1
|
Areias F, Correia C, Rocha A, Teixeira S, Castro M, Brea J, Hu H, Carlsson J, Loza MI, Proença MF, Carvalho MA. 2-Aryladenine Derivatives as a Potent Scaffold for Adenosine Receptor Antagonists: The 6-Morpholino Derivatives. Molecules 2024; 29:2543. [PMID: 38893418 PMCID: PMC11173536 DOI: 10.3390/molecules29112543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 05/06/2024] [Accepted: 05/24/2024] [Indexed: 06/21/2024] Open
Abstract
A set of 2-aryl-9-H or methyl-6-morpholinopurine derivatives were synthesized and assayed through radioligand binding tests at human A1, A2A, A2B, and A3 adenosine receptor subtypes. Eleven purines showed potent antagonism at A1, A3, dual A1/A2A, A1/A2B, or A1/A3 adenosine receptors. Additionally, three compounds showed high affinity without selectivity for any specific adenosine receptor. The structure-activity relationships were made for this group of new compounds. The 9-methylpurine derivatives were generally less potent but more selective, and the 9H-purine derivatives were more potent but less selective. These compounds can be an important source of new biochemical tools and/or pharmacological drugs.
Collapse
Affiliation(s)
- Filipe Areias
- Centre of Chemistry of University of Minho (CQUM), Campus de Gualtar, Universidade do Minho, 4710-057 Braga, Portugal; (F.A.); (C.C.); (A.R.); (S.T.); (M.F.P.)
- Center for Research in Molecular Medicine and Chronic Diseases (CiMUS), Universidade de Santiago de Compostela, Avda de Barcelona, E-15782 Santiago de Compostela, Spain; (M.C.); (J.B.); (M.I.L.)
- School of Chemical Sciences & Engineering, Yachay Tech University, Yachay City of Knowledge, Urcuqui 100119, Ecuador
| | - Carla Correia
- Centre of Chemistry of University of Minho (CQUM), Campus de Gualtar, Universidade do Minho, 4710-057 Braga, Portugal; (F.A.); (C.C.); (A.R.); (S.T.); (M.F.P.)
| | - Ashly Rocha
- Centre of Chemistry of University of Minho (CQUM), Campus de Gualtar, Universidade do Minho, 4710-057 Braga, Portugal; (F.A.); (C.C.); (A.R.); (S.T.); (M.F.P.)
| | - Sofia Teixeira
- Centre of Chemistry of University of Minho (CQUM), Campus de Gualtar, Universidade do Minho, 4710-057 Braga, Portugal; (F.A.); (C.C.); (A.R.); (S.T.); (M.F.P.)
| | - Marián Castro
- Center for Research in Molecular Medicine and Chronic Diseases (CiMUS), Universidade de Santiago de Compostela, Avda de Barcelona, E-15782 Santiago de Compostela, Spain; (M.C.); (J.B.); (M.I.L.)
- Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), Travesía da Choupana s/n, E-15706 Santiago de Compostela, Spain
| | - Jose Brea
- Center for Research in Molecular Medicine and Chronic Diseases (CiMUS), Universidade de Santiago de Compostela, Avda de Barcelona, E-15782 Santiago de Compostela, Spain; (M.C.); (J.B.); (M.I.L.)
- Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), Travesía da Choupana s/n, E-15706 Santiago de Compostela, Spain
| | - Huabin Hu
- Science for Life Laboratory, Department of Cell and Molecular Biology, Uppsala University, SE-75124 Uppsala, Sweden; (H.H.); (J.C.)
| | - Jens Carlsson
- Science for Life Laboratory, Department of Cell and Molecular Biology, Uppsala University, SE-75124 Uppsala, Sweden; (H.H.); (J.C.)
| | - Maria I. Loza
- Center for Research in Molecular Medicine and Chronic Diseases (CiMUS), Universidade de Santiago de Compostela, Avda de Barcelona, E-15782 Santiago de Compostela, Spain; (M.C.); (J.B.); (M.I.L.)
- Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), Travesía da Choupana s/n, E-15706 Santiago de Compostela, Spain
| | - M. Fernanda Proença
- Centre of Chemistry of University of Minho (CQUM), Campus de Gualtar, Universidade do Minho, 4710-057 Braga, Portugal; (F.A.); (C.C.); (A.R.); (S.T.); (M.F.P.)
| | - M. Alice Carvalho
- Centre of Chemistry of University of Minho (CQUM), Campus de Gualtar, Universidade do Minho, 4710-057 Braga, Portugal; (F.A.); (C.C.); (A.R.); (S.T.); (M.F.P.)
| |
Collapse
|
2
|
Oliva P, Suresh RR, Pasquini S, Salmaso V, Will EJ, Tosh DK, Gao ZG, Liu N, Gavrilova O, Vincenzi F, Varani K, Jacobson KA. 2-Amino-5-arylethynyl-thiophen-3-yl-(phenyl)methanones as A 1 Adenosine Receptor Positive Allosteric Modulators. ACS Med Chem Lett 2023; 14:1640-1646. [PMID: 38116442 PMCID: PMC10726435 DOI: 10.1021/acsmedchemlett.3c00315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 10/06/2023] [Indexed: 12/21/2023] Open
Abstract
A1 adenosine receptor (A1AR) agonists have cerebroprotective, cardioprotective, antinociceptive, and other pharmaceutical applications. We explored the structure-activity relationship of 5-arylethynyl aminothiophenes as A1AR positive allosteric modulators (PAMs). The derivatives were compared in binding and functional assays at the human A1AR, indicating that some fluoro-substituted analogues have enhanced PAM activity. We identified substitution of the terminal phenyl ring in 12 (2-F-Ph), 15 (3,4-F2-Ph, MRS7935), and 21 (2-CF3-Ph) as particularly enhancing the PAM activity. 15 was also shown to act as an A1 ago-PAM with EC50 ≈ 2 μM, without activity (30 μM) at other ARs. Molecular modeling indicated that both the 5-arylethynyl and the 4-neopentyl groups are located in a region outside the receptor transmembrane helix bundle that is in contact with the phospholipid bilayer, consistent with the preference for nonpolar substitution of the aryl moiety. Although they are hydrophobic, these PAMs could provide potential drug candidate molecules for engaging protective A1ARs.
Collapse
Affiliation(s)
- Paola Oliva
- Laboratory
of Bioorganic Chemistry and Mouse Metabolism Core, National
Institute of Diabetes and Digestive and Kidney
Disease, National Institutes of Health, 9000 Rockville Pike, Bethesda, Maryland 20892, United States
| | - R. Rama Suresh
- Laboratory
of Bioorganic Chemistry and Mouse Metabolism Core, National
Institute of Diabetes and Digestive and Kidney
Disease, National Institutes of Health, 9000 Rockville Pike, Bethesda, Maryland 20892, United States
| | - Silvia Pasquini
- Department
of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, Via Fossato di Mortara 17-19, 44121 Ferrara, Italy
| | - Veronica Salmaso
- Laboratory
of Bioorganic Chemistry and Mouse Metabolism Core, National
Institute of Diabetes and Digestive and Kidney
Disease, National Institutes of Health, 9000 Rockville Pike, Bethesda, Maryland 20892, United States
| | - Edward J. Will
- Laboratory
of Bioorganic Chemistry and Mouse Metabolism Core, National
Institute of Diabetes and Digestive and Kidney
Disease, National Institutes of Health, 9000 Rockville Pike, Bethesda, Maryland 20892, United States
| | - Dilip K. Tosh
- Laboratory
of Bioorganic Chemistry and Mouse Metabolism Core, National
Institute of Diabetes and Digestive and Kidney
Disease, National Institutes of Health, 9000 Rockville Pike, Bethesda, Maryland 20892, United States
| | - Zhan-Guo Gao
- Laboratory
of Bioorganic Chemistry and Mouse Metabolism Core, National
Institute of Diabetes and Digestive and Kidney
Disease, National Institutes of Health, 9000 Rockville Pike, Bethesda, Maryland 20892, United States
| | - Naili Liu
- Laboratory
of Bioorganic Chemistry and Mouse Metabolism Core, National
Institute of Diabetes and Digestive and Kidney
Disease, National Institutes of Health, 9000 Rockville Pike, Bethesda, Maryland 20892, United States
| | - Oksana Gavrilova
- Laboratory
of Bioorganic Chemistry and Mouse Metabolism Core, National
Institute of Diabetes and Digestive and Kidney
Disease, National Institutes of Health, 9000 Rockville Pike, Bethesda, Maryland 20892, United States
| | - Fabrizio Vincenzi
- Department
of Translational Medicine, University of
Ferrara, Via Fossato
di Mortara 17-19, 44121 Ferrara, Italy
| | - Katia Varani
- Department
of Translational Medicine, University of
Ferrara, Via Fossato
di Mortara 17-19, 44121 Ferrara, Italy
| | - Kenneth A. Jacobson
- Laboratory
of Bioorganic Chemistry and Mouse Metabolism Core, National
Institute of Diabetes and Digestive and Kidney
Disease, National Institutes of Health, 9000 Rockville Pike, Bethesda, Maryland 20892, United States
| |
Collapse
|
3
|
Haddad M, Cherchi F, Alsalem M, Al-saraireh YM, Madae’en S. Adenosine Receptors as Potential Therapeutic Analgesic Targets. Int J Mol Sci 2023; 24:13160. [PMID: 37685963 PMCID: PMC10487796 DOI: 10.3390/ijms241713160] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 08/18/2023] [Accepted: 08/23/2023] [Indexed: 09/10/2023] Open
Abstract
Pain represents an international burden and a major socio-economic public health problem. New findings, detailed in this review, suggest that adenosine plays a significant role in neuropathic and inflammatory pain, by acting on its metabotropic adenosine receptors (A1AR, A2AAR, A2BAR, A3AR). Adenosine receptor ligands have a practical translational potential based on the favorable efficacy and safety profiles that emerged from clinical research on various agonists and antagonists for different pathologies. The present review collects the latest studies on selected adenosine receptor ligands in different pain models. Here, we also covered the many hypothesized pathways and the role of newly synthesized allosteric adenosine receptor modulators. This review aims to present a summary of recent research on adenosine receptors as prospective therapeutic targets for a range of pain-related disorders.
Collapse
Affiliation(s)
- Mansour Haddad
- Faculty of Pharmacy, Yarmouk University, Irbid 21163, Jordan
| | - Federica Cherchi
- Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), Section of Pharmacology and Toxicology, University of Florence, 50139 Florence, Italy;
| | - Mohammad Alsalem
- School of Medicine, The University of Jordan, Amman 11942, Jordan;
| | - Yousef M. Al-saraireh
- Department of Pharmacology, Faculty of Medicine, Mutah University, P.O. Box 7, Al-Karak 61710, Jordan;
| | - Saba Madae’en
- Department of Clinical Pharmacy and Pharmacy Practice, Faculty of Pharmaceutical Sciences, The Hashemite University, Zarqa 13133, Jordan;
| |
Collapse
|
4
|
Pasquini S, Contri C, Cappello M, Borea PA, Varani K, Vincenzi F. Update on the recent development of allosteric modulators for adenosine receptors and their therapeutic applications. Front Pharmacol 2022; 13:1030895. [PMID: 36278183 PMCID: PMC9581118 DOI: 10.3389/fphar.2022.1030895] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 09/20/2022] [Indexed: 11/13/2022] Open
Abstract
Adenosine receptors (ARs) have been identified as promising therapeutic targets for countless pathological conditions, spanning from inflammatory diseases to central nervous system disorders, from cancer to metabolic diseases, from cardiovascular pathologies to respiratory diseases, and beyond. This extraordinary therapeutic potential is mainly due to the plurality of pathophysiological actions of adenosine and the ubiquitous expression of its receptors. This is, however, a double-edged sword that makes the clinical development of effective ligands with tolerable side effects difficult. Evidence of this is the low number of AR agonists or antagonists that have reached the market. An alternative approach is to target allosteric sites via allosteric modulators, compounds endowed with several advantages over orthosteric ligands. In addition to the typical advantages of allosteric modulators, those acting on ARs could benefit from the fact that adenosine levels are elevated in pathological tissues, thus potentially having negligible effects on normal tissues where adenosine levels are maintained low. Several A1 and various A3AR allosteric modulators have been identified so far, and some of them have been validated in different preclinical settings, achieving promising results. Less fruitful, instead, has been the discovery of A2A and A2BAR allosteric modulators, although the results obtained up to now are encouraging. Collectively, data in the literature suggests that allosteric modulators of ARs could represent valuable pharmacological tools, potentially able to overcome the limitations of orthosteric ligands.
Collapse
Affiliation(s)
- Silvia Pasquini
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, Ferrara, Italy
| | - Chiara Contri
- Department of Translational Medicine, University of Ferrara, Ferrara, Italy
| | - Martina Cappello
- Department of Translational Medicine, University of Ferrara, Ferrara, Italy
| | | | - Katia Varani
- Department of Translational Medicine, University of Ferrara, Ferrara, Italy
- *Correspondence: Katia Varani,
| | - Fabrizio Vincenzi
- Department of Translational Medicine, University of Ferrara, Ferrara, Italy
| |
Collapse
|
5
|
Selvi I, Argun G, Sonmez C, Bozkurt OF, Basar H. Raised Adenosine and Adenosine Deaminase in Bladder Cancer Require Less Postoperative Analgesia Compared with Benign Prostatic Hyperplasia After Transurethral Resection. Indian J Surg 2021. [DOI: 10.1007/s12262-020-02272-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
|
6
|
Shaw S, Uniyal A, Gadepalli A, Tiwari V, Belinskaia DA, Shestakova NN, Venugopala KN, Deb PK, Tiwari V. Adenosine receptor signalling: Probing the potential pathways for the ministration of neuropathic pain. Eur J Pharmacol 2020; 889:173619. [DOI: 10.1016/j.ejphar.2020.173619] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 09/05/2020] [Accepted: 09/29/2020] [Indexed: 12/27/2022]
|
7
|
Jacobson KA, Tosh DK, Jain S, Gao ZG. Historical and Current Adenosine Receptor Agonists in Preclinical and Clinical Development. Front Cell Neurosci 2019; 13:124. [PMID: 30983976 PMCID: PMC6447611 DOI: 10.3389/fncel.2019.00124] [Citation(s) in RCA: 136] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Accepted: 03/13/2019] [Indexed: 12/22/2022] Open
Abstract
Adenosine receptors (ARs) function in the body’s response to conditions of pathology and stress associated with a functional imbalance, such as in the supply and demand of energy/oxygen/nutrients. Extracellular adenosine concentrations vary widely to raise or lower the basal activation of four subtypes of ARs. Endogenous adenosine can correct an energy imbalance during hypoxia and other stress, for example, by slowing the heart rate by A1AR activation or increasing the blood supply to heart muscle by the A2AAR. Moreover, exogenous AR agonists, antagonists, or allosteric modulators can be applied for therapeutic benefit, and medicinal chemists working toward that goal have reported thousands of such agents. Thus, numerous clinical trials have ensued, using promising agents to modulate adenosinergic signaling, most of which have not succeeded. Currently, short-acting, parenteral agonists, adenosine and Regadenoson, are the only AR agonists approved for human use. However, new concepts and compounds are currently being developed and applied toward preclinical and clinical evaluation, and initial results are encouraging. This review focuses on key compounds as AR agonists and positive allosteric modulators (PAMs) for disease treatment or diagnosis. AR agonists for treating inflammation, pain, cancer, non-alcoholic steatohepatitis, angina, sickle cell disease, ischemic conditions and diabetes have been under development. Multiple clinical trials with two A3AR agonists are ongoing.
Collapse
Affiliation(s)
- Kenneth A Jacobson
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Dilip K Tosh
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Shanu Jain
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Zhan-Guo Gao
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
8
|
Tosh DK, Rao H, Bitant A, Salmaso V, Mannes P, Lieberman DI, Vaughan KL, Mattison JA, Rothwell AC, Auchampach JA, Ciancetta A, Liu N, Cui Z, Gao ZG, Reitman ML, Gavrilova O, Jacobson KA. Design and in Vivo Characterization of A 1 Adenosine Receptor Agonists in the Native Ribose and Conformationally Constrained (N)-Methanocarba Series. J Med Chem 2019; 62:1502-1522. [PMID: 30605331 PMCID: PMC6467784 DOI: 10.1021/acs.jmedchem.8b01662] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
(N)-Methanocarba ([3.1.0]bicyclohexyl) adenosines and corresponding ribosides were synthesized to identify novel A1 adenosine receptor (A1AR) agonists for CNS or peripheral applications. Human and mouse AR binding was determined to assess the constrained ring system's A1AR compatibility. N6-Dicyclobutylmethyl ribose agonist (9, MRS7469, >2000-fold selective for A1AR) and known truncated N6-dicyclopropylmethyl methanocarba 7 (MRS5474) were drug-like. The pure diastereoisomer of known riboside 4 displayed high hA1AR selectivity. Methanocarba modification reduced A1AR selectivity of N6-dicyclopropylmethyl and endo-norbornyladenosines but increased ribavirin selectivity. Most analogues tested (ip) were inactive or weak in inducing mouse hypothermia, despite mA1AR full agonism and variable mA3AR efficacy, but strong hypothermia by 9 depended on A1AR, which reflects CNS activity (determined using A1AR or A3AR null mice). Conserved hA1AR interactions were preserved in modeling of 9 and methanocarba equivalent 24 (∼400-fold A1AR-selective). Thus, we identified, and characterized in vivo, ribose and methanocarba nucleosides, including with A1AR-enhancing N6-dicyclobutylmethyl-adenine and 1,2,4-triazole-3-carboxamide (40, MRS7451) nucleobases.
Collapse
Affiliation(s)
- Dilip K. Tosh
- Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Disease, National Institutes of Health, 9000 Rockville Pike, Bethesda, MA, USA 20892
| | - Harsha Rao
- Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Disease, National Institutes of Health, 9000 Rockville Pike, Bethesda, MA, USA 20892
| | - Amelia Bitant
- Department of Pharmacology, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, USA 53226
| | - Veronica Salmaso
- Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Disease, National Institutes of Health, 9000 Rockville Pike, Bethesda, MA, USA 20892
| | - Philip Mannes
- Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Disease, National Institutes of Health, 9000 Rockville Pike, Bethesda, MA, USA 20892
| | - David I. Lieberman
- Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Disease, National Institutes of Health, 9000 Rockville Pike, Bethesda, MA, USA 20892
| | - Kelli L. Vaughan
- SoBran BioSciences, SoBran, Inc., 4000 Blackburn Lane, Burtonsville, MD, USA 20866
- Translational Gerontology Branch, National Institute on Aging Intramural Research Program, 16701 Elmer School Rd., Bldg. 103, Dickerson, MD, USA 20842
| | - Julie A. Mattison
- Translational Gerontology Branch, National Institute on Aging Intramural Research Program, 16701 Elmer School Rd., Bldg. 103, Dickerson, MD, USA 20842
| | - Amy C. Rothwell
- Department of Pharmacology, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, USA 53226
| | - John A. Auchampach
- Department of Pharmacology, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, USA 53226
| | - Antonella Ciancetta
- Queen’s University Belfast, School of Pharmacy, 96 Lisburn Rd, Belfast BT9 7BL, UK
| | - Naili Liu
- Mouse Metabolism Core, National Institute of Diabetes and Digestive and Kidney Disease, National Institutes of Health, 9000 Rockville Pike, Bethesda, MA, USA 20892
| | - Zhenzhong Cui
- Mouse Metabolism Core, National Institute of Diabetes and Digestive and Kidney Disease, National Institutes of Health, 9000 Rockville Pike, Bethesda, MA, USA 20892
| | - Zhan-Guo Gao
- Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Disease, National Institutes of Health, 9000 Rockville Pike, Bethesda, MA, USA 20892
| | - Marc L. Reitman
- Diabetes, Endocrinology, and Obesity Branch, National Institute of Diabetes and Digestive and Kidney Disease, National Institutes of Health, 9000 Rockville Pike, Bethesda, MA, USA 20892
| | - Oksana Gavrilova
- Mouse Metabolism Core, National Institute of Diabetes and Digestive and Kidney Disease, National Institutes of Health, 9000 Rockville Pike, Bethesda, MA, USA 20892
| | - Kenneth A. Jacobson
- Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Disease, National Institutes of Health, 9000 Rockville Pike, Bethesda, MA, USA 20892
| |
Collapse
|
9
|
Jacobson KA, Tosh DK, Jain S, Gao ZG. Historical and Current Adenosine Receptor Agonists in Preclinical and Clinical Development. Front Cell Neurosci 2019. [PMID: 30983976 DOI: 10.3389/fncel.2019.00124/bibtex] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023] Open
Abstract
Adenosine receptors (ARs) function in the body's response to conditions of pathology and stress associated with a functional imbalance, such as in the supply and demand of energy/oxygen/nutrients. Extracellular adenosine concentrations vary widely to raise or lower the basal activation of four subtypes of ARs. Endogenous adenosine can correct an energy imbalance during hypoxia and other stress, for example, by slowing the heart rate by A1AR activation or increasing the blood supply to heart muscle by the A2AAR. Moreover, exogenous AR agonists, antagonists, or allosteric modulators can be applied for therapeutic benefit, and medicinal chemists working toward that goal have reported thousands of such agents. Thus, numerous clinical trials have ensued, using promising agents to modulate adenosinergic signaling, most of which have not succeeded. Currently, short-acting, parenteral agonists, adenosine and Regadenoson, are the only AR agonists approved for human use. However, new concepts and compounds are currently being developed and applied toward preclinical and clinical evaluation, and initial results are encouraging. This review focuses on key compounds as AR agonists and positive allosteric modulators (PAMs) for disease treatment or diagnosis. AR agonists for treating inflammation, pain, cancer, non-alcoholic steatohepatitis, angina, sickle cell disease, ischemic conditions and diabetes have been under development. Multiple clinical trials with two A3AR agonists are ongoing.
Collapse
Affiliation(s)
- Kenneth A Jacobson
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Dilip K Tosh
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Shanu Jain
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Zhan-Guo Gao
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
10
|
Varani K, Vincenzi F, Merighi S, Gessi S, Borea PA. Biochemical and Pharmacological Role of A1 Adenosine Receptors and Their Modulation as Novel Therapeutic Strategy. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 1051:193-232. [DOI: 10.1007/5584_2017_61] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
11
|
Cagide F, Reis J, Gaspar A, Chavarria D, Kachler S, Klotz KN, Gomes LR, Low JN, Vilar S, Hripcsak G, Borges F. Discovery of the first A 1 adenosine receptor ligand based on the chromone scaffold. RSC Adv 2016. [DOI: 10.1039/c6ra02347a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The first potent and selective hA1AR ligand based on the chromone scaffold is reported in this work.
Collapse
|
12
|
Hajiahmadi S, Panjehpour M, Aghaei M, Shabani M. Activation of A2b adenosine receptor regulates ovarian cancer cell growth: involvement of Bax/Bcl-2 and caspase-3. Biochem Cell Biol 2015; 93:321-9. [PMID: 25877700 DOI: 10.1139/bcb-2014-0117] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
A2b adenosine receptor (A2bAR) acts as a potent regulator of cell growth in various cell lines. The present study was designed to understand the controlling mechanism of A2bAR agonist (NECA)-induced apoptosis in ovarian cancer cells. Real-time PCR and western blotting assays were used to evaluate the gene and protein expression profiles of A2bAR, respectively. MTT assay was used to study the cell proliferation effect of A2bAR agonist (NECA). Detection of apoptosis was conducted using annexin V-FITC/PI staining, caspase-3 activation assay, and the expression of Bax and Bcl-2 proteins analysis. The mitochondrial membrane potential (ΔΨM) was analyzed by employing JC-1 prob. The mRNA and protein expression levels of A2bAR in ovarian cancer cells were detected. NECA significantly reduced cell viability in a dose-dependent manner in OVCAR-3 and Caov-4 cell lines. The growth inhibition effect of NECA was related to the induction of cell apoptosis, which was manifested by annexin V-FITC staining, activation of caspase-3, and loss of mitochondrial membrane potentials (ΔΨm). In addition, downregulation of the regulatory protein Bcl-2 and upregulation of Bax protein by NECA were also observed. These findings demonstrated that NECA induces apoptosis via the mitochondrial signaling pathway. Thus, A2bAR agonists may be a potential agent for induction of apoptosis in ovarian cancer cells.
Collapse
Affiliation(s)
- Sima Hajiahmadi
- a Department of Clinical Biochemistry, School of Pharmacy and Isfahan Pharmaceutical Sciences Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mojtaba Panjehpour
- a Department of Clinical Biochemistry, School of Pharmacy and Isfahan Pharmaceutical Sciences Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mahmoud Aghaei
- a Department of Clinical Biochemistry, School of Pharmacy and Isfahan Pharmaceutical Sciences Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mahdi Shabani
- b Monoclonal Antibody Research Center, Avicenna Research Institute, ACECR, Tehran, Iran
| |
Collapse
|
13
|
Federico S, Ciancetta A, Porta N, Redenti S, Pastorin G, Cacciari B, Klotz KN, Moro S, Spalluto G. Scaffold Decoration at Positions 5 and 8 of 1,2,4-Triazolo[1,5-c]Pyrimidines to Explore the Antagonist Profiling on Adenosine Receptors: A Preliminary Structure–Activity Relationship Study. J Med Chem 2014; 57:6210-25. [DOI: 10.1021/jm500752h] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Stephanie Federico
- Dipartimento
di Scienze Chimiche e Farmaceutiche, Università di Trieste, Piazzale
Europa 1, 34127 Trieste, Italy
| | - Antonella Ciancetta
- Molecular
Modeling Section (MMS), Dipartimento di Scienze del Farmaco, Università di Padova, via Marzolo 5, 35131 Padova, Italy
| | - Nicola Porta
- Molecular
Modeling Section (MMS), Dipartimento di Scienze del Farmaco, Università di Padova, via Marzolo 5, 35131 Padova, Italy
| | - Sara Redenti
- Dipartimento
di Scienze Chimiche e Farmaceutiche, Università di Trieste, Piazzale
Europa 1, 34127 Trieste, Italy
| | - Giorgia Pastorin
- Department
of Pharmacy, National University of Singapore, 3 Science Drive 2, Singapore 117543, Singapore
| | - Barbara Cacciari
- Dipartimento
di Scienze Farmaceutiche, Università degli Studi di Ferrara, via Fossato di Mortara 17-19, 44100 Ferrara, Italy
| | - Karl Norbert Klotz
- Institut
für Pharmakologie, Universität of Würzburg, Versbacher
Strasse 9, 97078 Würzburg, Germany
| | - Stefano Moro
- Molecular
Modeling Section (MMS), Dipartimento di Scienze del Farmaco, Università di Padova, via Marzolo 5, 35131 Padova, Italy
| | - Giampiero Spalluto
- Dipartimento
di Scienze Chimiche e Farmaceutiche, Università di Trieste, Piazzale
Europa 1, 34127 Trieste, Italy
| |
Collapse
|