1
|
Xiao B, Xiao J, Liu S, Xiao X, Dai S, Sui Y, Wu J, Ye H. Peroxynitrite scavenger FeTPPS binds with hCT to effectively inhibit its amyloid aggregation. Dalton Trans 2024; 53:17036-17049. [PMID: 39355983 DOI: 10.1039/d4dt02214a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/03/2024]
Abstract
Human calcitonin (hCT) is an endogenous polypeptide commonly employed in treating bone resorption-related illnesses, but its clinical application is limited due to its high aggregation tendency. Metalloporphyrins are effective in suppressing amyloid fibrillation, positioning them as potential drug candidates for amyloidogenic disorders like Alzheimer's and type 2 diabetes. In this work, we investigated the effects of Fe(III) meso-tetra(4-sulfonatophenyl)porphine chloride (FeTPPS), a highly efficient ONOO- decomposition catalyst, on hCT aggregation. Our findings reveal that FeTPPS effectively precludes hCT fibrillation by stabilizing the monomers and delaying the structural transition from α-helix bundles to β-sheet-rich aggregates. The macrocyclic ring of FeTPPS plays a significant role in disrupting hCT self-associations. Among various porphyrin analogs, those with an iron center and negatively charged peripheral substituents exhibit a stronger inhibitory effect on hCT aggregation. Spectroscopic analyses and computational simulations indicate that FeTPPS binds to hCT's core aggregation region via complexation with His20 in a 1 : 1 molar ratio. Hydrophobic interaction, hydrogen bonding, and π-π stacking with the residues involving Tyr12, Phe19, and Ala26 also contribute to the interactions. Collectively, our study provides a promising approach for developing novel hCT drug formulations and offers theoretical guidance for designing metalloporphyrin-based inhibitors for various amyloidosis conditions.
Collapse
Affiliation(s)
- Bin Xiao
- School of Chemistry and Chemical Engineering, Key Laboratory of Jiangxi Province for Special Optoelectronic Artificial Crystal Materials, Jinggangshan University, Ji'an, Jiangxi 343009, P. R. China.
| | - Junhao Xiao
- School of Chemistry and Chemical Engineering, Key Laboratory of Jiangxi Province for Special Optoelectronic Artificial Crystal Materials, Jinggangshan University, Ji'an, Jiangxi 343009, P. R. China.
| | - Sisi Liu
- School of Chemistry and Chemical Engineering, Key Laboratory of Jiangxi Province for Special Optoelectronic Artificial Crystal Materials, Jinggangshan University, Ji'an, Jiangxi 343009, P. R. China.
| | - Xiaoying Xiao
- School of Chemistry and Chemical Engineering, Key Laboratory of Jiangxi Province for Special Optoelectronic Artificial Crystal Materials, Jinggangshan University, Ji'an, Jiangxi 343009, P. R. China.
| | - Shengping Dai
- School of Chemistry and Chemical Engineering, Key Laboratory of Jiangxi Province for Special Optoelectronic Artificial Crystal Materials, Jinggangshan University, Ji'an, Jiangxi 343009, P. R. China.
| | - Yan Sui
- School of Chemistry and Chemical Engineering, Key Laboratory of Jiangxi Province for Special Optoelectronic Artificial Crystal Materials, Jinggangshan University, Ji'an, Jiangxi 343009, P. R. China.
| | - Jinming Wu
- Department of Experimental Medical Science, Faculty of Medicine, Lund University, 22100, Lund, Sweden
| | - Huixian Ye
- School of Chemistry and Chemical Engineering, Key Laboratory of Jiangxi Province for Special Optoelectronic Artificial Crystal Materials, Jinggangshan University, Ji'an, Jiangxi 343009, P. R. China.
| |
Collapse
|
2
|
Li W, Wu M, Li Y, Shen J. Reactive nitrogen species as therapeutic targets for autophagy/mitophagy modulation to relieve neurodegeneration in multiple sclerosis: Potential application for drug discovery. Free Radic Biol Med 2023; 208:37-51. [PMID: 37532065 DOI: 10.1016/j.freeradbiomed.2023.07.032] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 07/28/2023] [Accepted: 07/31/2023] [Indexed: 08/04/2023]
Abstract
Multiple sclerosis (MS) is a neuroinflammatory disease with limited therapeutic effects, eventually developing into handicap. Seeking novel therapeutic strategies for MS is timely important. Active autophagy/mitophagy could mediate neurodegeneration, while its roles in MS remain controversial. To elucidate the exact roles of autophagy/mitophagy and reveal its in-depth regulatory mechanisms, we conduct a systematic literature study and analyze the factors that might be responsible for divergent results obtained. The dynamic change levels of autophagy/mitophagy appear to be a determining factor for final neuron fate during MS pathology. Excessive neuronal autophagy/mitophagy contributes to neurodegeneration after disease onset at the active MS phase. Reactive nitrogen species (RNS) serve as key regulators for redox-related modifications and participate in autophagy/mitophagy modulation in MS. Nitric oxide (•NO) and peroxynitrite (ONOO-), two representative RNS, could nitrate or nitrosate Drp1/parkin/PINK1 pathway, activating excessive mitophagy and aggravating neuronal injury. Targeting RNS-mediated excessive autophagy/mitophagy could be a promising strategy for developing novel anti-MS drugs. In this review, we highlight the important roles of RNS-mediated autophagy/mitophagy in neuronal injury and review the potential therapeutic compounds with the bioactivities of inhibiting RNS-mediated autophagy/mitophagy activation and attenuating MS progression. Overall, we conclude that reactive nitrogen species could be promising therapeutic targets to regulate autophagy/mitophagy for multiple sclerosis treatment.
Collapse
Affiliation(s)
- Wenting Li
- Department of Pharmacy, The Eighth Affiliated Hospital, Sun Yat-Sen University, Shenzhen, China.
| | - Meiling Wu
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China.
| | - Yuzhen Li
- Department of Pharmacy, The Eighth Affiliated Hospital, Sun Yat-Sen University, Shenzhen, China.
| | - Jiangang Shen
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China.
| |
Collapse
|
3
|
Uribe P, Barra J, Painen K, Zambrano F, Schulz M, Moya C, Isachenko V, Isachenko E, Mallmann P, Sánchez R. FeTPPS, a Peroxynitrite Decomposition Catalyst, Ameliorates Nitrosative Stress in Human Spermatozoa. Antioxidants (Basel) 2023; 12:1272. [PMID: 37372002 DOI: 10.3390/antiox12061272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 06/01/2023] [Accepted: 06/03/2023] [Indexed: 06/29/2023] Open
Abstract
Excessive levels of reactive nitrogen species (RNS), such as peroxynitrite, promote nitrosative stress, which is an important cause of impaired sperm function. The metalloporphyrin FeTPPS is highly effective in catalyzing the decomposition of peroxynitrite, reducing its toxic effects in vivo and in vitro. FeTPPS has significant therapeutic potential in peroxynitrite-related diseases; however, its effects on human spermatozoa under nitrosative stress have not been described. This work aimed to evaluate the in vitro effect of FeTPPS against peroxynitrite-mediated nitrosative stress in human spermatozoa. For this purpose, spermatozoa from normozoospermic donors were exposed to 3-morpholinosydnonimine, a molecule that generates peroxynitrite. First, the FeTPPS-mediated peroxynitrite decomposition catalysis was analyzed. Then, its individual effect on sperm quality parameters was evaluated. Finally, the effect of FeTPPS on ATP levels, motility, mitochondrial membrane potential, thiol oxidation, viability, and DNA fragmentation was analyzed in spermatozoa under nitrosative stress conditions. The results showed that FeTPPS effectively catalyzes the decomposition of peroxynitrite without affecting sperm viability at concentrations up to 50 μmol/L. Furthermore, FeTPPS mitigates the deleterious effects of nitrosative stress on all sperm parameters analyzed. These results highlight the therapeutic potential of FeTPPS in reducing the negative impact of nitrosative stress in semen samples with high RNS levels.
Collapse
Affiliation(s)
- Pamela Uribe
- Center of Excellence in Translational Medicine-Scientific and Technological Bioresource Nucleus (CEMT-BIOREN), Faculty of Medicine, Universidad de La Frontera, Temuco 4810296, Chile
- Department of Internal Medicine, Faculty of Medicine, Universidad de La Frontera, Temuco 4781176, Chile
| | - Javiera Barra
- Center of Excellence in Translational Medicine-Scientific and Technological Bioresource Nucleus (CEMT-BIOREN), Faculty of Medicine, Universidad de La Frontera, Temuco 4810296, Chile
| | - Kevin Painen
- Center of Excellence in Translational Medicine-Scientific and Technological Bioresource Nucleus (CEMT-BIOREN), Faculty of Medicine, Universidad de La Frontera, Temuco 4810296, Chile
| | - Fabiola Zambrano
- Center of Excellence in Translational Medicine-Scientific and Technological Bioresource Nucleus (CEMT-BIOREN), Faculty of Medicine, Universidad de La Frontera, Temuco 4810296, Chile
- Department of Preclinical Sciences, Faculty of Medicine, Universidad de La Frontera, Temuco 4781176, Chile
| | - Mabel Schulz
- Center of Excellence in Translational Medicine-Scientific and Technological Bioresource Nucleus (CEMT-BIOREN), Faculty of Medicine, Universidad de La Frontera, Temuco 4810296, Chile
- Department of Preclinical Sciences, Faculty of Medicine, Universidad de La Frontera, Temuco 4781176, Chile
| | - Claudia Moya
- Center of Excellence in Translational Medicine-Scientific and Technological Bioresource Nucleus (CEMT-BIOREN), Faculty of Medicine, Universidad de La Frontera, Temuco 4810296, Chile
| | - Vladimir Isachenko
- Research Group in Reproductive Medicine, Department of Obstetrics and Gynecology, Cologne University, 50923 Köln, Germany
| | - Evgenia Isachenko
- Research Group in Reproductive Medicine, Department of Obstetrics and Gynecology, Cologne University, 50923 Köln, Germany
| | - Peter Mallmann
- Research Group in Reproductive Medicine, Department of Obstetrics and Gynecology, Cologne University, 50923 Köln, Germany
| | - Raúl Sánchez
- Center of Excellence in Translational Medicine-Scientific and Technological Bioresource Nucleus (CEMT-BIOREN), Faculty of Medicine, Universidad de La Frontera, Temuco 4810296, Chile
- Department of Preclinical Sciences, Faculty of Medicine, Universidad de La Frontera, Temuco 4781176, Chile
| |
Collapse
|
4
|
Lackovic J, Jeevakumar V, Burton M, Price TJ, Dussor G. Peroxynitrite Contributes to Behavioral Responses, Increased Trigeminal Excitability, and Changes in Mitochondrial Function in a Preclinical Model of Migraine. J Neurosci 2023; 43:1627-1642. [PMID: 36697259 PMCID: PMC10008057 DOI: 10.1523/jneurosci.1366-22.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 01/17/2023] [Accepted: 01/19/2023] [Indexed: 01/27/2023] Open
Abstract
Administration of a nitric oxide (NO) donor triggers migraine attacks, but the mechanisms by which this occurs are unknown. Reactive nitroxidative species, including NO and peroxynitrite (PN), have been implicated in nociceptive sensitization, and neutralizing PN is antinociceptive. We determined whether PN contributes to nociceptive responses in two distinct models of migraine headache. Female and male mice were subjected to 3 consecutive days of restraint stress or to dural stimulation with the proinflammatory cytokine interleukin-6. Following resolution of the initial poststimulus behavioral responses, animals were tested for hyperalgesic priming using a normally non-noxious dose of the NO donor sodium nitroprusside (SNP) or dural pH 7.0, respectively. We measured periorbital von Frey and grimace responses in both models and measured stress-induced changes in 3-nitrotyrosine (3-NT) expression (a marker for PN activity) and trigeminal ganglia (TGs) mitochondrial function. Additionally, we recorded the neuronal activity of TGs in response to the PN generator SIN-1 [5-amino-3-(4-morpholinyl)-1,2,3-oxadiazolium chloride]. We then tested the effects of the PN decomposition catalysts Fe(III)5,10,15,20-tetrakis(N-methylpyridinium-4-yl) porphyrin (FeTMPyP) and FeTPPS [Fe(III)5,10,15,20-tetrakis(4-sulfonatophenyl)porphyrinato chloride], or the PN scavenger MnTBAP [Mn(III)tetrakis(4-benzoic acid)porphyrin] against these behavioral, molecular, and neuronal changes. Neutralizing PN attenuated stress-induced periorbital hypersensitivity and priming to SNP, with no effect on priming to dural pH 7.0. These compounds also prevented stress-induced increases in 3-NT expression in both the TGs and dura mater, and attenuated TG neuronal hyperexcitability caused by SIN-1. Surprisingly, FeTMPyP attenuated changes in TG mitochondrial function caused by SNP in stressed males only. Together, these data strongly implicate PN in migraine mechanisms and highlight the therapeutic potential of targeting PN.SIGNIFICANCE STATEMENT Among the most reliable experimental triggers of migraine are nitric oxide donors. The mechanisms by which nitric oxide triggers attacks are unclear but may be because of reactive nitroxidative species such as peroxynitrite. Using mouse models of migraine headache, we show that peroxynitrite-modulating compounds attenuate behavioral, neuronal, and molecular changes caused by repeated stress and nitric oxide donors (two of the most common triggers of migraine in humans). Additionally, our results show a sex-specific regulation of mitochondrial function by peroxynitrite following stress, providing novel insight into the ways in which peroxynitrite may contribute to migraine-related mechanisms. Critically, our data underscore the potential in targeting peroxynitrite formation as a novel therapeutic for the treatment of migraine headache.
Collapse
Affiliation(s)
- Jacob Lackovic
- School of Behavioral and Brain Sciences, The University of Texas at Dallas, Richardson, Texas 75080
| | - Vivek Jeevakumar
- School of Behavioral and Brain Sciences, The University of Texas at Dallas, Richardson, Texas 75080
| | - Michael Burton
- School of Behavioral and Brain Sciences, The University of Texas at Dallas, Richardson, Texas 75080
| | - Theodore J Price
- School of Behavioral and Brain Sciences, The University of Texas at Dallas, Richardson, Texas 75080
| | - Gregory Dussor
- School of Behavioral and Brain Sciences, The University of Texas at Dallas, Richardson, Texas 75080
| |
Collapse
|
5
|
Maia CGC, de Araujo BCR, de Freitas-Marques MB, da Costa IF, Yoshida MI, da Nova Mussel W, Sebastião RDCO, Rebouças JS. Thermal Stability Kinetics and Shelf Life Estimation of the Redox-Active Therapeutic and Mimic of Superoxide Dismutase Enzyme, Mn(III) meso-Tetrakis( N-ethylpyridinium-2-yl)porphyrin Chloride (MnTE-2-PyPCl 5, BMX-010). OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:7003861. [PMID: 34912497 PMCID: PMC8668311 DOI: 10.1155/2021/7003861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 11/12/2021] [Indexed: 11/17/2022]
Abstract
Mn(III) meso-tetrakis(N-ethylpyridinium-2-yl)porphyrin chloride (MnTE-2-PyPCl5, BMX-010, and AEOL10113) is among the most studied superoxide dismutase (SOD) mimics and redox-active therapeutics, being currently tested as a drug candidate in a phase II clinical trial on atopic dermatitis and itch. The thermal stability of active pharmaceutical ingredients (API) is useful for estimating the expiration date and shelf life of pharmaceutical products under various storage and handling conditions. The thermal decomposition and kinetic parameters of MnTE-2-PyPCl5 were determined by thermogravimetry (TG) under nonisothermal and isothermal conditions. The first thermal degradation pathway affecting Mn-porphyrin structural integrity and, thus, activity and bioavailability was associated with loss of ethyl chloride via N-dealkylation reaction. The thermal stability kinetics of the N-dealkylation process leading to MnTE-2-PyPCl5 decomposition was investigated by using isoconversional models and artificial neural network. The new multilayer perceptron (MLP) artificial neural network approach allowed the simultaneous study of ten solid-state kinetic models and showed that MnTE-2-PyPCl5 degradation is better explained by a combination of various mechanisms, with major contributions from the contraction models R1 and R2. The calculated activation energy values from isothermal and nonisothermal data were about 90 kJ mol-1 on average and agreed with one another. According to the R1 modelling of the isothermal decomposition data, the estimated shelf life value for 10% decomposition (t 90%) of MnTE-2-PyPCl5 at 25°C was approximately 17 years, which is consistent with the high solid-state stability of the compound. These results represent the first study on the solid-state decomposition kinetics of Mn(III) 2-N-alkylpyridylporphyrins, contributing to the development of this class of redox-active therapeutics and SOD mimics and providing supporting data to protocols on purification, handling, storage, formulation, expiration date, and general use of these compounds.
Collapse
Affiliation(s)
- Clarissa G. C. Maia
- Departamento de Química, Centro de Ciências Exatas e da Natureza, Universidade Federal da Paraíba, João Pessoa, PB 58051-900, Brazil
| | - Bárbara C. R. de Araujo
- Departamento de Química, Instituto de Ciências Exatas, Universidade Federal de Minas Gerais, Belo Horizonte, MG 31207-901, Brazil
| | - Maria B. de Freitas-Marques
- Departamento de Química, Instituto de Ciências Exatas, Universidade Federal de Minas Gerais, Belo Horizonte, MG 31207-901, Brazil
| | - Israel F. da Costa
- Departamento de Química, Centro de Ciências Exatas e da Natureza, Universidade Federal da Paraíba, João Pessoa, PB 58051-900, Brazil
| | - Maria Irene Yoshida
- Departamento de Química, Instituto de Ciências Exatas, Universidade Federal de Minas Gerais, Belo Horizonte, MG 31207-901, Brazil
| | - Wagner da Nova Mussel
- Departamento de Química, Instituto de Ciências Exatas, Universidade Federal de Minas Gerais, Belo Horizonte, MG 31207-901, Brazil
| | - Rita de Cássia O. Sebastião
- Departamento de Química, Instituto de Ciências Exatas, Universidade Federal de Minas Gerais, Belo Horizonte, MG 31207-901, Brazil
| | - Júlio S. Rebouças
- Departamento de Química, Centro de Ciências Exatas e da Natureza, Universidade Federal da Paraíba, João Pessoa, PB 58051-900, Brazil
| |
Collapse
|
6
|
Li L, Tovmasyan A, Sheng H, Xu B, Sampaio RS, Reboucas JS, Warner DS, Batinic-Haberle I, Spasojevic I. Fe Porphyrin-Based SOD Mimic and Redox-Active Compound, (OH)FeTnHex-2-PyP 4+, in a Rodent Ischemic Stroke (MCAO) Model: Efficacy and Pharmacokinetics as Compared to Its Mn Analogue, (H 2O)MnTnHex-2-PyP 5+. Antioxidants (Basel) 2020; 9:antiox9060467. [PMID: 32492872 PMCID: PMC7346179 DOI: 10.3390/antiox9060467] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 05/22/2020] [Accepted: 05/22/2020] [Indexed: 01/01/2023] Open
Abstract
Mn(III) meso-tetrakis(N-n-hexylpyridinium-2-yl)porphyrin, (H2O)MnTnHex-2-PyP5+ (MnHex) carrying long hexyl chains, is a lipophilic mimic of superoxide dismutase (SOD) and a redox-active drug candidate. MnHex crosses the blood–brain barrier, and improved neurologic outcome and decreased infarct size and inflammation in a rat middle cerebral artery occlusion (MCAO) ischemic stroke model. Yet, the dose and the therapeutic efficacy of Mn porphyrin were limited by an adverse effect of arterial hypotension. An equally lipophilic Fe analog, (OH)FeTnHex-2-PyP4+ (FeHex), is as redox-active and potent SOD mimic in vitro. With different coordination geometry of the metal site, FeHex has one hydroxo (OH) ligand (instead of water) bound to the Fe center in the axial position. It has ~2 orders of magnitude higher efficacy than MnHex in an SOD-deficient E. coli model of oxidative stress. In vivo, it does not cause arterial hypotension and is less toxic to mice. We thus evaluated FeHex versus MnHex in a rodent MCAO model. We first performed short- and long-term pharmacokinetics (PK) of both porphyrins in the plasma, brain, and liver of rats and mice. Given that damage to the brain during stroke occurs very rapidly, fast delivery of a sufficient dose of drug is important. Therefore, we aimed to demonstrate if, and how fast after reperfusion, Fe porphyrin reaches the brain relative to the Mn analog. A markedly different plasma half-life was found with FeHex (~23 h) than with MnHex (~1.4 h), which resulted in a more than 2-fold higher plasma exposure (AUC) in a 7-day twice-daily treatment of rats. The increased plasma half-life is explained by the much lower liver retention of FeHex than typically found in Mn analogs. In the brain, a 3-day mouse PK study showed similar levels of MnHex and FeHex. The same result was obtained in a 7-day rat PK study, despite the higher plasma exposure of FeHex. Importantly, in a short-term PK study with treatment starting 2 h post MCAO, both Fe- and Mn- analogs distributed at a higher level to the injured brain hemisphere, with a more pronounced effect observed with FeHex. While a 3-day mouse MCAO study suggested the efficacy of Fe porphyrin, in a 7-day rat MCAO study, Mn-, but not Fe porphyrin, was efficacious. The observed lack of FeHex efficacy was discussed in terms of significant differences in the chemistry of Fe vs. the Mn center of metalloporphyrin; relative to MnHex, FeHex has the propensity for axial coordination, which in vivo would preclude the reactivity of the Fe center towards small reactive species.
Collapse
Affiliation(s)
- Litao Li
- Multidisciplinary Neuroprotection Laboratories, Departments of Anesthesiology, Biomedical Engineering, Neurobiology, and Neurosurgery, Duke University School of Medicine, Durham, NC 27710, USA; (L.L.); (H.S.); (B.X.); (D.S.W.)
| | - Artak Tovmasyan
- Department of Radiation Oncology, Duke University School of Medicine, Durham, NC 27710, USA; (A.T.); (I.B.-H.)
| | - Huaxin Sheng
- Multidisciplinary Neuroprotection Laboratories, Departments of Anesthesiology, Biomedical Engineering, Neurobiology, and Neurosurgery, Duke University School of Medicine, Durham, NC 27710, USA; (L.L.); (H.S.); (B.X.); (D.S.W.)
| | - Bin Xu
- Multidisciplinary Neuroprotection Laboratories, Departments of Anesthesiology, Biomedical Engineering, Neurobiology, and Neurosurgery, Duke University School of Medicine, Durham, NC 27710, USA; (L.L.); (H.S.); (B.X.); (D.S.W.)
| | - Romulo S. Sampaio
- Departamento de Química, CCEN, Universidade Federal da Paraíba, João Pessoa, PB 58051-900, Brazil; (R.S.S.); (J.S.R.)
| | - Julio S. Reboucas
- Departamento de Química, CCEN, Universidade Federal da Paraíba, João Pessoa, PB 58051-900, Brazil; (R.S.S.); (J.S.R.)
| | - David S. Warner
- Multidisciplinary Neuroprotection Laboratories, Departments of Anesthesiology, Biomedical Engineering, Neurobiology, and Neurosurgery, Duke University School of Medicine, Durham, NC 27710, USA; (L.L.); (H.S.); (B.X.); (D.S.W.)
| | - Ines Batinic-Haberle
- Department of Radiation Oncology, Duke University School of Medicine, Durham, NC 27710, USA; (A.T.); (I.B.-H.)
| | - Ivan Spasojevic
- Department of Medicine, Duke University School of Medicine, Durham, NC 27710, USA
- PK/PD Core Laboratory, Duke Cancer Institute, Duke University School of Medicine, Durham, NC 27710, USA
- Correspondence: ; Tel.: +919-684-8311
| |
Collapse
|
7
|
Fukuda S, Ihara K, Andersen CR, Randolph AC, Nelson CL, Zeng Y, Kim J, DeWitt DS, Rojas JD, Koutrouvelis A, Herndon DN, Prough DS, Enkhbaatar P. Modulation of Peroxynitrite Reduces Norepinephrine Requirements in Ovine MRSA Septic Shock. Shock 2019; 52:e92-e99. [PMID: 30499879 DOI: 10.1097/shk.0000000000001297] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Vascular hypo-responsiveness to vasopressors during septic shock is a challenging problem. This study is to test the hypothesis that reactive nitrogen species (RNS), such as peroxynitrite, are major contributing factors to vascular hypo-responsiveness in septic shock. We hypothesized that adjunct therapy with peroxynitrite decomposition catalyst (PDC) would reduce norepinephrine requirements in sepsis resuscitation. Fourteen female Merino sheep were subjected to a "two-hit" injury (smoke inhalation and endobronchial instillation of live methicillin-resistant Staphylococcus aureus [1.6-2.5 × 10 CFUs]). The animals were randomly allocated to control: injured, fluid resuscitated, and titrated norepinephrine, n = 7; or PDC: injured, fluid resuscitated, titrated norepinephrine, and treated with PDC, n = 7. One-hour postinjury, an intravenous injection of PDC (0.1 mg/kg) was followed by a continuous infusion (0.04 mg/kg/h). Titration of norepinephrine started at 0.05 mcg/kg/min based on their mean arterial pressure. All animals were mechanically ventilated and monitored in the conscious state for 24 h. The mean arterial pressure was well maintained in the PDC with significantly less norepinephrine requirement from 7 to 23 h after injury compared with control. Total norepinephrine dose, the highest norepinephrine rate, and time on norepinephrine support were also significantly lower in PDC. Modified sheep organ failure assessment scores at 6 to 18 h postinjury were significantly lower in PDC compared with control. PDC improved survival rate at 24 h (71.4% vs. 28.6%). PDC treatment had no adverse effects. In conclusion, the modulation of RNS may be considered an effective adjunct therapy for septic shock, in the case of hypo-responsiveness to norepinephrine.
Collapse
Affiliation(s)
- Satoshi Fukuda
- Department of Anesthesiology, University of Texas Medical Branch, Galveston, Texas
- Shriners Hospital for Children, Galveston, Texas
| | - Koji Ihara
- Department of Anesthesiology, University of Texas Medical Branch, Galveston, Texas
| | - Clark R Andersen
- Department of Preventive Medicine and Community Health, Office of Biostatistics, University of Texas Medical Branch, Galveston, Texas
| | - Anita C Randolph
- Department of Anesthesiology, University of Texas Medical Branch, Galveston, Texas
| | - Christina L Nelson
- Department of Anesthesiology, University of Texas Medical Branch, Galveston, Texas
| | - Yaping Zeng
- Department of Anesthesiology, University of Texas Medical Branch, Galveston, Texas
| | - Jisoo Kim
- Department of Anesthesiology, University of Texas Medical Branch, Galveston, Texas
| | - Douglas S DeWitt
- Department of Anesthesiology, University of Texas Medical Branch, Galveston, Texas
| | - Jose D Rojas
- Department of Respiratory Care, School of Health Professions, University of Texas Medical Branch, Galveston, Texas
| | | | | | - Donald S Prough
- Department of Anesthesiology, University of Texas Medical Branch, Galveston, Texas
- Shriners Hospital for Children, Galveston, Texas
| | - Perenlei Enkhbaatar
- Department of Anesthesiology, University of Texas Medical Branch, Galveston, Texas
- Shriners Hospital for Children, Galveston, Texas
| |
Collapse
|
8
|
Fujiwara O, Fukuda S, Lopez E, Zeng Y, Niimi Y, DeWitt DS, Herndon DN, Prough DS, Enkhbaatar P. Peroxynitrite decomposition catalyst reduces vasopressin requirement in ovine MRSA sepsis. Intensive Care Med Exp 2019; 7:12. [PMID: 31512009 PMCID: PMC6738358 DOI: 10.1186/s40635-019-0227-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Accepted: 02/18/2019] [Indexed: 12/19/2022] Open
Abstract
Background Sepsis is one of the most frequent causes of death in the intensive care unit. Host vascular hypo-responsiveness to vasopressors during septic shock is one of the challenging problems. This study tested the hypothesis that adjunct therapy with peroxynitrite decomposition catalyst (WW-85) would reduce arginine vasopressin (AVP) requirements during sepsis resuscitation, using ovine sepsis model. Methods Thirteen adult female Merino sheep, previously instrumented with multiple vascular catheters, were subjected to “two-hit” (cotton smoke inhalation and intrapulmonary instillation of live methicillin-resistant Staphylococcus aureus; 3.5 × 1011 colony-forming units) injury. Post injury, animals were awakened and randomly allocated to the following groups: (1) AVP: injured, fluid resuscitated, and titrated with AVP, n = 6 or (2) WW-85 + AVP: injured, fluid resuscitated, treated with WW-85, and titrated with AVP, n = 7. One-hour post injury, a bolus intravenous injection of WW-85 (0.1 mg/kg) was followed by a 23-h continuous infusion (0.02 mg/kg/h). Titration of AVP started at a dose of 0.01 unit/min, when mean arterial pressure (MAP) decreased by 10 mmHg from baseline, despite aggressive fluid resuscitation, and the rate was further adjusted to maintain MAP. After the injury, all animals were placed on a mechanical ventilator and monitored in the conscious state for 24 h. Results The injury induced severe hypotension refractory to aggressive fluid resuscitation. High doses of AVP were required to partially attenuate the sepsis-induced hypotension. However, the cumulative AVP requirement was significantly reduced by adjunct treatment with WW-85 at 17–24 h after the injury (p < 0.05). Total AVP dose and the highest AVP rate were significantly lower in the WW-85 + AVP group compared to the AVP group (p = 0.02 and 0.04, respectively). Treatment with WW-85 had no adverse effects. In addition, the in vitro effects of AVP on isolated artery diameter changes were abolished with peroxynitrite co-incubation. Conclusions The modulation of reactive nitrogen species, such as peroxynitrite, may be considered as a novel adjunct treatment option for septic shock associated with vascular hypo-responsiveness to vasopressors.
Collapse
Affiliation(s)
- Osamu Fujiwara
- Department of Anesthesiology, University of Texas Medical Branch, 301 University Boulevard, Galveston, TX, 77555 1102, USA
| | - Satoshi Fukuda
- Department of Anesthesiology, University of Texas Medical Branch, 301 University Boulevard, Galveston, TX, 77555 1102, USA
| | - Ernesto Lopez
- Department of Anesthesiology, University of Texas Medical Branch, 301 University Boulevard, Galveston, TX, 77555 1102, USA
| | - Yaping Zeng
- Department of Anesthesiology, University of Texas Medical Branch, 301 University Boulevard, Galveston, TX, 77555 1102, USA
| | - Yosuke Niimi
- Department of Anesthesiology, University of Texas Medical Branch, 301 University Boulevard, Galveston, TX, 77555 1102, USA
| | - Douglas S DeWitt
- Department of Anesthesiology, University of Texas Medical Branch, 301 University Boulevard, Galveston, TX, 77555 1102, USA
| | - David N Herndon
- Shriners Hospital for Children, Galveston, Texas, USA.,Department of Surgery, University of Texas Medical Branch, Galveston, Texas, USA
| | - Donald S Prough
- Department of Anesthesiology, University of Texas Medical Branch, 301 University Boulevard, Galveston, TX, 77555 1102, USA
| | - Perenlei Enkhbaatar
- Department of Anesthesiology, University of Texas Medical Branch, 301 University Boulevard, Galveston, TX, 77555 1102, USA. .,Shriners Hospital for Children, Galveston, Texas, USA.
| |
Collapse
|
9
|
Zhang P, Ma L, Yang Z, Li H, Gao Z. Study on the detoxification mechanisms to 5,10,15,20-tetrakis (4-sulfonatophenyl) porphyrinato iron(III) chloride (FeTPPS), an efficient pro-oxidant of heme water-soluble analogue. J Inorg Biochem 2018; 189:40-52. [DOI: 10.1016/j.jinorgbio.2018.08.016] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2018] [Revised: 08/19/2018] [Accepted: 08/30/2018] [Indexed: 11/30/2022]
|
10
|
Zhu S, Jiang X, Boudreau MD, Feng G, Miao Y, Dong S, Wu H, Zeng M, Yin JJ. Orally administered gold nanoparticles protect against colitis by attenuating Toll-like receptor 4- and reactive oxygen/nitrogen species-mediated inflammatory responses but could induce gut dysbiosis in mice. J Nanobiotechnology 2018; 16:86. [PMID: 30384844 PMCID: PMC6211593 DOI: 10.1186/s12951-018-0415-5] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Accepted: 10/25/2018] [Indexed: 11/17/2022] Open
Abstract
Background Gold nanoparticles (AuNPs) are attracting interest as potential therapeutic agents to treat inflammatory diseases, but their anti-inflammatory mechanism of action is not clear yet. In addition, the effect of orally administered AuNPs on gut microbiota has been overlooked so far. Here, we evaluated the therapeutic and gut microbiota-modulating effects, as well as the anti-inflammatory paradigm, of AuNPs with three different coatings and five difference sizes in experimental mouse colitis and RAW264.7 macrophages. Results Citrate- and polyvinylpyrrolidone (PVP)-stabilized 5-nm AuNPs (Au-5 nm/Citrate and Au-5 nm/PVP) and tannic acid (TA)-stabilized 5-, 10-, 15-, 30- and 60-nm AuNPs were intragastrically administered to C57BL/6 mice daily for 8 days during and after 5-day dextran sodium sulfate exposure. Clinical signs and colon histopathology revealed more marked anti-colitis effects by oral administration of Au-5 nm/Citrate and Au-5 nm/PVP, when compared to TA-stabilized AuNPs. Based on colonic myeloperoxidase activity, colonic and peripheral levels of interleukin-6 and tumor necrosis factor-α, and peripheral counts of leukocyte and lymphocyte, Au-5 nm/Citrate and Au-5 nm/PVP attenuated colonic and systemic inflammation more effectively than TA-stabilized AuNPs. High-throughput sequencing of fecal 16S rRNA indicated that AuNPs could induce gut dysbiosis in mice by decreasing the α-diversity, the Firmicutes/Bacteroidetes ratio, certain short-chain fatty acid-producing bacteria and Lactobacillus. Based on in vitro studies using RAW264.7 cells and electron spin resonance oximetry, AuNPs inhibited lipopolysaccharide (LPS)-triggered inducible nitric oxide (NO) synthase expression and NO production via reduction of Toll-like receptor 4 (TLR4), and attenuated LPS-induced nuclear factor kappa beta activation and proinflammatory cytokine production via both TLR4 reduction and catalytic detoxification of peroxynitrite and hydrogen peroxide. Conclusions AuNPs have promising potential as anti-inflammatory agents; however, their therapeutic applications via the oral route may have a negative impact on the gut microbiota.![]() Electronic supplementary material The online version of this article (10.1186/s12951-018-0415-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Suqin Zhu
- College of Food Science and Engineering, Ocean University of China, 5 Yushan Road, Qingdao, 266003, Shandong, China
| | - Xiumei Jiang
- Division of Analytical Chemistry, Office of Regulatory Science, Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, College Park, MD, 20740, USA
| | - Mary D Boudreau
- Division of Biochemical Toxicology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, 72079, AR, USA
| | - Guangxin Feng
- College of Food Science and Engineering, Ocean University of China, 5 Yushan Road, Qingdao, 266003, Shandong, China
| | - Yu Miao
- Department of Clinical Laboratory, The Affiliated Hospital of Qingdao University, Qingdao, 266003, Shandong, China
| | - Shiyuan Dong
- College of Food Science and Engineering, Ocean University of China, 5 Yushan Road, Qingdao, 266003, Shandong, China
| | - Haohao Wu
- College of Food Science and Engineering, Ocean University of China, 5 Yushan Road, Qingdao, 266003, Shandong, China.
| | - Mingyong Zeng
- College of Food Science and Engineering, Ocean University of China, 5 Yushan Road, Qingdao, 266003, Shandong, China.
| | - Jun-Jie Yin
- Division of Analytical Chemistry, Office of Regulatory Science, Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, College Park, MD, 20740, USA
| |
Collapse
|
11
|
The cystine/glutamate antiporter system xc- drives breast tumor cell glutamate release and cancer-induced bone pain. Pain 2017; 157:2605-2616. [PMID: 27482630 PMCID: PMC5065056 DOI: 10.1097/j.pain.0000000000000681] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Supplemental Digital Content is Available in the Text. Tumor-derived glutamate may significantly contribute to cancer-induced bone pain. The glutamate transporter system xc− is a promising therapeutic target in this pain state. Bone is one of the leading sites of metastasis for frequently diagnosed malignancies, including those arising in the breast, prostate and lung. Although these cancers develop unnoticed and are painless in their primary sites, bone metastases result in debilitating pain. Deeper investigation of this pain may reveal etiology and lead to early cancer detection. Cancer-induced bone pain (CIBP) is inadequately managed with current standard-of-care analgesics and dramatically diminishes patient quality of life. While CIBP etiology is multifaceted, elevated levels of glutamate, an excitatory neurotransmitter, in the bone-tumor microenvironment may drive maladaptive nociceptive signaling. Here, we establish a relationship between the reactive nitrogen species peroxynitrite, tumor-derived glutamate, and CIBP. In vitro and in a syngeneic in vivo model of breast CIBP, murine mammary adenocarcinoma cells significantly elevated glutamate via the cystine/glutamate antiporter system xc−. The well-known system xc− inhibitor sulfasalazine significantly reduced levels of glutamate and attenuated CIBP-associated flinching and guarding behaviors. Peroxynitrite, a highly reactive species produced in tumors, significantly increased system xc− functional expression and tumor cell glutamate release. Scavenging peroxynitrite with the iron and mangano-based porphyrins, FeTMPyP and SRI10, significantly diminished tumor cell system xc− functional expression, reduced femur glutamate levels and mitigated CIBP. In sum, we demonstrate how breast cancer bone metastases upregulate a cystine/glutamate co-transporter to elevate extracellular glutamate. Pharmacological manipulation of peroxynitrite or system xc− attenuates CIBP, supporting a role for tumor-derived glutamate in CIBP and validating the targeting of system xc− as a novel therapeutic strategy for the management of metastatic bone pain.
Collapse
|
12
|
McBean GJ, López MG, Wallner FK. Redox-based therapeutics in neurodegenerative disease. Br J Pharmacol 2017; 174:1750-1770. [PMID: 27477685 PMCID: PMC5446580 DOI: 10.1111/bph.13551] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2015] [Revised: 06/02/2016] [Accepted: 07/01/2016] [Indexed: 12/13/2022] Open
Abstract
This review describes recent developments in the search for effective therapeutic agents that target redox homeostasis in neurodegenerative disease. The disruption to thiol redox homeostasis in Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis and multiple sclerosis is discussed, together with the experimental strategies that are aimed at preventing, or at least minimizing, oxidative damage in these diseases. Particular attention is given to the potential of increasing antioxidant capacity by targeting the Nrf2 pathway, the development of inhibitors of NADPH oxidases that are likely candidates for clinical use, together with strategies to reduce nitrosative stress and mitochondrial dysfunction. We describe the shortcomings of compounds that hinder their progression to the clinic and evaluate likely avenues for future research. LINKED ARTICLES This article is part of a themed section on Redox Biology and Oxidative Stress in Health and Disease. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v174.12/issuetoc.
Collapse
Affiliation(s)
- G J McBean
- School of Biomolecular and Biomedical Science, Conway InstituteUniversity College DublinDublinIreland
| | - M G López
- Instituto Teófilo Hernando for Drug Discovery, Department of Pharmacology, School of MedicineUniversidad Autónoma de MadridMadridSpain
| | - F K Wallner
- Redoxis ABSweden and University of SkövdeSkövdeSweden
| |
Collapse
|
13
|
Dezest M, Bulteau AL, Quinton D, Chavatte L, Le Bechec M, Cambus JP, Arbault S, Nègre-Salvayre A, Clément F, Cousty S. Oxidative modification and electrochemical inactivation of Escherichia coli upon cold atmospheric pressure plasma exposure. PLoS One 2017; 12:e0173618. [PMID: 28358809 PMCID: PMC5373509 DOI: 10.1371/journal.pone.0173618] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2016] [Accepted: 02/23/2017] [Indexed: 11/19/2022] Open
Abstract
Cold atmospheric pressure plasmas (CAPPs) are known to have bactericidal effects but the mechanism of their interaction with microorganisms remains poorly understood. In this study the bacteria Escherichia coli were used as a model and were exposed to CAPPs. Different gas compositions, helium with or without adjunctions of nitrogen or oxygen, were used. Our results indicated that CAPP induced bacterial death at decontamination levels depend on the duration, post-treatment storage and the gas mixture composition used for the treatment. The plasma containing O2 in the feeding gas was the most aggressive and showed faster bactericidal effects. Structural modifications of treated bacteria were observed, especially significant was membrane leakage and morphological changes. Oxidative stress caused by plasma treatment led to significant damage of E. coli. Biochemical analyses of bacterial macromolecules indicated massive intracellular protein oxidation. However, reactive oxygen and nitrogen species (RONS) are not the only actors involved in E. coli's death, electrical field and charged particles could play a significant role especially for He-O2 CAPP.
Collapse
Affiliation(s)
- Marlène Dezest
- UMR 5254, IPREM, Université de Pau et des pays de l’Adour, Pau, France
| | - Anne-Laure Bulteau
- UMR 5254, IPREM, Université de Pau et des pays de l’Adour, Pau, France
- * E-mail:
| | - Damien Quinton
- NSysA group, ENSCBP, CNRS UMR 5255, ISM, Université de Bordeaux, Pessac, France
| | - Laurent Chavatte
- UMR 5254, IPREM, Université de Pau et des pays de l’Adour, Pau, France
| | - Mickael Le Bechec
- UMR 5254, IPREM, Université de Pau et des pays de l’Adour, Pau, France
| | | | - Stéphane Arbault
- NSysA group, ENSCBP, CNRS UMR 5255, ISM, Université de Bordeaux, Pessac, France
| | | | - Franck Clément
- UMR 5254, IPREM, Université de Pau et des pays de l’Adour, Pau, France
| | - Sarah Cousty
- Faculté de Chirurgie Dentaire de Toulouse, centre Hospitalier Universitaire de Toulouse, Université Paul Sabatier, Toulouse, France
| |
Collapse
|
14
|
Constantino L, Galant LS, Vuolo F, Guarido KL, Kist LW, de Oliveira GMT, Pasquali MADB, de Souza CT, da Silva-Santos JE, Bogo MR, Moreira JCF, Ritter C, Dal-Pizzol F. Extracellular superoxide dismutase is necessary to maintain renal blood flow during sepsis development. Intensive Care Med Exp 2017; 5:15. [PMID: 28303482 PMCID: PMC5355399 DOI: 10.1186/s40635-017-0130-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Accepted: 03/09/2017] [Indexed: 11/10/2022] Open
Abstract
Background Extracellular superoxide dismutase (ECSOD) protects nitric oxide (NO) bioavailability by decreasing superoxide levels and preventing peroxynitrite generation, which is important in maintaining renal blood flow and in preventing acute kidney injury. However, the profile of ECSOD expression after sepsis is not fully understood. Therefore, we intended to evaluate the content and gene expression of superoxide dismutase (SOD) isoforms in the renal artery and their relation to renal blood flow. Methods Sepsis was induced in Wistar rats by caecal ligation and perforation. Several times after sepsis induction, renal blood flow (12, 24 and 48 h); the renal arterial content of SOD isoforms, nitrotyrosine, endothelial and inducible nitric oxide synthase (e-NOS and i-NOS), and phosphorylated vasodilator-stimulated phosphoprotein (pVASP); and SOD activity (3, 6 and 12 h) were measured. The influence of a SOD inhibitor was also evaluated. Results An increase in ECSOD content was associated with decreased 3-nitrotyrosine levels. These events were associated with an increase in pVASP content and maintenance of renal blood flow. Moreover, previous treatment with a SOD inhibitor increased nitrotyrosine content and reduced renal blood flow. Conclusions ECSOD appears to have a major role in decreasing peroxynitrite formation in the renal artery during the early stages of sepsis development, and its application can be important in renal blood flow control and maintenance during septic insult.
Collapse
Affiliation(s)
- Larissa Constantino
- Laboratório de Fisiopatologia Experimental, Universidade do Extremo Sul Catarinense, Avenida Universitária, 1105, 88806-000, Criciúma, SC, Brazil
| | - Letícia Selinger Galant
- Laboratório de Fisiopatologia Experimental, Universidade do Extremo Sul Catarinense, Avenida Universitária, 1105, 88806-000, Criciúma, SC, Brazil
| | - Francieli Vuolo
- Laboratório de Fisiopatologia Experimental, Universidade do Extremo Sul Catarinense, Avenida Universitária, 1105, 88806-000, Criciúma, SC, Brazil
| | - Karla Lorena Guarido
- Departamento de Farmacologia, Laboratório de Biologia Cardiovascular, Universidade Federal de Santa Catarina, Campus Trindade, CEP 88040-900, Florianópolis, SC, Brazil
| | - Luiza Wilges Kist
- Laboratório de Biologia Genômica e Molecular, Faculdade de Biociências, Pontifícia Universidade Católica do Rio Grande do Sul, Avenida Ipiranga, 6681, 90619-900, Porto Alegre, RS, Brazil
| | - Giovanna Medeiros Tavares de Oliveira
- Laboratório de Biologia Genômica e Molecular, Faculdade de Biociências, Pontifícia Universidade Católica do Rio Grande do Sul, Avenida Ipiranga, 6681, 90619-900, Porto Alegre, RS, Brazil
| | - Matheus Augusto de Bittencourt Pasquali
- Departamento de Bioquímica, Centro de Estudos em Estresse Oxidativo (Lab. 32), ICBS, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos, 2600-Anexo, CEP 90035-003, Porto Alegre, RS, Brazil
| | - Cláudio Teodoro de Souza
- Laboratório de Fisiologia e Bioquímica do Exercício, Universidade do Extremo Sul Catarinense, Avenida Universitária, 1105, 88806-000, Criciúma, SC, Brazil
| | - José Eduardo da Silva-Santos
- Departamento de Farmacologia, Laboratório de Biologia Cardiovascular, Universidade Federal de Santa Catarina, Campus Trindade, CEP 88040-900, Florianópolis, SC, Brazil
| | - Maurício Reis Bogo
- Laboratório de Biologia Genômica e Molecular, Faculdade de Biociências, Pontifícia Universidade Católica do Rio Grande do Sul, Avenida Ipiranga, 6681, 90619-900, Porto Alegre, RS, Brazil
| | - José Cláudio Fonseca Moreira
- Departamento de Bioquímica, Centro de Estudos em Estresse Oxidativo (Lab. 32), ICBS, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos, 2600-Anexo, CEP 90035-003, Porto Alegre, RS, Brazil
| | - Cristiane Ritter
- Laboratório de Fisiopatologia Experimental, Universidade do Extremo Sul Catarinense, Avenida Universitária, 1105, 88806-000, Criciúma, SC, Brazil
| | - Felipe Dal-Pizzol
- Laboratório de Fisiopatologia Experimental, Universidade do Extremo Sul Catarinense, Avenida Universitária, 1105, 88806-000, Criciúma, SC, Brazil.
| |
Collapse
|
15
|
Affiliation(s)
- Ines Batinic-Haberle
- 1 Department of Radiation Oncology, Duke University School of Medicine , Durham, North Carolina
| | - Artak Tovmasyan
- 1 Department of Radiation Oncology, Duke University School of Medicine , Durham, North Carolina
| | - Ivan Spasojevic
- 2 Department of Medicine, Duke University School of Medicine , Durham, North Carolina.,3 Department of PK/PD Core Laboratory, Pharmaceutical Research Shared Resource, Duke Cancer Institute, Duke University School of Medicine , Durham, North Carolina
| |
Collapse
|
16
|
Mn Porphyrin-Based Redox-Active Therapeutics. OXIDATIVE STRESS IN APPLIED BASIC RESEARCH AND CLINICAL PRACTICE 2016. [DOI: 10.1007/978-3-319-30705-3_8] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
17
|
Evidence for Detrimental Cross Interactions between Reactive Oxygen and Nitrogen Species in Leber's Hereditary Optic Neuropathy Cells. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2015; 2016:3187560. [PMID: 26881022 PMCID: PMC4736215 DOI: 10.1155/2016/3187560] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/10/2015] [Revised: 10/19/2015] [Accepted: 10/25/2015] [Indexed: 01/07/2023]
Abstract
Here we have collected evidence suggesting that chronic changes in the NO homeostasis and the rise of reactive oxygen species bioavailability can contribute to cell dysfunction in Leber's hereditary optic neuropathy (LHON) patients. We report that peripheral blood mononuclear cells (PBMCs), derived from a female LHON patient with bilateral reduced vision and carrying the pathogenic mutation 11778/ND4, display increased levels of reactive oxygen species (ROS) and reactive nitrogen species (RNS), as revealed by flow cytometry, fluorometric measurements of nitrite/nitrate, and 3-nitrotyrosine immunodetection. Moreover, viability assays with the tetrazolium dye MTT showed that lymphoblasts from the same patient are more sensitive to prolonged NO exposure, leading to cell death. Taken together these findings suggest that oxidative and nitrosative stress cooperatively play an important role in driving LHON pathology when excess NO remains available over time in the cell environment.
Collapse
|
18
|
Slosky LM, Largent-Milnes TM, Vanderah TW. Use of Animal Models in Understanding Cancer-induced Bone Pain. CANCER GROWTH AND METASTASIS 2015; 8:47-62. [PMID: 26339191 PMCID: PMC4552039 DOI: 10.4137/cgm.s21215] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/07/2015] [Revised: 06/14/2015] [Accepted: 06/16/2015] [Indexed: 12/13/2022]
Abstract
Many common cancers have a propensity to metastasize to bone. Although malignancies often go undetected in their native tissues, bone metastases produce excruciating pain that severely compromises patient quality of life. Cancer-induced bone pain (CIBP) is poorly managed with existing medications, and its multifaceted etiology remains to be fully elucidated. Novel analgesic targets arise as more is learned about this complex and distinct pain state. Over the past two decades, multiple animal models have been developed to study CIBP’s unique pathology and identify therapeutic targets. Here, we review animal models of CIBP and the mechanistic insights gained as these models evolve. Findings from immunocompromised and immunocompetent host systems are discussed separately to highlight the effect of model choice on outcome. Gaining an understanding of the unique neuromolecular profile of cancer pain through the use of appropriate animal models will aid in the development of more effective therapeutics for CIBP.
Collapse
Affiliation(s)
- Lauren M Slosky
- Department of Medical Pharmacology, University of Arizona College of Medicine, Tucson, AZ, USA
| | - Tally M Largent-Milnes
- Department of Medical Pharmacology, University of Arizona College of Medicine, Tucson, AZ, USA
| | - Todd W Vanderah
- Department of Medical Pharmacology, University of Arizona College of Medicine, Tucson, AZ, USA
| |
Collapse
|
19
|
Batinic-Haberle I, Tovmasyan A, Spasojevic I. An educational overview of the chemistry, biochemistry and therapeutic aspects of Mn porphyrins--From superoxide dismutation to H2O2-driven pathways. Redox Biol 2015; 5:43-65. [PMID: 25827425 PMCID: PMC4392060 DOI: 10.1016/j.redox.2015.01.017] [Citation(s) in RCA: 116] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2015] [Revised: 01/27/2015] [Accepted: 01/30/2015] [Indexed: 12/18/2022] Open
Abstract
Most of the SOD mimics thus far developed belong to the classes of Mn-(MnPs) and Fe porphyrins(FePs), Mn(III) salens, Mn(II) cyclic polyamines and metal salts. Due to their remarkable stability we have predominantly explored Mn porphyrins, aiming initially at mimicking kinetics and thermodynamics of the catalysis of O2(-) dismutation by SOD enzymes. Several MnPs are of potency similar to SOD enzymes. The in vivo bioavailability and toxicity of MnPs have been addressed also. Numerous in vitro and in vivo studies indicate their impressive therapeutic efficacy. Increasing insight into complex cellular redox biology has been accompanied by increasing awareness of complex redox chemistry of MnPs. During O2(-) dismutation process, the most powerful Mn porphyrin-based SOD mimics reduce and oxidize O2(-) with close to identical rate constants. MnPs reduce and oxidize other reactive species also (none of them specific to MnPs), acting as reductants (antioxidant) and pro-oxidants. Distinction must be made between the type of reactions of MnPs and the favorable therapeutic effects we observe; the latter may be of either anti- or pro-oxidative nature. H2O2/MnP mediated oxidation of protein thiols and its impact on cellular transcription seems to dominate redox biology of MnPs. It has been thus far demonstrated that the ability of MnPs to catalyze O2(-) dismutation parallels all other reactivities (such as ONOO(-) reduction) and in turn their therapeutic efficacies. Assuming that all diseases have in common the perturbation of cellular redox environment, developing SOD mimics still seems to be the appropriate strategy for the design of potent redox-active therapeutics.
Collapse
Affiliation(s)
- Ines Batinic-Haberle
- Department of Radiation Oncology, School of Medicine, Duke University, Durham, NC 27710, USA.
| | - Artak Tovmasyan
- Department of Radiation Oncology, School of Medicine, Duke University, Durham, NC 27710, USA
| | - Ivan Spasojevic
- Department of Medicine, School of Medicine, Duke University, Durham, NC 27710, USA; PK/PD BioAnalytical Duke Cancer Institute Shared Resource, School of Medicine, Duke University, Durham, NC 27710, USA
| |
Collapse
|