - Zhengwu Sun
- Pharmacology Department, Dalian Medical University, Dalian, China
| | - Bin Sun
- Pharmacology Department, Dalian Medical University, Dalian, China
| | - Yuan Lin
- Pharmacology Department, Dalian Medical University, Dalian, China
| | - Jinyong Peng
- Pharmacology Department, Dalian Medical University, Dalian, China
| | - Guozhu Han
- Pharmacology Department, Dalian Medical University, Dalian, China
| | - Shisheng Wang
- College of Pharmaceutical Science and Technology, Dalian University of Technology, Dalian, China
| | - Zeyao Tang
- Pharmacology Department, Dalian Medical University, Dalian, China.
| |
Collapse
|
50
|
Substituted 2-arylquinazolinones: Design, synthesis, and evaluation of cytotoxicity and inhibition of topoisomerases. Eur J Med Chem 2015; 103:69-79. [DOI: 10.1016/j.ejmech.2015.08.040] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2015] [Revised: 08/18/2015] [Accepted: 08/22/2015] [Indexed: 12/13/2022]
|